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Abstract 

A major challenge for inhibiting metastasis is the ability of cancer cells to reversibly switch 

states in response to microenvironmental cues along the metastatic cascade. The regulatory 

factors and signals from the microenvironment enabling colorectal cancer (CRC) cells to 

transition into an invasive state and to establish metastasis in the liver remain unknown. Using 

a combination of single-cell multiomics and spatial transcriptomics data from primary and 

metastatic CRC patients, we reveal putative metastasis-initiating cancer states with 

regenerative and inflammatory signatures, driven by transcription factors AP-1, NF-κB and 

YAP. We demonstrate the existence of an intermediate population with a hybrid regenerative 

and stem phenotype, indicating phenotypic transitions between stem and pro-metastatic cells. 

Our spatial analyses show localisation of the regenerative states at the invasive edge in 

primary CRC and in an immunosuppressive niche in liver metastasis, surrounded by immune 

and stromal cells that sustain these cells. We uncover putative ligand-receptor interactions 

driven by cancer-associated fibroblasts (CAFs), macrophages and CD8 T cells that activate 

the regenerative and inflammatory invasive phenotype in cancer cells. Together, our findings 

reveal regulatory and signalling factors that can be targeted to restrict transition into invasive 

states to impair metastasis. 
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Introduction 

Colorectal cancer is the third most common malignancy globally and the second leading cause 

of cancer-related death because of its high relapse rate1. Less than 1 in 5 people with 

metastatic CRC survive for 5 years following their diagnosis. Genomic divergence between 

primary and metastatic tumours from the same patients2 is low and driver mutations tend to 5 

be clonal across metastases3. Furthermore, spatial mapping of mutations shows that many 

primary CRC (pCRC) clones are capable of invasion4. Collectively this points to a key role in 

CRC progression and therapy resistance for phenotypic plasticity - the ability of cells to 

undergo rapid phenotypic transitions in response to external signals and adapt to new 

microenvironments such as those encountered during metastasis5,6,7. Plasticity allows cancer 10 

cells to acquire and maintain phenotypic heterogeneity that enables them to become invasive, 

escape the immune system, colonise distant sites and evade therapy. 

  

CRC has a cellular hierarchy resembling a healthy intestine8, maintained by LGR5 expressing 

stem cells9 that give rise to transient-amplifying progenitor cells which undergo differentiation 15 

into absorptive and secretory lineages. However, following tissue damage or loss of the stem 

cells, differentiated cells can dedifferentiate and replenish the impaired stem-cell niches to 

enable tissue repair10,11. The same phenomenon has been described in murine CRC models 

and organoids after ablation of the Lgr5+ stem cells. Furthermore, disseminating metastasis-

initiating cells in mouse models were found to be predominantly Lgr5- cells that reacquire 20 

Lgr5+ stem-cell phenotype at metastatic sites to regenerate metastasis12,13. Chemotherapy 

was also shown to promote a transition from an LGR5+ stem-like state to an LGR5- drug-

resistant state14,15. A recent study that for the first time characterised heterogenous cancer 

states in CRC metastasis, showed that liver metastases in some patients display progressive 

plasticity enabling differentiation into non-canonical squamous and neuroendocrine-like 25 

states16. Such reversible cell-state transitions indicate that cellular reprogramming is largely 

driven by epigenetic plasticity that can initiate new transcriptional programmes in response to 

external signals17. However, the regulatory factors and extrinsic signals enabling CRC cells to 

transition into an aggressive cell state, and the mechanisms that maintain this state, are poorly 

understood. This hinders efforts to improve prognostication, predict who will benefit from 30 

treatment, and develop new therapies. 

  

Here, we sought to characterise the heterogeneous cancer cell states in primary and liver 

metastatic CRC using a combination of single-cell RNA-seq (scRNA-seq), single-nucleus 

multiomics and spatial transcriptomics data. We find putative metastasis-initiating cell states 35 

and identify gene regulatory networks and transcription factors driving those states. These 

pro-metastatic states are enriched at the tumour invasive front and surrounded by 

immunosuppressive immune and stromal cells. We reveal the spatial organisation in cellular 

niches of the metastatic liver and find ligand-receptor interactions potentially shaping and 

sustaining the invasive phenotype. 40 

Results 

Heterogeneous cancer cell states in primary CRC 
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To examine the cellular heterogeneity and composition of malignant cell states and the tumour 

microenvironment in pCRC, we integrated previously published scRNA-seq data18–20 of 117 45 

untreated CRC patients (Fig. 1a, Extended Data Fig. 1a). After quality control, we retained 

single-cell transcriptomes from 246,779 cells, including cancer, immune (T, natural killer - NK, 

B and myeloid cells) and stromal (cancer-associated fibroblasts (CAFs), endothelial and 

perivascular cells) cells (Fig. 1b, Extended Data Fig. 1b-c). 

  50 

We first focused our analysis on the malignant cells, identified by inferring genome-wide 

single-cell somatic copy number variations (CNVs) with inferCNV. Integration of gene 

expression data was performed accounting for patient variability. Our analysis shows cell 

hierarchies reminiscent of those in normal tissues, with stem cells (LGR5) giving rise to TA 

cells (MKI67, TOP2A) which differentiate into distinct absorptive (Colonocytes - SLC2A23) 55 

and secretory lineages (Goblet - MUC2, Tuft - LRMP and Enteroendocrine - PCSK1) (Figure 

1c-f, Extended Data Fig. 1d-i). In addition to the normal-like states, we identified a stem cell 

state absent in the healthy colon and characterised by upregulation of a range of WNT 

antagonists including NOTUM, NKD1 and APCDD1 (Extended Data Fig. 1d-g, Supplementary 

Table 1). Apc-mutant stem cells have been shown to secrete WNT inhibitors such as NOTUM 60 

to outcompete wild-type stem cells by driving their differentiation, thereby facilitating the 

outgrowth of Apc-mutant clones and development of premalignant adenomas21. In line with 

this, our analysis shows that the Stem NOTUM state is enriched in patients with mutations in 

the tumour suppressor APC (Extended Data Fig. 1j). 

  65 

Among the cancer-specific states, gene enrichment analysis (GEA) reveals two 

subpopulations that share an expression profile with LGR5- regenerative stem cells (RSC) or 

revival colonic stem cells (revCSC), a plastic state identified in primary CRC22,23, hereafter 

named regenerative cells (REC; marker genes: LAMC2, EMP1). In addition, we detect a 

hypoxic (VEGFA) state and an HLA high state (Fig. 1e,f, Extended Data Fig. 1g and 70 

Supplementary Table 2). Interestingly, a subset of RECs also upregulates interferon-alpha 

(IFN-α) and interferon-gamma (IFN-γ) target genes (Fig. 1e and Extended Data Fig. 1k), 

suggestive of an ongoing inflammatory response (hereafter named inflammatory regenerative 

cells - iREC). (i)RECs also upregulate epithelial-to-mesenchymal transition (EMT) signatures, 

but lack expression of mesenchymal markers and EMT transcription factors (Fig. 1e and 75 

Extended Data Fig. 1l) indicating that (i)REC are in a pEMT state, maintaining their epithelial 

identity. Furthermore, (i)REC are enriched for a CRIS-B signature, one of the five 

transcriptional subtypes of CRC inferred using patient-derived xenografts24 that is associated 

with poor prognosis and EMT. 

