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     Abstract 

In today's rapidly scaling-down technological environment, identifying the best-fit algorithms for evaluating 

complicated circuits such as SRAMs is a difficult issue. Many fault models have developed, however their flexibility of 

use is limited by the restrictions and constraints of the provided test environment. The majority of existing fault models 

have been studied in terms of well-known March algorithms, which simply provide fault detection information. Scaled-

down technologies have an impact on parasitic effects as well, resulting in an extra source of defective behavior and 

making current test algorithms vulnerable to them. Recent work that uses method of parasitic extraction for fault 

detection have addressed the problem of limitation due to scale down technologies.  However, as the circuit complexity 

increases the estimation of RC would be tedious. Hence in this paper machine learning based parasitic RC extraction 

is proposed. Also, as an extension to that, proposed ML based fault detection using extracted parasitic RCs as dataset. 

The proposed machine learning based fault prediction uses extracted parasitic RCs as dataset. The parasitic RC values 

are extracted for each fault model using technologies of 120nm down to deep submicron 7nm. Regression algorithm is 

used for modeling the machine for extraction of RCs and observed that 88% of prediction accuracy. Decision tree 

modeling is used for fault detection and observed 91.7% of accuracy in prediction of fault.  

 

Key Words: Parasitic Extraction Method; Open/Short Faults; Linear Regression; Decision Tree, 

Machine Learning   

1. Introduction  

Memory devices are essential from a quality standpoint as well due to the huge area that 

SRAMs occupy and their high level of integration. For these reasons, manufacturing tests must 

be done quickly and accurately in order to find any internal system faults and keep costs in 

control. The majority of the time, these abnormalities take place inside the memory cell. They 

might result from resistance or parasitic capacitance between the paths [1, 2].  
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On the other hand, faults in low-power designs involve behaviors that are challenging for 

standard March tests to decide up on [3]. The system experiences different impacts depending 

on how short or open defects between the nodes. The effect of such short/open faults on the 

behavior of deep submicron 6T-SRAM cells is explored in this work [4-6]. 

Modern technologies heavily rely on memory testing. The maximal storage density in the 

smallest possible space is frequently required in memory architecture. Therefore, as technology 

advances, data storage requirements and system complexity rise, increasing the probability that 

a system would have defects during manufacturing.  

Previous research took into account the various faults that might exist in each SRAM cell 

[12]; resistive defects are the common defects occur in the memory cell. There are various 

deviations that may disrupt the memory cell. Some of these can be represented as bridging 

defects and resistive-opens defects [7-9] on a circuit model. The functional model of a defect is 

referred to as a fault.  

Existing testing methods to test the embedded memory defects during physical design are 

well established to find the faults described by the fault primitives. But they did not consider 

the parasitic effects and fault masking. Therefore we proposed Parasitic R, C extraction 

method, which gives the 100% fault detection. Recently, there has been increased lot of 

interest in the use of machine learning-based modeling tools.t. In this work, we explore Linear 

Regression machine learning techniques to estimate the parasitic R, C values for different 

technologies (120nm, 90nm, 45nm, 32nm and 7nm) and decision tree algorithm to detect the 

fault in SRAM cell. The major contributions of our work are as follows: 

Ø We have analyzed the 6T-SRAM cell for all possible open/short (Section II). 

Ø We conducted experiments to identify the various faults occur due to the short defects 

or open defects between the nodes (Section II). 

Ø We have investigated the Machine learning techniques to estimate the parasitic R, C 

values and to detect and locate the defect in embedded memory(Section III) 

This paper is organized as follows: in section III we discussed about proposed parasitic 

extraction method for all open and short faults. Section IV we have discussed different 

machine learning techniques used in VLSI in section V draws some conclusions.  



 

3. Proposed Parasitic Extraction Method:   

As technology continues to move in the direction of scaling down, dense eSRAMs may be 

produced by high error-prone designs. As a result, memory and SoC yield are decreased. As a 

result, a solution is needed, and it needs to be free of technological variations [13, 14]. Another 

drawback in the most recent testing methodology is that it does not account for the parasitic 

memory effect, leaving the test uncompleted. With this in mind, we suggested a testing 

approach for eSRAM that enables an extremely accurate fault identification via parasitic R, C 

extraction from a fault-induced architecture 

  

. 

Fig 1. Extraction of parasitic R, C values 

Fig. 1, shows the layout diagram of 6T-SRAM cell. In the proposed method we extracted the 

parasitic R, C values at each node. The Parasitic capacitance is the sum of Metal, Diffusion, and 

Gate and cross talk capacitances. And the parasitic resistance is the sum of via resistance, poly 

resistance, diffusion resistance and Metal resistance.  

