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Nicotine exposure increases PIK3CA, AKT1, HIF-1α,
GLUT1, CA9 and VEGF expression in oral potentially
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Abstract

Background:
Oral squamous cell carcinoma (OSCC) is a highly aggressive malignancy often arising from oral
potentially malignant lesions (OPMD). Nicotine triggers pathways associated with tumor progression,
angiogenesis, and metastasis, notably PI3K/AKT and HIF-1. This study investigated the impact of
nicotine on cell viability, migration, and gene expression (PIK3CA, AKT1, HIF-1α, GLUT1, CA9 and VEGF) in
DOK and SCC9 cell lines.

Methods and Results:
DOK and SCC9 cell lines, were cultured in standard media and conditions, exposed to different nicotine
concentrations (control, 1 µM, and 10 µM) for 8 and 24 hours. Cell viability assay, wound healing scratch
assay cell, RNA extraction and RT-qPCR analysis of target genes were performed. Nicotine increased DOK
cell migration and mRNA expression of PIK3CA, AKT1, HIF-1α, GLUT1, CA9, and VEGF after 8-hour
exposure to 10 µM nicotine.

Conclusions
Our results suggest a relationship between nicotine exposure and the increased expression of genes that
have a strict association with metabolites, survival, proliferation and inhibition of apoptosis in DOK,
where the expression patterns were well-defined within 8 hours and in a dose-dependent manner. Further
studies are warranted to comprehend nicotine's intricate mechanisms impacting oral cancer progression.

Introduction
Oral squamous cell carcinoma (OSCC) is known for its aggressive and rapidly advancing malignancy,
often associated with a high mortality rate [1]. The presence of oral potentially malignant lesions (OPMD)
is associated with an increased risk of developing this type of malignancy [2, 3]. The estimated worldwide
prevalence of OPMD is approximately 4.47%, with higher prevalence rates observed in Asian (10.54%)
and South American/Caribbean (3.93%) populations, compared to other regions, with a rate of malignant
transformation estimated at around 12%; however, the absence of a consistent pattern and molecular
hallmarks makes it challenging to predict which lesions are most likely to evolve into OSCC [4–6].

Continuous consumption of cigarettes is linked to an increased likelihood of developing OPMD and OSCC
[7]. This association may be attributed to substances in cigarette smoke, many of which are carcinogenic,
co-carcinogenic, and contribute to the tumorigenic process [8]. Nicotine is the main natural alkaloid found
in large quantities in cigarette smoke and electronic nicotine delivery systems (ENDS) [9]. Although not
considered a carcinogenic compound, nicotine inherently contributes to the activation of pathways



Page 4/16

involved in tumor growth, cell progression, migration, angiogenesis, apoptotic evasion, and the induction
of metastasis, through the activation of the PI3K/AKT and HIF-1 pathways [10–15].

The PI3K/AKT signaling pathway is dysregulated in a wide range of human cancers. The acquisition of
these characteristics leads to heightened oncogenic signaling, which results in increased signal
transduction associated with diverse cellular functions, such as cell growth, differentiation, survival, and
intracellular trafficking. Normally, this gain in function indicates a worse prognosis for patients diagnosed
with head and neck, colon, prostate, and breast cancers [15–19].

HIF-1 transcriptional complex is comprised of an alpha subunit (HIF-1α) and a nuclear beta subunit (HIF-
1β). This transcription factor is responsible for activating the expression of genes involved in various
physiological aspects, such as angiogenesis (VEGF), cellular pH regulation (CA9), glucose transport
(GLUT-1) and metabolism, among others [20]. Activation of this pathway not only helps normal cellular
adaptation to hypoxic environments, but also, when activated in tumor cells, induces metabolic
reprogramming from oxidative to glycolytic states (Warburg effect), even under normoxic conditions,
which leads to a more aggressive phenotype in OSCC [21–24].

In recent years, there has been a rise in the utilization of electronic nicotine delivery systems (e-cigarettes),
especially among younger people in Brazil, as an alternative to traditional cigarettes [25]. These devices
pose a higher risk of inducing addiction in users compared to conventional cigarettes, potentially serving
as a gateway to the use of traditional tobacco products [26, 27].

The aim of this study was to assess the impact of nicotine exposure on cell viability, migration, and the
mRNA expression of PIK3CA, AKT1, HIF-1α, GLUT1, CA9 and VEGF in the DOK and SCC9 cell lines.

