1 Strouthidis, N. G. et al. Comparison of clinical and spectral domain optical coherence tomography optic disc margin anatomy. Invest Ophthalmol Vis Sci50, 4709-4718, doi:10.1167/iovs.09-3586 (2009).
2 Reis, A. S. et al. Optic disc margin anatomy in patients with glaucoma and normal controls with spectral domain optical coherence tomography. Ophthalmology119, 738-747, doi:10.1016/j.ophtha.2011.09.054 (2012).
3 Sawada, Y. et al. Optic Disc Margin Anatomic Features in Myopic Eyes with Glaucoma with Spectral-Domain OCT. Ophthalmology125, 1886-1897, doi:10.1016/j.ophtha.2018.07.004 (2018).
4 Chui, T. Y., Zhong, Z. & Burns, S. A. The relationship between peripapillary crescent and axial length: Implications for differential eye growth. Vision Res51, 2132-2138, doi:10.1016/j.visres.2011.08.008 (2011).
5 Dai, Y., Jonas, J. B., Huang, H., Wang, M. & Sun, X. Microstructure of parapapillary atrophy: beta zone and gamma zone. Invest Ophthalmol Vis Sci54, 2013-2018, doi:10.1167/iovs.12-11255 (2013).
6 Kim, M., Kim, T. W., Weinreb, R. N. & Lee, E. J. Differentiation of parapapillary atrophy using spectral-domain optical coherence tomography. Ophthalmology120, 1790-1797, doi:10.1016/j.ophtha.2013.02.011 (2013).
7 Miki, A. et al. Measurements of the parapapillary atrophy zones in en face optical coherence tomography images. PLoS One12, e0175347, doi:10.1371/journal.pone.0175347 (2017).
8 Jonas, J. B. et al. Parapapillary Gamma Zone and Axial Elongation-Associated Optic Disc Rotation: The Beijing Eye Study. Invest Ophthalmol Vis Sci57, 396-402, doi:10.1167/iovs.15-18263 (2016).
9 Jonas, J. B. et al. Central retinal vessel trunk exit and location of glaucomatous parapapillary atrophy in glaucoma. Ophthalmology108, 1059-1064 (2001).
10 Jonas, J. B., Martus, P., Budde, W. M., Junemann, A. & Hayler, J. Small neuroretinal rim and large parapapillary atrophy as predictive factors for progression of glaucomatous optic neuropathy. Ophthalmology109, 1561-1567 (2002).
11 Park, H. Y., Lee, K. & Park, C. K. Optic disc torsion direction predicts the location of glaucomatous damage in normal-tension glaucoma patients with myopia. Ophthalmology119, 1844-1851, doi:10.1016/j.ophtha.2012.03.006 (2012).
12 Choi, J. A., Park, H. Y., Shin, H. Y. & Park, C. K. Optic disc tilt direction determines the location of initial glaucomatous damage. Invest Ophthalmol Vis Sci55, 4991-4998, doi:10.1167/iovs.14-14663 (2014).
13 Lee, K. S., Lee, J. R. & Kook, M. S. Optic disc torsion presenting as unilateral glaucomatous-appearing visual field defect in young myopic Korean eyes. Ophthalmology121, 1013-1019, doi:10.1016/j.ophtha.2013.11.014 (2014).
14 Kim, M., Choung, H. K., Lee, K. M., Oh, S. & Kim, S. H. Longitudinal Changes of Optic Nerve Head and Peripapillary Structure during Childhood Myopia Progression on OCT: Boramae Myopia Cohort Study Report 1. Ophthalmology125, 1215-1223, doi:10.1016/j.ophtha.2018.01.026 (2018).
15 Lee, K. M., Choung, H. K., Kim, M., Oh, S. & Kim, S. H. Positional Change of Optic Nerve Head Vasculature during Axial Elongation as Evidence of Lamina Cribrosa Shifting: Boramae Myopia Cohort Study Report 2. Ophthalmology125, 1224-1233, doi:10.1016/j.ophtha.2018.02.002 (2018).
16 Lee, K. M., Choung, H. K., Kim, M., Oh, S. & Kim, S. H. Change of beta-Zone Parapapillary Atrophy During Axial Elongation: Boramae Myopia Cohort Study Report 3. Invest Ophthalmol Vis Sci59, 4020-4030, doi:10.1167/iovs.18-24775 (2018).
17 Lee, K. M., Park, S. W., Kim, M., Oh, S. & Kim, S. H. Relationship between Three-Dimensional Magnetic Resonance Imaging Eyeball Shape and Optic Nerve Head Morphology. Ophthalmology, doi:10.1016/j.ophtha.2020.08.034 (2020).