  80 

(i)RECs closely resemble a cancer state driving metastatic recurrence after surgical resection 

in a CRC mouse model25, implicating them as metastasis-initiating CRC cells required for 

tumour regeneration. They also share an expression profile with a state enriched in early 

micrometastasis CRC mouse models13 that upregulates a foetal intestinal signature and is 

characterised by high YAP signalling21–24 (Fig. 1e). Consistent with this, we find that the 85 

(i)RECs are marked by activation of genes associated with foetal intestinal development, 

including TACSTD2 (encoding cancer-associated trophoblast antigen TROP2) and ANXA1, 

as well as upregulation of YAP target genes (Fig. 1e and Extended Data Fig. 1g). The 

presence of an interferon-response signature in malignant cells suggests that IFN-γ signalling 

from T cells may activate this response in cancer cells that are in proximity of immune cells 90 
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and that disseminated cells may escape immune attack through the expression of 

immunomodulatory molecules26. In line with this, a similar interferon response module was 

recently revealed as a recurrent cancer state across 15 cancer types, spatially colocalising 

with T cells and macrophages27. Interestingly, we also find an intermediate state expressing 

both (i)REC and stem markers, potentially indicating a hybrid transition state between (i)REC 95 

and stem-like states. The Intermediate state also upregulates chemokines such as CXCL2 

and CXCL3 (Fig. 1f and Supplementary Table 1). 

  

Generally, different cancer cell states are present in all samples, but individual tumours display 

heterogeneity in the composition of cancer cell states (Fig. 1d and Extended Data Fig. 1h). 100 

Comparison between mismatch repair deficient (MMRd) and mismatch repair proficient 

(MMRp) tumours highlights their differences, with the HLA high state more abundant in MMRd 

tumours, whereas Stem, Stem NOTUM, Intermediate, and Tuft cell states more abundant in 

MMRp tumours (Extended Data Fig. 1m-q). Consistent with this, expression of cancer cell 

state signatures (Supplementary Table 3) in bulk tumours reveals higher expression of an 105 

HLA-high signature in MSI-H tumours (but not MSI-L), and lower expression of Stem NOTUM, 

Stem and Intermediate signatures in MSI-H tumours (Extended Data Fig. 1q). Moreover, 

MMRd tumours are enriched for intrinsic consensus molecular subtype 2 (iCMS2) signature, 

compared to MMRp tumours that have higher iCMS328 (Extended Data Fig. 1o). Therefore, 

genetically distinct tumour subtypes can affect the composition of cancer cell states. 110 

Metastasis-initiating cell states localise at the invasive tumour edge 

  

Microenvironmental pressures within the primary tumour can drive cancer cells to adapt to 

different conditions and acquire pro-metastatic traits for invasion and colonisation of 

secondary organ niches. To better understand the influence of the tumour microenvironment 115 

(TME) on shaping distinct cancer cell states, we analysed the non-malignant cells by 

integrating 5 pCRC datasets18–20,29. We identified the majority of known immune cell types, 

including myeloid, mast, natural killer (NK), innate lymphoid (ILCs), T and B cells (Fig. 1b) and 

then resolved the heterogeneity of the TME cells by integrating and analysing each major cell 

type separately. 120 

  

Within the stromal cell subpopulations, CAFs and endothelial cells were the major cell types 

(Extended Data Fig. 2a,b). Additionally, we find pericytes (RGS5, ABCC9, PDGFRB), vascular 

smooth muscle cells (MYH11, ACTA2, TAGLN) and enteric glial cells (S100B, PLP1). Among 

the CAFs, we find inflammatory CAFs termed C3+ iCAF (upregulating chemokines such as 125 

CXCL12 and complement C3), ECM remodelling CAFs (upregulating POSTN, various 

collagen and matrix metalloproteinase genes) and contractile myofibroblasts (ACTA2, 

TAGLN) (Extended Data Fig. 2a). The inflammatory CAFs have been shown to interact with 

immune cells and orchestrate an immunosuppressive environment, whereas desmoplastic 

ECM CAFs remodel the ECM to facilitate cancer cell migration30,31. Furthermore, we observe 130 

fibroblasts that are present in the normal colon: bone morphogenetic protein (BMP)-producing 

CAFs (CXCL14) which produce BMPs to drive differentiation of epithelial cells32 and GREM1+ 

CAFs that produce stem cell niche factors such as RSPO333 (Extended Data Fig. 2a). The 

endothelial cells are divided into four clusters, vascular stalk-like (ACKR1, SELP) and tip-like 

(RGCC, KDR) cells, lymphatic endothelial (LYVE1, PROX1) and proliferating endothelial cells 135 

(Extended Data Fig. 2b). 
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The myeloid compartment comprises tumour-associated macrophages (TAMs), monocytes, 

neutrophils and dendritic cells (DC) (Extended Data Fig. 2c). Within the TAMs, we identify 

immunosuppressive subpopulations, including SPP1+ TAMs marked by high expression of 

MARCO, SPP1, and FN1 and upregulation of an angiogenic signature, and C1QC+ TAMs 140 

with high expression of complement C1Q genes (C1QA/B/C), MS4A4A and TREM2 (Extended 

Data Fig. 2c,d). Both TAM subsets upregulate the expression signature of lipid-laden TAMs 

which are observed in multiple cancer types and have been shown to promote tumour 

progression34 (Extended Data Fig. 2d). SPP1+ macrophages have been described as pro-

metastatic and angiogenic TAMs potentially driven by hypoxic conditions in the tumour35, 145 

whereas TAMs expressing C1QC and TREM2 are known to induce T cell exhaustion and Treg 

infiltration36,37. We also find IL1B+ and NLRP3+ subpopulations, characterised by high 

expression of an inflammatory TAM signature (IL1B, NLRP3, CCL3, CXCL3)37 (Extended Data 

Fig. 2d), which have previously been described as tissue resident because of their presence 

in normal tissue18. In kidney cancer, IL1B+ macrophages collocate with EMT-enriched 150 

tumours cells at the invasive edge38. In addition, we detect  PLTP+LYVE1+ macrophages 

resembling perivascular macrophages which reside near blood vessels and play a role in 

restraining inflammation and tissue repair during fibrosis39. The monocyte subsets include 

FCN1+CD14+ monocytes and intermediate CD16+CD14+ monocytes (Extended Data Fig. 

2c,e). In addition, we also identify conventional dendritic cells, cDC1 (CLEC9A, XCR1) and 155 

cDC2 (CD1C, CLEC10A), CCR7+LAMP3+ migratory DCs and LILRA4+ plasmacytoid DCs 

(Extended Data Fig. 2c). Migratory DCs are shown to be actively recruited during inflammation 

in the colon, secreting inflammatory cytokines, migrating to draining lymph nodes and 

mediating T cell activation40. 

T lymphocytes comprise diverse CD8+ and CD4+ T cells, spanning from naive to effector to 160 

exhausted states (Extended Data Fig. 2f). Specifically, the CD8+ cells are divided into effector 

memory and exhausted T cells, whereas in the CD4 compartment we observe naive, helper, 

follicular, Th17 and regulatory T cells. We also find T cells with a stress signature (HSPA1A, 

HSPA1B). Furthermore, we identify two subsets of NK cells, distinguished by expression of 

XCL1, XCL2 and GZMK in NK1 and higher expression of granules (PRF1, GZMB, GZMH), 165 

KIRD2L1, KIR3DL2 and HAVCR2 in NK2. In addition, we also find NKT, ILC and gd T cells. 

To comprehensively analyse the spatial organisation of CRC tumours and dissect the extrinsic 

signals promoting the invasive cell states, we used published spatial transcriptomics Visium 

data from 4 pCRC samples41. The tumour core and invasive edge annotations from the original 

publication were confirmed by manual assessment of the hematoxylin and eosin (H&E) 170 

staining (Fig. 2a,b). We performed differential expression analysis between the tumour core 

and the invasive edge to investigate whether different spatial structures have distinct 

transcriptional profiles (Supplementary Table 4). GEA reveals that while cell cycle and WNT 

signalling pathways are enriched among upregulated genes in the tumour core, the invasive 

edge is enriched with EMT, hypoxia, IFN-γ response, NFκB, angiogenesis and KRAS 175 

signalling (Fig. 2c, Extended Data Fig. 3a). 