Materials and Methods

Cell Culture
The malignant cell line SCC9 (ATCC catalog number CRL-1629), derived from tongue squamous cell
carcinoma, and the dysplastic oral keratinocyte cell line (DOK) (European Collection of Authenticated Cell
Cultures – ECACC), derived from dysplastic oral keratinocytes of the tongue, were utilized in the assay.
SCC9 cells were cultured in Dulbecco's Modified Eagle Medium/Nutrient Mixture F-12 Ham (DMEM/F12,
Gibco, Germany) supplemented with 10% fetal bovine serum, antimycotic/antibiotic, and hydrocortisone
(50 ng/mL). DOK cells were cultured in DMEM (Gibco, Germany) supplemented with 10% fetal bovine
serum, antimycotic/antibiotic, and hydrocortisone (5 ng/mL). All cell cultures were maintained in a 5%
CO2 environment at 37°C.

Nicotine exposure
Nicotine (N3876 - ≥99%, GC, liquid, Sigma–Aldrich St. Louis, MO, USA) concentrations used during the
study were: Control (0 µM), 1 and 10 µM. The stock solution of nicotine was passed through a 0.22 µm
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pore filter and then diluted in culture media. The cells were seeded in a p6 plate in triplicate and exposed
to nicotine after reaching 80% confluent, during a period of 8 and 24 hours.

Cell Viability Assay
The effect of different nicotine concentrations on the proliferation of SCC9 and DOK cells was estimated
by the Sulforhodamine B (SRB) method describe by VICHAI &¨KIRTIKARA, 2006. SCC9 and DOK were
seeded in 96-well plates in quintuplicates for 24 hours before being treated with different concentrations
of nicotine (0, 1 and 10µM) for 8 and 24 hours. SRB absorbance was measured at 515 nm.

Wound healing Scratch Assay Cell
SCC9 and DOK cells were seeded on a 6-well cell culture plate (105 cells per well) and incubated at 37°C
in 5% CO2. After reaching confluency, a scratch was made using a p200 pipette tip, and cell debris were
washed out with phosphate saline (PBS 1x), before cells were exposed to different concentrations of
nicotine. Cells without nicotine were used as a control. Images of the scratch were taken at 0h, 8h, and
24h after exposure using a phase-contrast inverted microscope. Three images were taken for each well
under 10x magnifications after incubation to estimate the migration of cells. The ImageJ software was
used to calculate the scratch area. The wound closure percentage was calculated compared to the initial
scratch area control.

RNA extraction and RT-qPCR
Total RNA from cell culture was extracted using TRIZOL® (Invitrogen, California, USA) according to the
manufacturer's instructions. Quantity and quality of total RNA were accessed by NanoDropTM
2000/2000c spectrometer (Thermo Fisher Scientific, Waltham, MA, USA) and 0.8% agarose gel.

To remove genomic DNA, the samples of total RNA were treated with DNase I (Invitrogen, California,
USA). After treatment, the synthesis of cDNA was performed from 1µg of RNA using High-Capacity cDNA
Reverse Transcription kit (Invitrogen, California, USA), according to the manufacturer's instructions.

RT-qPCR was performed using Power SYBR® Green PCR Master Mix (Applied Biosystems, Foster City, CA,
USA). The reactions were performed in triplicate in the 7500 Real-Time PCR System thermal cycler
(Applied Biosystems, Foster City, CA, USA). Primers (Table 1) used were designed using the tools
PrimerQuest Tool and OligoAnalyzer Tool, made available by the company IDT™ on its website
(https://www.idtdna.com/pages). The transcript levels were normalized in relation to the housekeeping
B2M (Beta-2-Microglobulin) and then corrected in relation to the control group according to method
2−ΔΔCt described by LIVAK & SCHMITTGEN, 2001.
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Table 1
qPCR primers.

Gene Forward Primer (5' − 3') Reverse Primer (5' − 3') Amplicon size
(pb)

AKT1 AGATCCTCAAGAAGGAAGTC TCTGGAAAGAGTACTTCAGG 120  

B2M ACTTTGTCACAGCCCAAGAT CCAAATGCGGCATCTTCAAA 80  

CA9 GACATCCTAGCCCTGGTTTT CCTTTGGTTCCCCTTCTGTG 95  

GLUT1 CCAAGAGTGTGCTAAAGAAG CGACTCTCTTCCTTCATCT 76  

HIF-1α TTCAAGCAGTAGGAATTGGAAC CGTTTCCAAGAAAGTGATGTAGTAG 115  

PIK3CA GCTTTCTGTCTCCTCTAAAC CAGAGGACATAATTCGACAC 75  

VEGF AGGGCAGAATCATCACGAAG GTCTCGATTGGATGGCAGTAG 72  

Statistical Analysis
SRB test was carried out through one-way ANOVA and Dunnett’s post-hoc test. Wound healing Scratch
Assay Cell was carried out through one-way ANOVA with Bonferroni post-hoc test. The difference in gene
expression between the control and treated groups was performed using one-way ANOVA and the means
were compared by Tukey's HSD post-hoc test. Significance level of 5% (p ≤ 0.05) was considered in all
analyses. All analyses were conducted using RStudio (version 2023.06.0 + 421 and R version 4.3.1).