3.1 Effect of open defects in 6T SRAM Cell 

In this are article we have consider the node to node open/short faults. In Fig 2. We have imposed 

all possible open defects and then we have analyzed the memory cell for all possible open defects. 



There are totally 25 open defects are possible as shown in the fig 2. The simulation results and 

different types faults occurs for all open defects are shown in table 1 

Fig2: Fault model for Open Defects in 6T-SRAM Cell 

                  Table 1. 6T SRAM Cell open defect list for different technologies 

Defect Representation 
 

Open Defect at nodes 
Technology 

7nm 32nm 

OF1  BL-N3S NAF NAF 

OF2  WL-N3G NAF NAF 

OF3  WL-N4G URF URF 

OF4 Q-P1D UWF1 UWF1 

OF5 Q-N1D UWF0 UWF0 

OF6  Q-P1DN1D NAF NAF 

OF7 Q-P2G UWF0, URF0 TF 

OF8 Q-N2G UWF1, URF1 TF 

OF9 Q-P2GN2G NAF NAF 

OF10 VDD-P1S UWF1 UWF1 

OF11 VDD-P2S UWF0, URF0 TF 

OF12 VDD-P1SP2S UWF,URF0 UWF,URF0 

OF13 VSS-N1S UWF0 UWF0 

OF14 VSS-N2S UWF1, URF1 TF 

OF15  VSS-N1SN2S UWF, URF1 UWF, URF1 

OF16 QB-P2D UWF0, URF0 TF 

OF17 QB-N2D UWF1,URF1 UWF1,URF1 

OF18 QB-P2DN2D URF, UWF0 URF0, UWF 

OF19 QB-P1G UWF1 UWF1 

OF20 QB-N1G UWF0 UWF0 

OF21  QB-P1GN1G UWF UWF 

OF22 P1G-N1G UWF UWF 



Defect Representation 
 

Open Defect at nodes 
Technology 

7nm 32nm 

OF23 P2G-N2G NAF NAF 

OF24 BLB-N4S URF URF 

OF25 WL-N3GN4G NAF NAF 

 

         Table 2.Variation in Parasitic R, C values to detect Open Faults 

 

 

 

 

 

 

Table 2 shows the extracted parasitic R, and C values of different faults occurs for the open defects 

between the nodes.  

Fig 3. Using variation of parasitic R Value Detection of open faults 

Fig 3. Shows the extracted parasitic R values for fault free SRAM cell. When we impose the open 

defect, we have observed the different the faults like No Access fault, Undefined Read Fault, 

Transition Fault and Undefined Write Faults. As shown in the figure for No Access Fault the 

resistance value at node WL changes from 296Ω to 159Ω, thus we can conclude that open defect 

at WL will cause for the No Access Fault. Similarly for transition faults at node BLB, the resistance 

Node 
Fault Free 

NAF 

(BL-N3S) 

URF 

(WL- N4G) 

TF 

(Q-P2G) 

UWF 

(P1G_N1G) 

C(aF) R(Ω) C(aF) R(Ω) C(aF) R(Ω) C(aF) R(Ω) C(aF) R(Ω) 

Q 1700 800 1800 805 1800 813 1600 527 1700 803 

QB 1500 498 1500 498 1500 498 1500 498 1300 239 

WL 770 296 780 296 520 155 780 296 780 296 

BL 626 71 NA NA 630 71 630 71 630 71 

BLB 815 91 820 91 820 91 820 91 820 91 

VDD 310 13 310 13 310 13 310 13 310 13 

VSS 310 13 310 13 310 13 310 13 310 13 



value changes from 800 ohm to 527 ohms, for Undefined Write Fault at node QB the resistance 

changes from 498 ohms to 239 ohms. Therefore changes in the resistance at particular node 

indicates the defect at the node. Same explanation true for the parasitic capacitance. It means the 

change in the capacitance value at a node indicates the fault at that node. 