  

To estimate the abundance of malignant and TME cells in each spot, we spatially mapped the 

fine-grained cell types/states defined by scRNA-seq data onto their spatial location using 

cell2location42. To identify cellular niches across all samples, we used SpatialDE243 on the 180 

cell2location spot-by-cell output to partition each Visium slide into cellular neighbourhoods. 

Joint analysis of all the Visium samples enabled us to identify recurrent patterns across 
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samples. Remarkably, our findings reveal spatial localisation of the (i)RECs at the invasive 

tumour edge (Fig. 2d and Extended Data Fig. 3b-e), further supporting the hypothesis that 

these states are potentially metastasis-initiating cells. In comparison, the stem cells are 185 

abundant at the tumour core (Fig. 2d and Extended Data Fig. 3c-f). The hypoxic cells are 

present both at the core and the invasive edge, suggesting a potential transitional state. To 

further explore differences in the activation of cellular signalling pathways we used TCGA 

reverse phase protein array data from bulk CRC tumours, which indicated greater abundance 

of active MEK1 (MAP2K1), ERK1/2 (MAPK1/3), and p38 MAPK (MAPK14) in tumours with 190 

high expression of (i)REC signatures (Extended Data Fig. 3g). Collectively, this suggests that 

MAPK signalling is associated with (i)REC states and may drive cellular transitions into (i)REC 

states at invasive fronts. 

  

(i)RECs at the invasive edge colocalise with myofibroblasts and ECM CAFs (Fig. 2e-g and 195 

Extended Data Fig. 3h). In addition, (i)RECs are surrounded by immunosuppressive cells such 

as SPP1+ macrophages, neutrophils, CD8 Tex and Tregs which do not infiltrate in the tumour 

core (Fig. 2e-g and Extended Data Fig. 3i,j), indicating that the activation of interferon 

response pathways in (i)REC may be due to interactions with immune cells. (i)RECs are also 

in close proximity to perivascular cells (Fig. 2f), suggesting a connection with haematogenous 200 

or lymphatic dissemination. Near the border between the invasive edge and healthy colon, we 

also find abundance of C3 immunomodulatory CAFs known to be involved in recruitment and 

polarisation of immunosuppressive myeloid cells30 (Fig. 2g). 

Cancer cell states are re-established in liver metastasis 

  205 

Next, we sought to characterise the heterogeneity of cell states in CRC liver metastases. We 

generated single nucleus Multiome RNA+ATAC data from liver metastasis of 15 CRC patients, 

simultaneously profiling both mRNA and chromatin accessibility in single nuclei. 7 out of the 

15 of the patients had previously received chemotherapy prior to surgical resection 

(Supplementary Table 5). After quality control, we retained 21,354 cells. Cells from different 210 

samples were integrated using the RNA modality and clustered into cell types including 

malignant, T, myeloid, stromal and endothelial cells, as well as liver-specific hepatocytes and 

cholangiocytes (Fig. 3a and Extended Data Fig. 4a-e). Clustering based upon the ATAC 

modality also resulted into these cell types (Extended Data Fig. 4b). The majority of cells were 

epithelial cells (Extended Data Fig. 4c,d), consistent with published CRC snRNA-seq 215 

datasets44. 

  

We isolated and analysed the transcriptome of the malignant cells, revealing a surprisingly 

similar tumour structure to pCRC (Fig. 3b, Extended Data Fig. 5a-e), demonstrating that upon 

disseminating to the liver, metastasis-initiating cells can recreate the primary tumour structure 220 

at distant sites. Cancer cell states were largely conserved between treatment-naive and 

chemotherapy-treated patients (Extended Data Fig. 5f,g). Overall, cancer cell states were 

present in all liver metastases (with exceptions for rarer, differentiated states such as Tuft and 

Enteroendocrine) but individual tumours showed variation in the proportions of cancer cell 

states (Fig. 3c). Similar to pCRC, pro-metastatic (i)REC states lack expression of 225 

mesenchymal markers but express pEMT genes (Extended Data Fig 5d and Supplementary 

Table 6). In addition, EpiHR and CRIS-B signatures are enriched in both iREC and REC, whilst 

INFα/γ hallmarks are more specific to iREC (Fig. 3d) which express higher levels of ISGs (Fig. 
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3d,e and Extended Data Fig. 5e). We did not observe an HLA-high cluster in liver metastases 

(Fig. 3e), but this could be due to the smaller dataset or lack of MMRd samples. 230 

  

To confirm these results, we integrated our dataset with published liver metastasis scRNA-

seq data from 14 additional patients20,45,46. In addition to our previously identified cell states, 

we find two recently described rare non-canonical states16: a neuroendocrine state and a 

stem-like state upregulating both squamous-like and endocrine development signatures 235 

(KRT5, SP5, MBP4, PROX1, NR2F1), present in only one and two patients respectively 

(Extended Data Fig. 5h-j). 

  

Next, to investigate the TME in liver metastases, we integrated our data with publicly available 

scRNA-seq data from 26 additional patients20,29, generating a dataset containing 98,312 240 

transcriptomes after quality control (Extended Data Fig. 6a). We identified all major cell types 

in metastatic (mCRC) tumours which we previously described in pCRC (Extended Data Fig. 

6b,c). This includes diverse TME subpopulations such as CAF populations (C3+ iCAFs, ECM 

CAFs), myofibroblasts, pericytes, vascular smooth muscle cells, endothelial cells and immune 

cells (Extended Data Fig. 6d-j). We also recovered liver-specific sinusoidal endothelial cells 245 

(FCN3, FCN2 and CLEC4G), hepatocytes (TTR, APOA1), cholangiocytes (SOX9, CLDN4, 

CLDN10) (Extended Data Fig. 6e,f), and Kupffer cells (CD5L, CETP, TIMD4) which were 

marked by high expression of a resident tissue macrophage signature (Extended Data Fig. 

6h,i). 

  250 

Transcription factors regulating malignant states 
  

To predict transcriptional regulators of cancer cell states, we next investigated the accessible 

chromatin landscape of cancer cells in our mCRC dataset using paired snATAC-seq data. 

Peaks were called in each cancer cell state and a union peakset was formed of 82,491 255 

accessible chromatin regions, the majority (80.7%) of which are distal to promoters (Extended 

Data Fig. 7a). To identify putative enhancers, we correlated the expression level of genes with 

the accessibility of distal chromatin regions (restricted to within 250 kb of a TSS) and identified 

1,444 putative enhancer-gene linkages (PE-GLs) which we clustered using k-means 

clustering (Fig. 4a). More than 60% of the putative enhancers in PE-GLs overlap with a set of 260 

previously predicted enhancers in CRC organoid models47 (Extended Data Fig. 7b) 

demonstrating the validity of this approach and its ability to identify novel putative enhancers. 

We identified cell-type specific PE-GLs potentially driving the expression of important marker 

genes such as for stem cells (LGR5, ASCL2), Colonocytes (SLC26A3), (i)REC (EMP1, 

PLAUR, LAMC2) and Hypoxia (VEGFA) (Fig. 4a-c and Extended Data Fig. 7c,d). GEA of 265 

genes in the PE-GLs k-means clusters reveals genes in (i)REC cell states (clusters 4 and 6) 

are enriched for hypoxia, EMT, MAPK, PI3K and TNFα signalling; whilst WNT signalling is 

enriched in Stem NOTUM (clusters 1 and 2) cells (Fig. 4c). Additionally, EpiHR and CRIS-B 

signatures are enriched in genes belonging to clusters 4 and 6 (Extended Data Fig. 7c). 