Results

Effect of nicotine in cell viability and migration of SCC9 and
DOK
The SRB assay revealed an increase in cell viability, specifically in SCC9 cells (Fig. 1B), associated with
different nicotine concentrations and exposure durations. We observed an increase in SCC9 cell viability
at concentrations of 1 µM (17% in 8 hours, p = 0.005; 8% in 24 hours, p = 0.003) and 10 µM (14% in 8
hours, p = 0.01; 7% in 24 hours, p = 0.004) compared to the control group (Fig. 1B). However, this effect
was not observed in DOK cells (Fig. 1A).

The wound assay demonstrated heightened cell migration in DOK cells, particularly notable at 8 hours
with 10 µM of nicotine (Fig. 2B). At this concentration, there was a 44% (p > 0.01) increase in cell
migration and wound closure compared to the control.

Nicotine concentration modulation of PIK3CA and AKT1
expression
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The DOK cell line showed a significant increase in the expression of PIK3CA and AKT1 at 10µM (PIK3CA:
4.17-fold, p = 0.0001; AKT1: 2.84-fold, p = 0.001) after 8 hours and significant decrease at 1 µM (2.94-fold,
p < 0.0001; 8.38-fold, p < 0.0001) and 10 µM (1.99-fold, p < 0.0001; 1.88-fold, p = 0.001) after 24 hours
compared to control. Furthermore, the expression was significantly higher under 10 µM compared to 1 µM
after both timepoints (Fig. 3).

The expression of PIK3CA and AKT1 in SCC9 cells was not associated with nicotine concentration after 8
hours of exposure compared to control. Gene expression was decreased at 1 µM (PIK3CA: 1.44-fold, p = 
0.01) and at 10 µM (PIK3CA: 1.85-fold, p = 0.002; AKT1: 2.85-fold, p = 0.0002), compared to control after
24 hours (Fig. 3). Furthermore, AKT1 expression was significantly different between 1 µM and 10 µM for
both timepoints (Fig. 3B).

Nicotine Impact on HIF-1α and its Target Genes in DOK and
SCC9 Cells
The RT-qPCR analyses in DOK cells demonstrated an increased expression of HIF-1α at a concentration
of 10µM (3.81-fold, p = 0.0001) after 8 hours compared to control (Fig. 4A). Subsequently, after 24 hours,
the mRNA expression decreased notably at both 1 and 10 µM concentrations in HIF-1α (5.26-fold, p < 
0.0001; 1.53-fold, p < 0.0001). We observed that SCC9 cells showed a slight increased mRNA expression
only for HIF-1α at both concentrations (1 µM: 1.34-fold, p = 0.02; 10 µM: 1.52-fold, p = 0.003) after 24
hours (Fig. 4A).

Analyses of the effect of nicotine on the expression of CA9, GLUT1 and VEGF, the target genes of the
transcription factor HIF-1, showed that treatment of DOK cells at a dose of 10 µM promoted an increase
in the expression of these genes after 8 hours (CA9: 23.27-fold, p = 0.0003; GLUT1: 14.41-fold, p < 
0.00001; VEGF: 2.80-fold, p = 0.0009). However, a significant decrease in the mRNA expression of CA9
(1µM: 11.1-fold, p < 0.0001), GLUT-1 (1 µM: 2.73-fold, p = 0.002) and VEGF (1 µM: 8.19-fold, p = 0.00001;
10 µM: 1.72-fold, p = 0.001) after 24 hours (Fig. 4).

We also examined the effects of nicotine in SCC9 and found that CA9 and GLUT1 mRNA expression
increased at 1 µM after 8 hours (1.45-fold, p = 0.04; 2.25-fold, p = 0.00002), and VEGF after 24 hours
(1.56-fold, p = 0.01) (Fig. 4). The expression of GLUT1 was lower compared to the control at 10 µM after 8
hours (1.47-fold, p = 0.02), but increased significantly after 24 hours (1.40-fold, p = 0.03) at the same
concentration (Fig. 4C).

Discussion
We analysed the influence of nicotine on PIK3CA, AKT1, HIF-1α, GLUT1, CA9 and VEGF mRNA gene
expression in the dysplastic oral keratinocyte (DOK) and tongue cancer (SCC9) cell lines. Our results
showed that nicotine induced an increase in SCC9 cell viability and DOK cell migration in a dose- and
time-dependent manner. We found that an 8 hour exposure to 10 µM of nicotine increased mRNA
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expression of all genes associated with proliferation and survival pathways. Nicotine exposure in SCC9,
on the other hand, was shown to affect the expression of genes related to the HIF1 pathway at different
concentrations and times. These results suggest that nicotine induces the activation of gene transcription
in DOK and SCC9 in different ways.