 

Fig 4. Using variation of parasitic C Value Detection of open faults 

Table 3. Extracted Parasitic R, C values for all open defects 

S.
No 

Open 
 Defect 

at QB at Q At WL at BL at BLB at VDD at VSS 

C(aF) R( Ω) C(aF) R( Ω) C(aF) R( Ω) C(aF) R( Ω) C(aF) R( Ω) C(aF) R( Ω) C(aF) R( Ω) 

  Fault Free 4470 6728 4660 7185 1990 370 930 1160 1030 2100 8250 7060 2040 3610 

1 BL-N4S 4470 6730 4670 7190 1990 370 NA NA 1030 2100 8250 7060 2040 3610 

2 WL-  N4G 4470 6730 4670 7190 1230 190 910 1160 1030 2100 8250 7060 2040 3610 

3 WL-  N5G 4470 6730 4660 7190 1150 190 930 1160 1030 2100 8250 7060 2040 3610 

4 Q-P1D 4480 6730 3700 4730 1990 370 930 1160 1030 2100 8250 7060 2040 3610 

5 Q-N1D 4470 6730 4140 5090 1990 370 930 1160 1030 2100 8250 7060 2040 3610 

6 Q- P1D N1D 4470 6730 930 2090 1990 370 930 1160 1030 2100 8250 7060 2040 3610 

7 Q- P2G 4470 6730 3140 6830 1990 370 930 1160 1030 2100 8250 7060 2040 3610 

8 Q- N2G 4470 6730 3900 7000 1990 370 930 1160 1030 2100 8250 7060 2040 3610 

9 Q- P2G N2G 4470 6730 2380 6650 1990 370 930 1160 1030 2100 8250 7060 2040 3610 

10 VDD- P1S 4470 6730 4660 7190 1990 370 930 1160 1030 2100 7670 4620 2040 3610 

11 VDD- P2S 4470 6730 4660 7190 1990 370 930 1160 1030 2100 7640 4400 2020 3610 

12 
VDD- P1S 

P2S 
4470 6730 4660 7190 1990 370 930 1160 1030 2100 7060 1960 2010 3610 

13 VSS- N1S 4470 6730 4660 7190 1990 370 930 1160 1030 2100 8250 7060 1720 2460 



 

3.2 Effect of Short defects in 6T SRAM Cell 

Fig 5. Fault model for Short Faults of 6T SRAM       

                  Fig 5. Depicted the all possible short defects for the single 6T-SRAM cell. As shown 

in the fig 5. There are totally 21 short defects are possible between the nodes excluding the 

equivalent nodes. These defects will have the effect on the functional behavior of the cell. Table 