18 Lee, K. M., Kim, M., Oh, S. & Kim, S. H. Position of Central Retinal Vascular Trunk and Preferential Location of Glaucomatous Damage in Myopic Normal-Tension Glaucoma. Ophthalmology Glaucoma1, 32-43, doi:10.1016/j.ogla.2018.05.003 (2018).
19 Lee, K. M., Kim, M., Oh, S. & Kim, S. H. Hemisphere opposite to vascular trunk deviation is earlier affected by glaucomatous damage in myopic high-tension glaucoma. PLoS One15, e0233270, doi:10.1371/journal.pone.0233270 (2020).
20 Quigley, H. A. & Addicks, E. M. Regional differences in the structure of the lamina cribrosa and their relation to glaucomatous optic nerve damage. Arch Ophthalmol99, 137-143, doi:10.1001/archopht.1981.03930010139020 (1981).
21 Guevara, D. A. & Juarez, E. J. Clinical features of optic nerve head in healthy newborns. Arch Soc Esp Oftalmol92, 54-57, doi:10.1016/j.oftal.2016.08.008 (2017).
22 Kim, M., Kim, S. Y., Lee, K. M., Oh, S. & Kim, S. H. Position of Central Vascular Trunk and Shape of Optic Nerve Head in Newborns. Invest Ophthalmol Vis Sci60, 3381-3387, doi:10.1167/iovs.19-27363 (2019).
23 Hong, S. et al. OCT-Detected Optic Nerve Head Neural Canal Direction, Obliqueness, and Minimum Cross-Sectional Area in Healthy Eyes. Am J Ophthalmol208, 185-205, doi:10.1016/j.ajo.2019.05.009 (2019).
24 Jeoung, J. W. et al. Optical Coherence Tomography Optic Nerve Head Morphology in Myopia I: Implications of Anterior Scleral Canal Opening Versus Bruch Membrane Opening Offset. American Journal of Ophthalmology218, 105-119, doi:https://doi.org/10.1016/j.ajo.2020.05.015 (2020).
25 Diedenhofen, B. & Musch, J. cocor: A Comprehensive Solution for the Statistical Comparison of Correlations. PLOS ONE10, e0121945, doi:10.1371/journal.pone.0121945 (2015).
26 Jonas, R. A. & Holbach, L. Peripapillary border tissue of the choroid and peripapillary scleral flange in human eyes. Acta Ophthalmol98, e43-e49, doi:10.1111/aos.14206 (2020).
27 Fantes, F. E. & Anderson, D. R. Clinical Histologic Correlation of Human Peripapillary Anatomy. Ophthalmology96, 20-25, doi:https://doi.org/10.1016/S0161-6420(89)32929-0 (1989).
28 Patel, A., Anderson, G., Galea, G. L., Balys, M. & Sowden, J. C. A molecular and cellular analysis of human embryonic optic fissure closure related to the eye malformation coloboma. Development147, dev193649, doi:10.1242/dev.193649 (2020).
29 Demer, J. L. Optic Nerve Sheath as a Novel Mechanical Load on the Globe in Ocular Duction. Invest Ophthalmol Vis Sci57, 1826-1838, doi:10.1167/iovs.15-18718 (2016).
30 Wang, X. et al. In Vivo 3-Dimensional Strain Mapping Confirms Large Optic Nerve Head Deformations Following Horizontal Eye Movements. Invest Ophthalmol Vis Sci57, 5825-5833, doi:10.1167/iovs.16-20560 (2016).
31 Lee, W. J. et al. Changes in the optic nerve head induced by horizontal eye movements. PLoS One13, e0204069, doi:10.1371/journal.pone.0204069 (2018).
32 Unsöld, R., Newton, T. H. & Hoyt, W. F. CT examination technique of the optic nerve. J Comput Assist Tomogr4, 560-563, doi:10.1097/00004728-198008000-00035 (1980).
33 Liu, C., Youl, B. & Moseley, I. Magnetic resonance imaging of the optic nerve in extremes of gaze. Implications for the positioning of the globe for retrobulbar anaesthesia. Br J Ophthalmol76, 728-733, doi:10.1136/bjo.76.12.728 (1992).
34 Jonas, J. B., Ohno-Matsui, K., Holbach, L. & Panda-Jonas, S. Retinal pigment epithelium cell density in relationship to axial length in human eyes. Acta Ophthalmologica95, e22-e28, doi:https://doi.org/10.1111/aos.13188 (2017).
35 Lim, L. S. et al. MRI of posterior eye shape and its associations with myopia and ethnicity. Br J Ophthalmol104, 1239-1245, doi:10.1136/bjophthalmol-2019-315020 (2020).
36 Wang, B. et al. Location of the Central Retinal Vessel Trunk in the Laminar and Prelaminar Tissue of Healthy and Glaucomatous Eyes. Scientific Reports7, 9930, doi:10.1038/s41598-017-10042-5 (2017).