Therefore, PE-GLs likely establish important gene expression programs in cancer cell states. 270 

  

Transcription factors (TFs) are key regulators of cell identity and function. To predict 

transcriptional regulators of cancer cell states, we used chromVAR to identify TF binding 

motifs that are differentially accessible across cancer cell states48. Interestingly, hierarchical 

clustering of the cancer cell states by motif accessibility shows that the Intermediate state 275 



 8 

clusters closely with Hypoxia and has increased accessibility of TF motifs that are accessible 

also in (i)REC states and to a lower extent in the stem cells (Fig. 4d). This further suggests 

that the Hypoxia and Intermediate states are plastic and transitioning states. To further 

nominate TFs driving changes in gene expression in different cancer cell states, we identified 

TFs with the highest correlation between their gene expression and the chromatin accessibility 280 

of its cognate motif (Extended Data Fig. 7e). Motifs enriched in differentiated cell states include 

POU2F3 (Tuft), RFX3/6 (Enteroendocrine), HNF4A (Colonocytes) and CDX2 (Stem, 

Colonocytes) (Fig. 4d and Extended Data Fig. 7F). Several of these TFs have previously been 

identified to play a role in differentiation in the healthy colon49–53. Among the TFs most 

correlated with motif accessibility are AP-1 family members (FOS, FOSB, FOSL1, FOSL2, 285 

JUNB, JUND), NF-κB subunits (NFKB1, NFKB2, RELB) and LEF1 (Extended Data Fig. 7e). 

AP-1 and NF-κB motifs are enriched in (i)REC states, whilst LEF1 is enriched in Stem NOTUM 

(Fig. 4d and Extended Data Fig. 7f). AP-1 family members are regulated by MAPK signalling 

pathways54 and TCF/LEF family members are regulated by WNT signalling55, consistent with 

enrichment of MAPK or WNT signatures in genes associated with (i)REC or Stem NOTUM 290 

states respectively (Fig. 4c). De novo motif enrichment analysis of putative enhancers in PE-

GLs also demonstrates enrichment of AP-1 and NF-κB in (i)REC, and the TCF/LEF motif 

enriched in Stem NOTUM PE-GLs (Fig. 4a and Supplementary Table 7), indicating that these 

transcription factors have important regulatory roles in the malignant cell states. 

  295 

To further investigate the gene regulatory networks governing (i)RECs, we predicted both 

genes and accessible chromatin regions regulated by TFs in cancer cell states using 

SCENIC+56. SCENIC+ identified regulons for 22 out of 26 TFs (exceptions are: NR5A2, 

NEUROG3, HNF1B, RFX6) whose expression correlated with motif accessibility (Extended 

Data Fig. 7e-f). Focusing on AP-1 and NF-κB subunits as potential drivers of (i)REC states, 300 

accessible chromatin regions in FOS, FOSB, NFKB1 and RELB regulons are more accessible 

in (i)REC relative to stem-like cells, which feature greater accessibility of ASCL2, LEF1, 

HNF4A and CDX2 regulons (Fig. 4e). Importantly, chromatin regions in JUND and HNF4A 

regulons are bound by JUND and HNF4A in cell line models of CRC (Extended Data Fig. 7h), 

indicating that our computational analysis identifies true TF binding sites in CRC cells. 305 

Interestingly, we also find TEAD1 enriched in (i)RECs and TEAD4 in the Intermediate state 

(Extended Data Fig. 7h,i). YAP/TAZ are co-factors for the TEAD TF family and studies have 

shown cooperation between YAP/TAZ/TEAD and AP-1 at enhancers in different contexts57–59. 

This is in line with the upregulation of YAP target genes in the (i)RECs. In addition, de novo 

motif analysis of chromatin regions in the RELB regulon shows significant enrichment of the 310 

AP-1 motif in these regions (Supplementary Table 8), suggesting that AP-1 and NF-κB co-

operate to establish the (i)REC state. Overall, our results indicate that YAP, AP-1 and NF-κB 

drive emergence of a regenerative foetal-like putative pro-metastatic state in CRC. 

  

To corroborate this, we next assessed the expression levels of genes in FOSB, RELB, ASCL2 315 

and LEF1 regulons across the cancer cell states. FOSB and RELB target genes are expressed 

highest in (i)REC, whereas LEF1 target genes are expressed highest in Tuft and Stem 

NOTUM states and ASCL2 target genes are highest in TA2 and Stem cells (Fig. 4f). This 

indicates that Stem NOTUM and Stem states are regulated differently, with Stem NOTUM 

cells being driven more by LEF1 (likely downstream of WNT signalling), and Stem cells driven 320 

more by ASCL2 activity, which is supported by expression levels of ASCL2 and LEF1 and 

accessibility of their binding motifs (Extended Data Fig. 7i). FOS family members 

heterodimerise with JUN family members, we therefore combined the target genes in FOS 
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and JUN family member regulons to create a unified AP-1 regulon (Supplementary Table 8). 

The CRC AP-1 regulon significantly overlaps (P = 1.32e-26, hypergeometric test) with 325 

experimentally determined AP-1 target genes identified in another gastrointestinal cancer, 

oesophageal adenocarcinoma (OAC)61 (Supplementary Table 8). Experimentally determined 

AP-1 target genes are expressed higher in (i)REC states in both primary and metastatic sites 

(Fig. 4g and Extended Data Fig. 7I). In addition, the (i)REC marker genes EMP1 and LAMC2 

are within the FOSB regulon (Supplementary Table 8). Consistent with this observation, 330 

expression of EMP1 and FOSB positively correlates in bulk CRC RNA-seq data (Extended 

Data Fig. 7k). 

Cancer and TME cells organised in cellular niches in liver metastasis 

  

To investigate the spatial organisation of the cancer cell states in liver metastasis and 335 

interrogate how cancer states and the TME interact, we studied patient-specific and shared 

patterns among samples using spatial transcriptomics data. We generated Visium data from 

three liver metastatic CRC samples for which we have paired Multiome data, and additionally 

analysed previously published Visium data of three liver metastatic CRC samples62. 

  340 

Liver metastases exhibit distinct histological growth patterns, reflecting different ways in which 

cancer cells interact with the surrounding liver parenchyma63. The desmoplastic growth pattern 

shown in sample LM4 is characterised by a desmoplastic capsule surrounding the metastatic 

tissue that consists of fibroblasts and extracellular matrix and contains dense infiltrates of 

immune cells, effectively encapsulating the cancer cells from the liver (Fig. 5a,d). In contrast 345 

to this, the cancer cells in the replacement growth pattern are arranged in plates in continuity 

with the hepatocyte plates creating a direct contact between hepatocytes and the invading 

tumour cells as observed in sample P13 (Fig. 5b,d). In line with this, sample LM4 with 

encapsulated growth pattern presents with an enrichment of immune cells and stromal cells 

at the metastatic border (Fig. 5e and Extended Data Fig. 8a,b). In contrast, sample P13 with 350 

replacement growth exhibits immune and stromal cells both within the tumour and at the 

normal liver site and is characterised by infiltration of immunosuppressive cells into the tumour 

(although the T cells are found in low abundance relative to other TME cells) (Fig. 5e and 

Extended Data Fig. 8a,b). 

  355 

Interestingly, across all three samples capturing the tumour site and liver parenchyma (LM4, 

P13, P3), we detect a layered spatial organisation of stromal and myeloid cells from the liver 

parenchyma to the central tumour stroma. C3+ iCAFs are enriched at the liver site and the 

tumour-liver interface (Fig. 5e and Extended Data Fig. 8c), ECM CAFs with C1QC+ and 

inflammatory IL1B+ macrophages at the tumour-liver border and in the tumour site, whereas 360 

myofibroblasts and immunosuppressive SPP1+ macrophages infiltrate the tumour core (Fig. 

5e and Extended Data Fig. 8a,c). 

  

Joint analysis across all spatial liver metastasis samples with SpatialDE2 deciphers spatially 

segregated cancer states organised into distinct local neighbourhoods, each with a distinct 365 

composition of cell subtypes and local cellular interactions (Fig. 5f-h and Extended Data Fig. 