4. Shows the different faults occur for the short faults. 

14 VSS- N2S 4470 6730 4660 7190 1990 370 930 1160 1030 2100 8250 7060 1720 2460 

15 VSS N1S N2S 4470 6730 4660 7190 1990 370 930 1160 1030 2100 8250 7060 1390 1320 

16 QB -  P2D 3510 4050 4660 7190 1990 370 930 1160 1030 2100 8250 7060 2040 3610 

17 QB -  N2D 3970 4640 4660 7190 1990 370 930 1160 1030 2100 8250 7060 2040 3610 

18 QB_ P2D N2D 1000 1160 4660 7190 1990 370 930 1160 1030 2100 8250 7060 2040 3610 

19 QB_ P1G 3200 6170 4660 7190 1990 370 930 1160 NA NA 8250 7060 2040 3610 

20 QB_ N1G 3730 6490 4660 7190 1990 370 930 1160 1030 2100 8250 7060 2040 3610 

21 QB_ P1G N1G 2240 5930 4660 7190 1990 370 930 1160 1030 2100 8250 7060 2040 3610 

22 P1G_ N1G 2440 5930 4660 7190 1990 370 930 1160 1030 2100 8250 7060 2040 3610 

23 P2G_ N2G 4470 6730 2380 6650 1990 370 930 1160 1030 2100 8250 7060 2040 3610 

24 BLB -  N5S 4470 6730 4660 7190 1990 370 930 1160 NA NA 8250 7060 2040 3610 

25 
WL- N4G 

N5G 
4470 6730 4660 7190 NA NA 930 1160 1030 2100 8250 7060 2040 3610 



                   Table 4. 6T SRAM Cell short defect list for different technologies 

S.No 

 
Fault 

Representation 

Short 
 between  

Nodes 

 Technology 

45nm 32nm 7nm 

1 SF1 S-SB  UWF, URF USWF, URF USWF, URF 

2 SF2  WL-BL  SA1 TF WBAF, TF 

3 
SF3 

WL-BLB  USF USRF-1 
WBAF, 

USRF-1 

4 SF4 WL-VDD  Error(NAF) Error(NAF) Error(NAF) 

5 SF5 WL-VSS Error(NAF) Error(NAF) Error(NAF) 

6 SF6 WL-S SA-0, URF SA-0, URF SA-0, URF 

7 SF7 WL-SB SA-1,URF SA-1, URF SA-1, URF 

8 SF8 VDD-VSS UWF, URF-0 UWF, URF-0 UWF, URF-0 

9 SF9 S-VDD  URF, UWF URF-0, UWF-0 URF-0, UWF-0 

10 
SF10 

S-VSS URF, UWF URF-1, UWF-1 
URF-1, UWF-

1 

11 SF11 SB-VDD  IOF IOF IOF 

12 SF12 SB-VSS  UWF, URF-0 TF, URF-0 TF, URF-0 

13 SF13 S-BLB URF URF URF 

14 
SF14 

SB-BLB  WBAF 
WBAF, USWF0,  

USRF0 

USWF-0, 

USRF-0 

15 SF15 S-BL  SA-0 WBAF, SA-0 SA-0 

16 
SF16 

SB-BL  USWF, USRF 
WBAF, USWF,  

USRF 
USWF, USRF 

17 SF17 BL-BLB USWF, USRF USWF, USRF USWF, USRF 

18 SF18 BL-VDD  Error Error Error 

19 SF19 BL-VSS  Error Error Error 

20 SF20  BLB-VDD  Error Error Error 

21 SF21 BLB-VSS  Error Error Error 

 

Table 5. Extracted Parasitic R, C values for all short defects 

S.N
o 

Short 
Defect 

at Q at QB at WL at BL at BLB at VDD at VSS 

C in  
fF 

R in 
 Ω 

C in  
fF 

R in 
 Ω 

C in  
fF 

R in 
 Ω 

C in  
fF 

R in 
 Ω 

C in  
fF 

R 
in 
 Ω 

C in  
fF 

R in 
 Ω 

C in  
fF 

R in 
 Ω 

1 
Fault 
Free 

2.9 433 3.1 1170 1.8 180 1.1 158 0.78 54 2.7 2071 1.7 402 

2 Q-QB  5.50 1583 NO NO 1.80 178 1.00 157 0.75 53 2.70 2071 1.70 402 

3  WL-BL  2.90 433 3.10 1170 NO NO 1.60 236 0.78 54 2.70 2071 1.70 402 

4 WL-BLB  2.90 433 3.10 1170 2.10 219 1.00 159 NO NO 2.70 2071 1.70 402 

5 WL-VDD  NO NO NO NO NO NO NO NO NO NO 2.80 2164 1.70 402 



6 WL-VSS NO NO NO NO NO NO NO NO NO NO 2.70 2071 2.70 553 

7 Q-WL  4.00 565 3.10 803 NO NO 1.00 157 0.75 54 2.70 2071 1.70 402 

8 QB-WL  2.90 433 NO NO 4.30 1331 1.00 157 0.75 54 2.70 2071 1.70 402 

9 VDD-VSS 2.90 433 3.10 1170 1.80 180 1.10 158 0.78 54 2.40 1670 2.00 805 

10 Q-VDD  NO NO 3.00 971 1.80 178 1.000 158 0.78 54 3.60 2409 1.70 402 

11 Q-VSS NO NO 3.00 971 1.80 178 1.00 158 0.75 53 2.70 2071 3.10 743 

12 QB-VDD  2.90 407 NO NO 1.80 178 1.00 157 0.75 54 4.00 2787 1.70 402 

13 QB-VSS  2.90 407 NO NO 1.80 178 1.00 157 0.75 53 2.70 2071 3.50 1146 

14 Q-BLB 3.10 445 3.10 803 1.80 180 1.00 157 NO NO 2.70 2071 1.70 402 

15 QB-BLB  2.90 407 3.40 842 1.80 180 1.00 157 NO NO 2.70 2071 1.70 402 

16 Q-BL  NO NO 3.10 1170 1.80 180 2.90 529 0.78 54 2.70 2071 1.70 402 

17 QB-BL  2.90 407 NO NO 1.80 180 3.50 941 0.78 54 2.70 2071 1.70 402 

18 BL-BLB 2.90 407 3.10 803 1.80 180 1.30 196 NO NO 2.70 2071 1.70 402 

19 BL-VDD  NO NO NO NO NO NO NO NO NO NO 2.80 2198 1.70 402 

20 BL-VSS  NO NO NO NO NO NO NO NO NO NO 2.70 2071 1.80 528 

21  BLB-VDD  NO NO NO NO NO NO NO NO NO NO 2.80 2101 1.70 402 

22 BLB-VSS  NO NO NO NO NO NO NO NO NO NO 2.70 2071 1.70 430 

 