There is a paucity of studies in the literature linking nicotine exposure and its effect on cell migration of
oral dysplastic keratinocytes. We found only one study that showed that nicotine at a concentration of 10
µM promoted and increased cell migration in DOK after 24 hours of exposure, but not after 8 hours [28].
Our results showed different effect, where we observed that exposure to 10 µM nicotine for a period of 8
hours resulted in an increase in cell migration in DOK, but not after 24 hours. This could be due to
differences in the wound closure migration assay, as Wisniewski et.al. (2018) starved cells of serum or
growth factor overnight and followed it with to 2-hour pre-treatment with the inhibitors.

The PI3K-AKT signalling pathway is a widely recognised catalyst for cancer progression and acts on cell
proliferation, growth, differentiation and motility, particularly in OSCC [15, 19]. The literature reports a
marked increase in the expression of the PI3K gene and p-AKT protein in dysplastic and cancerous oral
tissues compared to normal epithelium, suggesting an association between activation of the PI3K-AKT
pathway and the progression of oral carcinogenesis [29–31]. Our results showed that nicotine also
increases the expression of PIK3CA and AKT1, which may contribute to the increased migration of DOK
cells we observed at the 10 µM nicotine concentration after 8 hours.

Nicotine’s effects on cancer cells could mimic the effects of hypoxia even under normal oxygen
conditions, leading to an increase in transcription, translation and cytoplasmic stabilisation of HIF1-α,
which consequently increases gene expression of GLUT, CA9 and VEGF [21, 32–34]. We observed the
same pattern in our results, where 10uM nicotine increased HIF1 and its targets expression in DOK cells
after 8 hours. To the best of our knowledge no studies analysed the effects of nicotine on the HIF
pathway in dysplastic oral cells. However, studies in oral tissues suggest that the expression of HIF1-α,
and its targets (CA9, GLUT1, VEGF) is an early event in oral carcinogenesis and can contribute to a great
risk of malignant transformation [35–38]. Therefore, we hypothesize that changes in the DOK metabolic
pathway caused by nicotine exposure may favour increased expression, translation and migration of
CA9, GLUT1, VEGF in the cell, contributing to the malignancy process.

Although our study was limited to observing the gene expression of PIK3CA, AKT1, HIF-1α, GLUT1, CA9
and VEGF, there are studies showing a positive correlation between in gene and protein expression [39–
41]. This is corroborated in our results since each target in the PI3K/AKT and HIF-1 pathway were
increased. In addition to protein expression analyses, future studies could also use pathway inhibitors, to
support these results.

Our results showed that nicotine was able to increase dysplastic oral keratinocytes migration and gene
expression of PIK3CA, AKT1, HIF-1α, GLUT1, CA9, and VEGF after 8 hours of exposure. These findings
may help understand the impact of nicotine's action on the pre- and post-transcriptional regulation, since
mRNA expression of these genes is poorly understood in dysplastic oral keratinocytes.
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Figure 1

Nicotine concentration and nicotine exposure time influence cell viability of SCC-9 and DOK. (A) SCC-9
cell viability after 8 and 24 hours of nicotine exposure. (B) DOK cell viability after 8 and 24 hours of
nicotine exposure. Asterisks indicate significant difference by Dunnett’s post-hoc test. * p ≤ 0.05. 
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Figure 2

Effect of nicotine concentrations on cell migration SCC9 (A) and DOK (B) at 0, 8 and 24 hours. The graph
illustrates the percentage density of wound closure when comparing different nicotine concentrations
with the control. The asterisk (*) indicates significant differences tested by one-way ANOVA with
Bonferroni post-test (p < 0.05). The experiments were carried out in triplicate.
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Figure 3

Relative expression of PIK3CA and AKT1 after 8- and 24-hours exposure to different concentrations of
nicotine. (A) Relative expression of PIK3CA in SCC9 and DOK cells. (B)  Relative expression of AKT1 in
SCC9 and DOK cells. Statistical analyses were performed by one-way ANOVA and Tukey’s post hoc test (p
<0.05). The expression levels were calibrated according to 2−ΔΔCt method (LIVAK; SCHMITTGEN, 2001).
RT-qPCR reactions were prepared in triplicate.

Figure 4
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Relative expression of HIF-1α, GLUT1, CA9 and VEGF after 8- and 24-hours exposure to different
concentrations of nicotine. (A) Relative expression of HIF-1α in SCC9 and DOK cells. (B) Relative
expression of CA9 in SCC9 and DOK cells. (C)  Relative expression of GLUT1 in SCC9 and DOK cells. (D)
Relative expression of VEGF in SCC9 and DOK cells. Statistical analyses were performed by one-way
ANOVA and Tukey’s post hoc test (p <0.05). The expression levels were calibrated according to 2−ΔΔCt

method (LIVAK; SCHMITTGEN, 2001). RT-qPCR reactions were prepared in triplicate.