8d). We show that the iREC subpopulation congregates with perivascular cells, ECM 

remodelling CAFs and myofibroblasts in a cellular niche (neighbourhoods 0, 5, Fig. 5h), further 

supporting the hypothesis that these cells are potentially metastasis-initiating cells. Similar to 
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the invasive edge in pCRC, iRECs promote establishment of an immunosuppressive niche 370 

comprising SPP1+ TAMs, inflammatory IL1B+ and NLRP3+ TAMs, neutrophils, exhausted 

CD8+ T cells and Tregs (mainly in neighbourhoods 0 and 5, and small abundance in 

neighbourhood 3 Fig. 5g,h). The stem cells reside in their own niche, however they also 

colocalise with the Intermediate state (neighbourhood 4), further implicating potential 

transitions between Stem NOTUM and Intermediate cells. Interestingly, in contrast to pCRC, 375 

the REC subpopulation is separate from iRECs and immune cells and colocalises with the 

Hypoxia state (neighbourhood 7), suggesting that the REC state potentially arises through 

cellular transitions from hypoxic cells and upregulates interferon signalling upon contact with 

immune cells to form iREC.  

 380 

Although cellular neighbourhoods are often shared among samples, the joint analysis also 

captures spatial features that highlight inter-patient heterogeneity (Extended Data Fig. 8e). 

Cellular neighbourhoods 1 and 9 denote the liver parenchyma primarily composed of 

hepatocytes and Kupffer cells and they are specific for the replacement and desmoplastic 

growth factor patterns respectively (Fig. 5h). Neighbourhood 3 comprises immunomodulatory 385 

CAFs and immunosuppressive cells and is mostly enriched at the desmoplastic rim, whereas 

neighbourhood 2 is largely composed of immune cells and specific to samples CRC11 and 

CRC09 (Fig. 5f,h and Extended Data Fig. 8d,e). 

  

Additionally, to highlight the distinct transcriptional features that different cellular niches have, 390 

we performed differential expression analysis between the cellular neighbourhoods 

(Supplementary Table 9). GEA confirms that genes upregulated in iREC- and immune-

enriched neighbourhoods (0, 2, 3, 5) are enriched for EMT, IFN-γ response, KRAS signalling 

and angiogenesis, whereas the stem-enriched niche (4) is enriched for WNT signalling 

pathway (Fig. 5i). Consistent with the identified spatial cellular niches, gene signature scores 395 

associated with EMT and interferon response are higher in the iREC and immune-enriched 

niches (Extended Data Fig. 8f,g). Conversely, these signature scores are inversely related to 

the WNT signalling signature, which is higher in the stem-enriched niche (Extended Data Fig. 

8g-i). 

  400 

To further corroborate our results, we also performed non-negative matrix factorization (NMF) 

on the cell2location spot-by-cell output and defined factors of co-occurring cell states. These 

results confirm the establishment of an immunosuppressive niche where iRECs colocalise 

with SPP1+, C1QC+ TAMs and CD8 Tex cells, inflammatory IL1B+ TAMs, and stromal cells 

such as myofibroblasts, ECM CAFs and pericytes (fact_8, Extended Data Fig. 8j). 405 

Furthermore, the Stem NOTUM cells congregate with the Intermediate state (fact_3), whereas 

the RECs are in close proximity to Hypoxia (fact_5), supporting our findings (Extended Data 

Fig. 8j). 

CAFs and immunosuppressive cells mediate metastasis-initiating 

cells 410 

  

Given the close proximity of CAFs and immunosuppressive myeloid subpopulations with the 

iREC state in both primary and liver metastasis, we next investigated potential mediators of 

cellular crosstalk between these compartments. We first used CellPhoneDB64 to identify 

enriched receptor-ligand pairs amongst the cell states residing in the spatial cellular niche 415 
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surrounding iRECs. Next, to determine which ligands potentially promote the inflammatory 

regenerative programme in cancer cells, we identified ligands that are predicted to induce the 

AP-1 and NF-κB (RELB) regulons using NicheNET65. Coupling these two computational 

methods, we efficiently linked transcriptional profiles of cancer cell states with potential 

upstream regulators within the spatial niche that induce expression of AP-1 and RELB 420 

regulons in iRECs. 

  

Our results reveal a candidate list of CAF- and myeloid-derived ligands potentially activating 

AP-1 target genes, with corresponding receptors that are upregulated in the (i)RECs (Fig. 6a). 

GEA of the predicted ligands shows enrichment of EMT, MAPK signalling, inflammatory 425 

response and IFN-γ response, processes that are activated in iRECs relative to other cancer 

cell states (Fig. 3c and 6b). Several ligands expressed in ECM CAFs, myofibroblasts and 

pericytes have established roles in inducing EMT, invasion and immune evasion, including the 

cytokines and growth factors TGF-β (TGFB2/3)66, HGF67, fibroblast growth factors 

(FGF1/2/7)68, VEGF (VEGFA/B)69 and IL670 (Fig. 6a). In addition, ECM CAFs and 430 

myofibroblasts are likely involved in matrix remodelling through secretion of matrix 

metalloproteinases (MMP2) and collagens71 (Fig. 6a).  Another candidate CAF-secreted ligand 

is IL-33 which has been shown to activate and maintain immunosuppressive TAMs72,73. 

Expression of CD39 (encoded by ENTPD1), which together with CD73 converts ATP to 

adenosine to prevent immune activation is also high in the CAFs72. 435 

  

Myeloid and T cells are predicted to induce an inflammatory phenotype in iRECs through 

activation of NF-κB, driven by proinflammatory genes such as IFN-γ (IFNG) and CCL5 

expressed in exhausted T cells, as well as IL1B and TNF expressed in inflammatory TAMs 

(Extended Data Fig. 9a). Furthermore, APOE is highly expressed in SPP1+ and IL1B+ TAMs 440 

and has been shown to induce expression of immunosuppressive factors such as CXCL1 and 

CXCL5, through LDL receptor (LDLR) and NF-κB signalling74. In a similar way, ANXA1 has 

been implicated in promoting immune suppression75 and has also been associated with 

resistance to chemotherapy in colorectal cancer76. Other predicted ligands include 

chemokines such as CXCL2 and CXCL3 that can recruit neutrophils and myeloid-derived 445 

suppressor cells in the TME, contributing to establishment of an immunosuppressive 

environment and resistance to therapy77. 

  

Ligand-target links were inferred based on the regulatory potential scores computed by 

NicheNet and prior knowledge of ligand-target associations. Potential target genes of 450 

expressed ligand-receptor interactions in the iREC niche are summarised in Fig. 6c. Spatial 

transcriptomics data show spatial enrichment of ligands in the cellular neighbourhoods 

surrounding iRECs (neighbourhood 0,5) (Extended Data Fig. 9b) which confirms our 

predictions. To extend these observations into a larger population, we also analysed TCGA 

bulk RNA-seq data from 609 pCRC samples. These results show high correlation of ligands 455 

predicted to be secreted from the IL1B+ macrophages and exhausted CD8 T cells with the 

(i)REC signature in comparison to stem cell signatures, further supporting our findings (Fig. 

6d). 