Table 5 shows the extracted parasitic R, and C values of different faults. These faults occurs for 

the short defects between the nodes. In the above table NO is the abbreviation for the Node 

Absorbed. When we short two nodes one node will become the equivalent to another node. In this 

case one node will be absorbed 

Table 6. Variation of parasitic R, C values for SRAM short defect model 

  

Fault Free 

WL-BL 

(WBAF, TF) 

VDD-VSS 

(UWF, URF0) 

QB-VDD 

(IoF) 

Q-BL 

 (SA0) 

QB-BL  

(USWF, USRF) 

Effected Node 

WL 

Effected Node 

VDD & VSS 

Effected Node 

VDD 

Effected Node 

BL 

Effected Node 

BL 
C(aF) R(Ω) C(aF) R(Ω) C(aF) R(Ω) C(aF) R(Ω) C(aF) R(Ω) C(aF) R(Ω) 

Q 2900 433 2900 433 2900 433 2900 407 NO NO 2900 407 

QB 3100 1170 3100 1170 3100 1170 NO NO 3100 1170 NO NO 

WL 1800 180 NO NO 1800 180 1800 178 1800 180 1800 180 

BL 1800 158 1600 236 1100 158 1000 157 2900 529 3500 941 

BLB 783 54 783 54 783 54 753 54 783 54 783 54 



VDD 2700 2071 2700 2071 2400 1670 4000 2787 2700 2071 2700 2071 

VSS 1700 402 1700 402 2000 805 1700 402 1700 402 1700 402 

 

  Fig.6 Fault detection based on parasitic capacitance variation for short defects 

                    Fig.7 Fault detection based on parasitic resistance variation for short faults 

Fig 7. Shows the extracted parasitic R values for fault free SRAM cell. When we impose the short 

defect, we have observed the different the faults like Write Before Access Fault, Initialization order 

Fault, Stuck at Fault. As shown in the figure for IoF the resistance value at node VDD changes 

from 2071Ω to 2787Ω, thus we can conclude that short defect at VDD will cause for the, 

Initialization order Fault. Similarly for transition faults at node BLB, the resistance value changes 

from 800 ohm to 527 ohms, for Undefined Write Fault at node QB the resistance changes from 

498 ohms to 239 ohms. Therefore changes in the resistance at particular node indicates the defect 

at the node. Same explanation true for the parasitic capacitance. It means the change in the 

capacitance value at a node indicates the fault at that node. 



 

3. Results and Comparison 

3.1 Machine Learning Techniques in embedded Memory 

Recent developments in the application of machine learning approaches to design research 

challenges have generated a lot of interest [10, 11]. A model is trained or guided by the actual 

application of a process or phenomena, and then it is used to predict the same metric for new input 

data. The training set refers to the data used to develop the model initially. It should be evaluated 

using an entirely new set, known as the testing set, in order to determine the goodness of the 

developed model. If the actual set of inputs chosen is highly linked with the expected output, it is 

crucial to consider the fitness value of the training set. 

We must have a solid and broad training set from real data obtained through operations in order to 

have a good model for variation estimates. To achieve this, we have obtain huge data set for the 

short and open faults. For short faults totally we got 21 defects at 7 nodes. Each node will have 

different resistance and capacitance values for different faults. Similarly we have calculated the 

parasitic R, C value for 25 different open faults at 7 nodes. table 3 and table 5 shows the obtained 

values. This will provide a large dataset for training and testing. One of the key features of our 

work is the use of actual layouts to extract parasitic R, C values, then we impose the short/open 

defects then calculated the Parasitic R, C values, these values are used find the defects of the 

SRAM cell.  

3.2 Machine Learning Design Methodology 

Machine learning is a branch of artificial intelligence that allows systems to learn from large 

amounts of data and address certain issues. It makes use of computer algorithms whose 

effectiveness is automatically improved through practice.  

 



Fig 8. Machine learning model 

 

There are primarily three types of machine learning: Supervised, Unsupervised, and 

Reinforcement Learning. 

Supervised Learning: In supervised learning, machine learning models are trained using labeled 

data. The outcome in labeled data is already known. The model only needs to map the inputs to 

the corresponding outputs. Algorithms for supervised learning are frequently employed to solve 

classification and regression issues. 

Linear Regression, Logistic Regression, SVM algorithm, KNN algorithm, Decision Tree, Random 

Forest are supervised learning algorithms 

Fig 9. Types of Supervised Learning 

Unsupervised Learning: Machines are trained with unlabeled data using a technique called 

unsupervised learning. No fixed output variable exists for unlabeled data. The model takes in the 

information from the data, looks for patterns and features, and then outputs the results. For the 

purpose of resolving clustering and association issues, unsupervised learning is employed. 

Reinforcement Learning: Reinforcement Learning enables a machine to respond appropriately 

and maximize its benefits in a certain circumstance. To generate actions and rewards, it makes use 

of an agent and an environment. The agent has a beginning state and a conclusion state. However, 



there could be numerous routes leading to the goal, much like a maze. There is no fixed target 

variable in this learning method. 

In our proposed method we have used multiple linear regression to predict the parasitic R, C values. 

The regression method explained in the following section. 

Simple Linear Regression: 

The relationship between independent and dependent variables can be predicted using a statistical 

model called linear regression by looking at two aspects: 

1. Specifically, which variables are capable of accurately predicting the outcome variable? 

2. In terms of creating predictions with the highest degree of accuracy, how significant is the 

regression line? 

An independent variable's value is unaffected by the effects of other variables. It is frequently 

indicated with a "x." 

The dependent variable is affected by an independent variable. When the values of the independent 

variables change, the dependent variable's value also changes. It is frequently indicated by a "y". 

The linear regression represented by the equation of  

y = m*x + c  

Where x à independent variable, y à dependent variable, m à slope 

 

Multiple Linear Regression 

The multiple linear regression, represented by the equation of y = m1x1 + m2x2 + m3x3 +........ + c 

Where x1, x2 and x3… are the independent variables. m1, m2, m3 indicates the slopes. 

3.2.1 Determination of Parasitic R, C values by using Multiple Linear Regression: 

Table 7.  Shows the extracted R, C values for the different technologies from the layout diagram 

of the 6T-SRAM Cell at each node as shown in the fig 1. In the table shown we have used multiple 

linear regression to determine the R, C values. In this process we have used technology and length 

as the independent variables and Resistance and Capacitance are the dependent variables. 

 

                                      Table 7. Extracted R and C values for different technologies 

Node Technology(nm) L(um) R(ohms) C(fF) 

Q 120 69.2 1336 7.1 

QB 120 78.3 1415 7.5 

WL 120 31.3 371 4 



BL 120 20.7 146 0.973 

BLB 120 28.3 243 1.2 

VDD 120 12.6 2 0.604 

VSS 120 12.6 2 0.604 

Q 90 64.7 1013 6.8 

QB 90 57.8 949 6.5 

WL 90 21.1 337 2.9 

BL 90 18.1 99 1.2 

BLB 90 10.2 188 0.753 

VDD 90 9.4 6 0.537 

VSS 90 9.4 6 0.537 

Q 45 29.9 1518 3.6 

QB 45 25.8 1128 3.3 

WL 45 9.6 415 1.4 

BL 45 8.1 152 0.816 

BLB 45 4.6 247 0.484 

VDD 45 4.2 8 0.404 

VSS 45 4.2 8 0.404 

Q 32 19.4 818 2 

QB 32 17 682 1.8 

WL 32 7.3 335 0.692 

BL 32 6.3 75 0.701 

BLB 32 3.9 67 0.459 

VDD 32 2.9 13 0.314 

VSS 32 2.9 13 0.314 

Q 7 3.3 7417 0.642 

QB 7 3.5 7077 0.681 

WL 7 1.7 3553 0.34 

BL 7 1.3 951 0.195 

BLB 7 1.7 1371 0.256 

VDD 7 0.65 23 0.081 

VSS 7 0.65 23 0.081 

 

The main steps involved in the multiple linear regression to determine the R and C values are as 

follows: 

1. Importing the libraries 

2. Load the data set and extract independent and dependent variable 

3. Data Visualization 

4. Encoding the Data 

5. Splitting the data into train and test set 



6. Fitting the Multiple Linear Regression to training set 

7. Predicting the test results 

Simulation Results: 

1. Importing the libraries: we have imported the Pandas and Numpy libraries for the data 

processing and perform the numerical operations respectively. 

2. Load the data set and extract independent and dependent variable 

  

pd.read_csv is used to load the data. Dataset.iloc is used to select the particular row and column 

to determine the dependent and independent variables. In the given dataset we have made 

resistance column as the dependent variable and technology and length as independent 

variables. 

3. Data Visualization and Encoding the data 



 

4. Splitting the data into train and test set 

 
 

5. Fitting the Multiple Linear Regression to training set 

 

 

6. Predicting the test results 



 

Thus our proposed model gives the 88.62% accuracy to determine the parasitic C values for fault 

free SRAM Cell. After extracted the Parasitic R, C values, we will use these values to find the 

defects and location of the faulty SRAM cell. Table 1 shows fault model dictionary for all open 

faults. Table 4 shows fault model dictionary for all short faults.  