  

Collectively, these results highlight ligands predicted to induce a regenerative and 460 

inflammatory pro-metastatic phenotype in iRECs and could lead to potential therapeutic 

strategies by targeting specific molecular mechanisms in the cellular niche that sustains the 

iREC state. 
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Discussion 

  465 

To form metastasis, cancer cells undergo rapid phenotypic transitions to leave the primary 

site, survive in circulation, adapt to new microenvironments and regenerate tumours at distant 

sites. Cellular plasticity - the ability of cells to reversibly change their phenotype as a response 

to external signals - provides cancer cells access to developmental or regenerative programs 

to adapt to new environments or stress. 470 

  

Using single-cell multiomics data from patients with primary CRC and liver metastasis, here 

we show that the heterogeneous malignant cell states in pCRC are re-established in 

metastasis. We reveal states with regenerative and foetal signatures and high YAP signalling 

(iREC/REC) that are likely driving metastatic dissemination in the liver. Our analysis of joint 475 

expression and chromatin accessibility data identifies the transcription factors AP-1, NF-κB 

and YAP as regulators of these pro-metastatic cells, suggesting that pathways regulated by 

those TFs can serve as potential therapeutic targets to eliminate (i)RECs. While AP-1 and NF-

κB have a well-established role in regulation of inflammatory responses60, their role in driving 

regenerative pro-metastatic cancer states remains unknown. AP-1 and NF-κB have also been 480 

implicated as transcriptional regulators in foetal intestinal organoids78, supporting emerging 

evidence that cancer progression often requires reacquisition of developmental transcriptional 

programs. Whether specific genomic mutations also facilitate greater epigenetic flexibility and 

access to previously restricted programs from developmental or regenerative origin to cancer 

cells remains to be investigated. 485 

  

Interestingly, we show that a subset of the metastasis-initiating cells upregulates inflammatory 

genes, suggesting that interactions with immune cells may activate this response in cancer 

cells that are in proximity and that metastasis-initiating cells may use this response to escape 

immune attack. Mouse models of CRC micrometastasis show that iRECs could potentially be 490 

more sensitive to immune checkpoint blockade25, therefore future efforts using 

immunotherapies should be explored. 

  

The existence of a hybrid intermediate state expressing both REC and stem markers indicates 

a transition between (i)REC and stem states, presenting a significant challenge for targeting 495 

either population. Our patient-derived data is therefore in agreement with previous mouse 

studies demonstrating that the majority of metastases are seeded by LGR5- cells, however 

these pro-metastatic regenerative cells are able to transition back to LGR5+ cells and re-

establish the cellular heterogeneity of primary tumours to form metastases. Interestingly, in 

both primary CRC and metastasis, we detect a subpopulation with upregulated hypoxic 500 

signatures that also expresses REC markers. At the invasive edge of primary CRC samples, 

we see the hypoxic state both at the core and the invasive edge, whereas at the liver 

metastatic site, it colocalises with the RECs. This suggests potential cellular transitions from 

the hypoxic state to RECs that can subsequently upregulate interferon signalling upon contact 

with immune cells. This is supported by hierarchical clustering of the cancer cell states by 505 

motif accessibility that shows shared motifs of the hypoxic state with RECs. Our results 

therefore indicate that in the dynamic intestinal epithelium, cellular transitions are complex, 

and plasticity may go beyond the stem-to-regenerative transition. 
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Our spatial transcriptomics analysis demonstrates spatially segregated cancer states 510 

organised into neighbourhoods with local cell-cell interactions, pointing to the role of the 

microenvironment in mediating and sustaining distinct cancer subpopulations. Despite the 

inter-patient heterogeneity, we reveal recurrent patterns among all patients. Specifically, we 

find that the phenotype of iREC cells is likely maintained by specific TME subpopulations, 

including CAFs and immunosuppressive and inflammatory myeloid and CD8 T cells. The 515 

ligand-receptor interactions predicted from our results to activate the invasive regenerative 

and inflammatory state could provide therapeutic strategies by targeting specific molecules in 

the cellular niche mediating the iREC state. Additionally, our analysis shows spatial 

organisation specific to distinct metastatic growth patterns, with clear differences between 

desmoplastic and replacement growth patterns. Considering that different histological growth 520 

patterns are a prognostic marker for patient outcome and might be associated with different 

immune responses and mechanisms of treatment79,80, our results emphasise a need to further 

investigate how these growth patterns arise. 

  

Non-genetic plasticity plays a crucial role in CRC initiation, progression, metastasis and 525 

resistance to therapy and represents a formidable challenge in cancer therapy. By identifying 

and characterising the distinct malignant states, their regulatory drivers and 

microenvironmental cues that maintain them in primary and metastatic CRC, our findings 

might lead to novel therapeutic opportunities to impair plasticity, by restricting transitions into 

invasive regenerative phenotypes or promoting transitions into immunosensitive states. 530 

Methods 

Human tissue samples 

  

Metastatic colorectal cancer tissue was provided by the Barts Cancer Tissue Bank (Research 

Ethics Committee approval, 2014/LO/2031 (City and Hampstead) and renewed 535 

2019/LO/1700, www.cancertissuebank.org; CTB approval 2020/05/QM/ME/P/FreshTissue 

and  2021/01/QM/EM/P/Blood&Tissue). We accessed archived frozen tissue samples and 

collected fresh tissue samples from the Royal London Hospital, Barts Health NHS Trust. Fresh 

tissue samples were flash frozen in a dry ice/ethanol bath and stored at -80°C. 

Tissue dissociation and single cell multiomics 540 

  

10x Genomics Multiome technology was used to generate paired snRNA- and snATAC-seq 

data from the same cell. Nuclei were isolated using a method based upon the salty EZ-10 V2 

method (dx.doi.org/10.17504/protocols.io.buxnnxme). Frozen patient tissue was cut in a 

sterile dish on dry ice into a rice sized section and the remaining tissue was stored at -80°C. 545 

Frozen tissue was then transferred into 300 mL Salty-Ez10 Lysis Buffer (10 mM Tris-HCl pH 

7.4, 146 mM NaCl, 1 mM CaCl2, 21 mM MgCl2, 0.03% Tween-20, 1% BSA, 10% EZ lysis 

buffer [Sigma, NUC101-1KT], 1 U/mL RNase inhibitor [Merck, 3335399001], 1 mM DTT, 

nuclease free water) in a 1.5 mL tube and the sample was homogenised by stroking 15x with 

a douncer (Fisher Scientific, 13236679), keeping the sample on wet ice. 700 mL Salty-Ez10 550 

lysis buffer was added and the sample was pipette mixed using a wide-bore pipette tip. The 

sample was then incubated for 3 minutes on wet ice, and was pipette mixed with wide-bore 
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tips twice during the incubation. The nuclei suspension was then passed through a 70 µm 

strainer (Fisher Scientific, 15346248) into a fresh 1.5 mL tube. Nuclei were then centrifuged 

at 500 RCF for 5 minutes at 4°C, before discarding the supernatant. Nuclei were resuspended 555 

in 500 mL WRB2 buffer (10 mM Tris-HCl pH 7.4, 10 mM NaCl, 3 mM MgCl2, 0.1% Tween-20, 

1% BSA, 0.01% digitonin [Thermo Fisher, BN2006], 1 U/mL RNase inhibitor [Merck, 

3335399001], 1 mM DTT, nuclease free water), gently pipetting using wide-bore tips. Nuclei 

suspension was then passed through a 40 mm strainer (Sigma, BAH136800040) into a fresh 

1.5 mL tube. Nuclei were then centrifuged at 500 RCF for 5 minutes at 4°C before discarding 560 

the supernatant. Nuclei were then washed by re-suspending in 500 mL WRB2 buffer using 

wide-bore pipette tips and the centrifugation step was repeated. Nuclei were then re-

suspended using a wide-bore pipette tip in 10-40 μL 1X nuclei buffer (10x Genomics, 2000153) 

depending on the size of the pellet. Nuclei were counted by diluting 2 μL of the nuclei 

suspension 10-fold with WRB2 buffer. 10 µL of diluted nuclei were then added to 10 μL dead 565 

cell stain (2% Ethidium homodimer-1 [ThermoFisher, E1169], 30% glycerol, nuclease free 

water) and counted on a Countess II FL Automated Cell Counter (ThermoFisher; 

AMQAF1000). Downstream processing was performed immediately using Chromium Next 

GEM Single Cell Multiome ATAC + Gene Expression Reagent kits (10x Genomics, 1000285) 

and Chromium Next GEM Chip J Single Cell Kit (10x Genomics, 1000234). ATAC and gene 570 

expression libraries were sequenced on an Illumina NextSeq 550 or Illumina NovaSeq 6000. 