After estimation of the parasitic R, C Values, We have used Decision Tree algorithm to find the 

fault and its location, A decision tree is a tree-based supervised learning technique used to forecast 

a target variable's result. With the support of regression and classification algorithms, supervised 

learning employs labeled data information with known output variables to create predictions. 

Using different data features, it learns from basic decision-making guidelines. Python decision 

trees are widely used to calculate probabilities because they may be utilized to handle classification 

and regression issues. 

Important Terms Used in Decision Trees:  



1. Entropy: The amount of uncertainty or randomness in a set of data is measured by 

entropy. How a decision tree divides the data depends on entropy. The following formula 

is used to calculate the uncertainty. 

 

2.  Information Gain: After the data set is divided, the information gain calculates the 

reduction in entropy.  

  IG(Y, X) = Entropy (Y) - Entropy (Y | X) formula is used to calculate the information 

gain 

3. Gini Index: To select the appropriate variable for splitting nodes, the Gini Index is used. 

It assesses the frequency of inaccurate identification of a randomly selected variable.  

4. Root Node: The top node of a decision tree is always the root node. It can be further split 

into various sets and represents the total population or data sample. 

5. Decision Node: Decision nodes are subnodes that can be divided into other subnodes and 

include two or more branches. 

6. Leaf Node: A leaf carries the final results. These nodes, are also known as terminal nodes, 

and these nodes further cannot be split any further 

We will now predict if the memory cell is faulty cell or fault free cell using the decision tree 

algorithm in machine learning. In order to make the prediction, the data set includes a variety 

of information, such as the capacitance and resistance values for defective and fault-free 

SRAM cells at each node, as well as fault information.. Table shows the extracted capacitance 

and resistance values for the open fault detection at the nodes QB, Q, WL, BL, BLB and VDD. 

Table 8. Extracted R and C values for faulty and fault free SRAM at different nodes 

C in 
fF 

R in KΩ 
Faulty or 

Not 
C in 
fF 

R in KΩ 
Faulty or 

Not 
C in 
fF 

R in KΩ 
Faulty or 

Not 

2.9 18.96 Fault Free 3.3 20.18 Fault Free 0.88 2.66 Fault Free 

2.9 18.96 Fault Free 3.3 20.18 Fault Free 0.88 2.66 Fault Free 

2.9 18.96 Fault Free 3.3 20.18 Fault Free 0.26 1.36 Fault at WL 

2.9 18.96 Fault Free 3.3 20.18 Fault Free 0.8 1.36 Fault at WL 

2.9 18.96 Fault Free 2.4 12.26 Fault at Q 0.88 2.66 Fault Free 

2.9 18.96 Fault Free 2.7 16.74 Fault at Q 0.88 2.66 Fault Free 

2.9 18.96 Fault Free 1.2 3.62 Fault at Q 0.88 2.66 Fault Free 

2.9 18.96 Fault Free 2.8 16.13 Fault at Q 0.88 2.66 Fault Free 



2.9 18.96 Fault Free 3 18.94 Fault at Q 0.88 2.66 Fault Free 

2.9 18.96 Fault Free 2.6 14.91 Fault at Q 0.88 2.66 Fault Free 

2.9 18.96 Fault Free 3.3 20.18 Fault Free 0.88 2.66 Fault Free 

2.9 18.96 Fault Free 3.3 20.18 Fault Free 0.88 2.66 Fault Free 

2.9 18.96 Fault Free 3.3 20.18 Fault Free 0.88 2.66 Fault Free 

2.9 18.96 Fault Free 3.3 20.18 Fault Free 0.88 2.66 Fault Free 

2.9 18.96 Fault Free 3.3 20.18 Fault Free 0.88 2.66 Fault Free 

2.9 18.96 Fault Free 3.3 20.18 Fault Free 0.88 2.66 Fault Free 

2.1 11.06 Fault at QB 3.3 20.18 Fault Free 0.88 2.66 Fault Free 

2.4 15.51 Fault at QB 3.3 20.18 Fault Free 0.88 2.66 Fault Free 

0.52 2.31 Fault at QB 3.3 20.18 Fault Free 0.88 2.66 Fault Free 

2.5 14.94 Fault at QB 3.3 20.18 Fault Free 0.88 2.66 Fault Free 

2.7 17.74 Fault at QB 3.3 20.18 Fault Free 0.88 2.66 Fault Free 

2.7 17.74 Fault at QB 3.3 20.18 Fault Free 0.88 2.66 Fault Free 

2.3 13.72 Fault at QB 3.3 20.18 Fault Free 0.88 2.66 Fault Free 

2.9 18.96 Fault Free 2.6 14.91 Fault at Q 0.88 2.66 Fault Free 

2.9 18.96 Fault Free 3.3 20.18 Fault Free 0.88 2.66 Fault Free 

2.9 18.96 Fault Free 3.3 20.18 Fault Free 0 0 Fault at WL 

1 2.6 Fault Free 0.61 3.29 Fault Free 2.4 12.03 Fault Free 

0 0 Fault at BL 0.61 3.29 Fault Free 2.4 12.03 Fault Free 

1 2.6 Fault Free 0.61 3.29 Fault Free 2.4 12.03 Fault Free 

1 2.6 Fault Free 0.61 3.29 Fault Free 2.4 12.03 Fault Free 

1 2.6 Fault Free 0.61 3.29 Fault Free 2.4 12.03 Fault Free 

1 2.6 Fault Free 0.61 3.29 Fault Free 2.4 12.03 Fault Free 

1 2.6 Fault Free 0.61 3.29 Fault Free 2.4 12.03 Fault Free 

1 2.6 Fault Free 0.61 3.29 Fault Free 2.4 12.03 Fault Free 

1 2.6 Fault Free 0.61 3.29 Fault Free 2.4 12.03 Fault Free 

1 2.6 Fault Free 0.61 3.29 Fault Free 2.4 12.03 Fault Free 

1 2.6 Fault Free 0.61 3.29 Fault Free 2.1 8.65 
Fault at 

VDD 

1 2.6 Fault Free 0.61 3.29 Fault Free 2.1 8.65 
Fault at 

VDD 

1 2.6 Fault Free 0.61 3.29 Fault Free 1.9 5.27 
Fault at 

VDD 

1 2.6 Fault Free 0.61 3.29 Fault Free 2.4 12.03 Fault Free 

1 2.6 Fault Free 0.61 3.29 Fault Free 2.4 12.03 Fault Free 

1 2.6 Fault Free 0.61 3.29 Fault Free 2.4 12.03 Fault Free 

1 2.6 Fault Free 0.61 3.29 Fault Free 2.4 12.03 Fault Free 

1 2.6 Fault Free 0.61 3.29 Fault Free 2.4 12.03 Fault Free 

1 2.6 Fault Free 0.61 3.29 Fault Free 2.4 12.03 Fault Free 

1 2.6 Fault Free 0.61 3.29 Fault Free 2.4 12.03 Fault Free 

1 2.6 Fault Free 0.61 3.29 Fault Free 2.4 12.03 Fault Free 

1 2.6 Fault Free 0.61 3.29 Fault Free 2.4 12.03 Fault Free 

1 2.6 Fault Free 0.61 3.29 Fault Free 2.4 12.03 Fault Free 



1 2.6 Fault Free 0.61 3.29 Fault Free 2.4 12.03 Fault Free 

1 2.6 Fault Free 0 0 
Fault at 

BLB 
2.4 12.03 Fault Free 

1 2.6 Fault Free 0.61 3.3 Fault Free 2.4 12.03 Fault Free 

 

Building a Decision Tree for fault detection in SRAM Cell 

1. Import the libraries for Decision Tree. 

 

2. Load the data using Pandas 

 

3. Slicing method separate dependent and independent variables. 

 

4. Using the decision tree classifier split the train and test data 

 

5. Predict the test data set values. 



 

6. Calculate the accuracy of the model. 

 

Therefore our prediction model shows that there is an excellent accuracy score of 91.78 

percent to separate faulty memory cells and also locate the position of the defect 

irrespective of the technology variation. 

 

Conclusion: 

In this paper, we proposed a machine learning based parasitic R, C estimation technique for 

embedded SRAMs obtaining maximum defect coverage for short and open defects. The proposed 

method we have used multiple linear regression method to determine the parasitic resistance and 

capacitance values, and we have used decision tree algorithm to find the faulty and fault free 

memory cell. The proposed method is implemented to detect the open and short faults which are 

independent of the technology variation. Using the proposed method we found existing fault 

models along with an undetectable faults. To get the parasitic R, C values using Microwind 3.9 

simulation tool. The experimental results shows excellent accuracy to calculate the parasitic R, C 

values and also to predict the faults in the SRAM memory cell by using machine learning 

algorithms. 
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