Analysis of primary CRC scRNA-seq datasets 

  

Publicly available scRNA-seq data from primary CRC were combined from 4 studies18–20,29. 

Raw scRNA-seq counts were analysed using Scanpy81 (v1.9.1). Quality control and initial 575 

filtering was done on each dataset separately before integrating them into a single dataset. 

Scrublet81,82 (v0.2.3) was run per sample to identify potential doublets. The raw gene 

expression matrices were filtered using the following quality control criteria: (1) > 300 genes; 

(2) < 20% mitochondrial reads. Ribosomal and mitochondrial genes were discarded. The 

datasets were concatenated into a single gene expression matrix. The data were normalised 580 

with a scale factor of 10,000 and log1p-transformed. We extracted 2000 highly variable genes 

(HVGs) using the Seurat V3 method. The data were batch-corrected using scVI83 (v0.16.4) on 

raw counts and HVG, aligning all datasets and patients, and correcting for unwanted sources 

of variation: mitochondrial and  ribosomal percentages. We used default parameters (one 

hidden layer with size 128 and latent size 10). A neighbourhood graph (KNN) was built using 585 

the resulting 10 latent embeddings of all cells obtained from scVI to perform Leiden clustering, 

and UMAP visualisation. 

  

To define major cell types, cells were clustered using the Leiden method (resolution parameter 

r = 0.2). Differentially expressed genes were identified for each cluster using Wilcoxon rank-590 

sum test with Benjamini-Hochberg p-value correction in Scanpy. We selected differentially 

expressed genes with an adjusted p-value lower than 0.05 and a log2 fold-change higher than 

1 and expression observed in a minimum of 10% of cells in a cluster. The transcriptomes were 

partitioned into 8 major cell types (epithelial, stromal, endothelial, T/natural killer (NK)/innate 

lymphoid cells (ILC), myeloid, mast, plasma and B cells) by comparing differentially expressed 595 

genes and canonical markers from the literature. 
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Subsequently, the same integration and clustering analysis was applied iteratively to the cells 

of each major cell type separately to identify and annotate cell states. For each cell, the cell 

cycle phase scores (G1, S, G2/M) were computed based on the expression of S and G2/M 600 

markers using tl.score_genes_cell_cycle using cell cycle genes identified previously84. In the 

immune and stromal cell analysis, clusters with high numbers of doublet cells were removed 

by checking for expression of markers of more than one cell type. For the T/NK/ILC 

subpopulations, two clusters were removed as they exhibited markers from myeloid and T 

cells and B and T cells respectively. For the myeloid cells, three clusters showing hybrid 605 

transcriptional signatures (B/Myeloid, T/Myeloid, Epithelial/Myeloid) and a high scrublet score 

were discarded. For stromal cells, four clusters exhibiting doublet signatures were excluded.  

Cancer cell states in pCRC were identified by subsetting and re-clustering epithelial cells. Cell 

cycle phase scores were calculated as described above and the top 2000 HVGs were 

determined for the epithelial cells. The number of observed genes, percentage of 610 

mitochondrial and ribosomal reads, and S-phase and G2-phase scores per cell were 

regressed from log1p-normalised counts using pp.regress and then scaled using pp.scale. 

PCA was then computed on the top 2000 HVGs. The python implementation of Harmony85 

was then used to batch correct the data, using the run_harmony function with the patient of 

origin as the batch key. A neighbourhood graph was then constructed (pp.neighbours) from 615 

the corrected principal components followed by UMAP representation (tl.umap). Cells were 

then clustered (tl.leiden, resolution=1.2). Clusters that contained potential doublets were 

removed and the above steps were repeated to re-cluster the cells. 

  

Primary tumour samples may contain normal colon cells. Therefore, copy number alterations 620 

were predicted from scRNA-seq data using the python implementation of inferCNV 

(https://github.com/icbi-lab/infercnvpy) to identify malignant cells. Normal epithelial cells in 

SMC, KUL18 and Pelka et al.19 datasets were used as a reference for inferCNV. Copy number 

alterations were inferred using bins of 100 genes, with a stepsize of 1 using the inferCNV 

function. CNV clustering was then performed using (cnv.tl.pca, cnv.pp.neighbors, 625 

cnv.tl.leiden). Normal reference cells were only present in 5/51 CNV clusters making up 

23.0%, 8.8%, 4.0%, 0.16%, and 0.05% cells in each respective cluster. Epithelial cells present 

in 3 CNV clusters containing 23.0%, 8.8% and 4.0% reference cells were removed, resulting 

in 60,526 malignant cells. 

  630 

Cell clustering steps (starting from re-computing cell cycle scores and re-calling HVGs) were 

then repeated, resulting in 17 leiden clusters (0-16). Cluster 16 was removed because it 

potentially contained doublets (stromal markers, COL1A2, COL3A1). Clusters 5 and 12 

contained secretory cells which were subsetted and re-clustered (resolution = 0.4) into 

Enteroendocrine, Goblet and Tuft cells. Cluster 10 contained both HLA-high and iREC cells, 635 

and was sub-clustered (resolution = 0.2) into HLA-high cells (express HLA genes and ISGs, 

but lack pEMT genes) and iREC (express ISGs and pEMT genes). Cluster 0 contained both 

Colonocyte and Hypoxia cells, and was subsetted and re-clustered (resolution = 0.4) into 

Colonocyte (SLC26A3) and Hypoxia (lack SLC26A3 expression) cells. 

  640 

The abundance of cancer cell states was compared between mismatch repair-proficient 

(MMRp) and mismatch repair-deficient (MMRd) pCRC tumours using Milo83 (v1.6.0) in R. Milo 

was performed on Harmony-corrected scRNA-seq data, using default parameters except 

where specified. A k-nearest neighbour graph was constructed using k = 25 and d = 20, 

followed by defining neighbourhoods using prop = 0.1, k = 25 and d = 20 with 645 
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refinement_scheme set as ‘graph’. Neighbourhood testing was performed using fdr.weighting 

set as ‘graph-overlap’. 

  

We scored the macrophage and monocyte subpopulations in pCRC and mCRC tumours for 

signatures derived from recurrent tumour-associated macrophage (TAM) and tumour-650 

infiltrating monocyte subsets obtained from a single-cell RNA-seq analysis spanning over 15 

tumour types (including CRC)37. In particular, we included signatures of lipid-laden TAMs, pro-

angiogenic TAMs, inflammatory cytokine-enriched TAMs, interferon-primed TAMs, resident-

tissue macrophages, classical monocytes, nonclassical monocytes and intermediate 

monocytes. We computed the gene signature scores for each transcriptome using Scanpy’s 655 

tl.score_genes function. 

Analysis of single-nuclei Multiome data  

Single-cell Multiome data was pre-processed using the 10x Genomics Cell Ranger ARC (v2.0) 

pipeline. Cellranger-arc count was used to align reads to hg38 (GRCh38) and to generate 

barcode counts. Filtered feature barcode matrices and ATAC fragment files were used for 660 

subsequent analysis. 

  

The quality of snATAC-seq data was assessed using ArchR (v1.0.1)86. Cells (i.e. barcodes) 

were retained if transcription start site (TSS) scores were greater than 4 and the number of 

unique ATAC fragments was greater than 1500 per cell. Following snATAC-seq barcode 665 

filtering, quality control of snRNA-seq was performed for the same cell barcodes using Seurat 

(v4.1.0)87. Cells with less than 300 genes and more than 10% mitochondrial DNA reads were 

removed. Mitochondrial and ribosomal genes were removed. We observed ambient RNA 

contamination in our Multiome gene expression data which we decontaminated using 

decontX88. decontX also generates a decontamination score per nuclei and cells with a high 670 

decontamination score are potential doublets/low quality cells. We therefore removed nuclei 

with a decontX contamination score greater than 0.5. 

  

Following decontamination of snRNA-seq data, decontaminated counts were loaded into an 

anndata object using Scanpy’s (v1.9.1)81 read_mtx function. Decontaminated counts were 675 

normalised (pp.normalize_total with scale factor of 10,000), log transformed (pp.log1p) and 

the top 2000 HVGs were identified (pp.highly_variable_genes, flavor = ‘seurat_v3’, 

n_top_genes=2000, batch_key = ‘Sample’). scVI (v0.16.4)83 was used to batch correct 

snRNA-seq data by sample (model.SCVI.setup_anndata, model.learn). 10 latent variables 

were used for batch correction, and the number of genes and percentage of mitochondrial 680 

reads were regressed out by inclusion as model covariates. A neighbourhood graph 

(pp.neighbors) was constructed from the latents and a UMAP (tl.umap, min_dist=0.3) was 

embedded followed by clustering of cells (tl.leiden, resolution = 0.5). Cell types were annotated 

based upon the expression of known marker genes. 

  685 

To cluster all cells based upon snATAC-seq data, Signac v1.589 was used. A peakset was 

formed by calling pseudobulk peaks on cell types annotated in snRNA-seq data. Signac 

functions callPeaks(group.by = 'Cell_type'), keepStandardChromosomes (pruning.mode = 

"coarse") and subsetByOverlaps (ranges = blacklist_hg38_unified, invert = TRUE) were used 

to call peaks and create a peakset. MACS290 was used for peak calling. Reads in peaks were 690 

then quantified using the FeatureMatrix function. The Signac pipeline was then run: 
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FindTopFeatures(min.cutoff = 5), RunTFIDF, RunSVD, RunUMAP. Samples were then 

integrated using Signac: SplitObject (split.by = ‘Sample’), FindIntegrationAnchors(reduction = 

"rlsi", dims = 2:30), IntegrateEmbeddings(dims.to.integrate = 1:30), RunUMAP(dims = 2:30). 

  695 

Following annotation of the major cell types, cancer cells were subsetted and analysed, using 

Scanpy and scVI to integrate the samples as described above. Cell cycle scoring was 

performed using tl.score_genes_cell_cycle using cell cycle genes identified previously84. The 

top 2000 HVGs were then re-identified and scVI batch correction was repeated, using 20 latent 

variables. The effect of the cell cycle was also used as a covariate in scVI. Doublets were 700 

removed by removing clusters that expressed marker genes for more than one cell type. 

Cancer cell states were annotated based upon the expression of marker genes, gene ontology 

analysis of the top genes in each cluster or by scoring cells for gene signatures 

(tl.score_genes). 

  705 

Following analysis and clustering of the snRNA-seq data, the snATAC-seq data was further 

processed using ArchR. Peaks were called in each cell state and a union peakset was created 

using the addGroupCoverages, addReproduciblePeakSet(cutOff = 1x10-5) and 

addPeakMatrix functions in ArchR; MACS2 was used for calling peaks. 

  710 

To visualise snATAC-seq genome coverage, bigwig files were generated using 

getGroupBW(tileSize = 50) in ArchR and then visualised in the Integrative Genomics Viewer 

(IGV)91. Putative enhancer gene linkages (PE-GLs) were predicted in mCRC cancer cells 

based upon the correlation of gene expression with peak accessibility using 

addPeak2GeneLinks(dimsToUse = 1:20, k = 100). The overlap of putative enhancers (pE) in 715 

PE-GLs with a set of chromHMM enhancers identified in CRC organoids47 was determined 

using bedtools intersect92. 

  

To infer changes in TF activity, chromVAR deviations enrichment analysis48 was calculated 

using ArchR. CIS-BP motif annotations were added to peaks using addMotifAnnotations and 720 

background peaks were calculated using addBgdPeaks. ChromVAR deviations were then 

calculated using addDeviationsMatrix. 

  

For integrated analysis of transcription factor mRNA expression and motif enrichment 

analysis, decontaminated count data was loaded into an ArchR object using 725 

addGeneExpressionMatrix. TF mRNA expression was correlated with transcription factor 

binding motif accessibility using ArchR’s correlateMatrices function. 

  

De novo motif enrichment analysis was carried out using HOMER (v4.11)93, findMotifsGenome 

-size 200. 730 

  

To identify TF motifs enriched in topics and differentially accessible regions (DARs), a cistarget 

database was created using peaks in the mCRC cell state union peakset and the scenicplus 

public motif collection (v10nr_clust_public)56. DNA sequences of peaks in the union peakset 

were obtained using bedtools getfasta92. The create_cistarget_motif_databases python script 735 

(https://github.com/aertslab/create_cisTarget_databases) was then used to create ranking 

and scores databases. 
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SCENIC+ (v1.0.1)56 was used to predict both chromatin regions (i.e. putative enhancers) and 

genes regulated by transcription factors in mCRC cell states. Rather than re-calling peaks with 740 

SCENIC+, peaks in the cancer cell state union peakset that was created with ArchR were 

used. Only cell barcodes that passed earlier QC filtering steps and genes expressed in a 

minimum of 60 cells were used. First a pycisTopic object was created using 

create_cistopic_object_from_fragments, using cancer cell barcodes and metadata, the 

blacklist peaks from ArchR hg38, and fragment files generated using 10x cellranger-arc. Topic 745 

modelling was used to identify variable open chromatin regions across cells, using 

run_cgs_models. 24 topics were selected and the model was added to the pycisTopic object 

using add_LDA_model. Putative enhancer regions for TF motif enrichment were identified 

from (1) regions assigned to topics and (2) differentially accessible regions. (1) Region-topic 

probabilities were obtained using binarize_topics(method=’ostu’) and 750 

binarize_topics(method=’ntop’, ntop=3000). (2) DARs were determined using 

impute_accessibility(scale_factor=106), normalize_scores(scale_factor=104), 

find_highly_variable_features, find_diff_features. Only open chromatin regions on known 

chromosomes were retained. TF motif enrichment was then performed against a custom 

cistarget database (see above) using run_pycistarget. A SCENIC+ object was then created 755 

(create_SCENICPLUS_object) from the cistopic object, log1p-normalised snRNA-seq data, 

and TF motif enrichment results generated using pyscistarget. TF-to-gene adjacencies were 

calculated (arboreto_with_multiprocessing --method grnboost2) with pySCENIC94 and added 

to the SCENIC+ object using load_TF2G_adj_from_file to reduce SCENIC+ memory 

requirements. SCENIC+ was then run to identify TF regulons in the mCRC cell states using 760 

run_scenicplus(biomart_host="http://sep2019.archive.ensembl.org/"). 

Integrated analysis of normal colon scRNA-seq datasets 

  

scRNA-seq data of healthy colon epithelial cells19,95,96 was integrated using Harmony in 

Scanpy as described for malignant cells in primary CRC datasets. Only cells with less than 765 

10% mitochondrial reads and greater than 300 observed genes were retained. Covariates for 

the number of observed genes per cell and cell cycle effects (using the cell cycle difference 

score, calculated by subtracting G2/M score from S-phase score) were regressed out using 

scanpy’s pp.regress function. 30 Harmony-corrected principal components were used to 

construct a neighbourhood graph. The resolution was set as 1.0 for leiden clustering. 770 

  

We observed that expression of LGR5 and other stem cell marker genes was low in stem cells 

in the healthy colon scRNA-seq. Therefore to identify a stem cell signature for comparing to 

our Multiome data from CRC liver metastases we identified a ‘multiome’ stem cell signature. 

snRNA-seq Multiome data of healthy colon epithelial epithelial cells97 was integrated using 775 

Harmony in Scanpy. scATAC-seq quality control metrics were calculated using ArchR and 

scRNA-seq quality control metrics were calculated using Scanpy. Cells were retained with a 

TSS score > 5, number of ATAC fragments > 2000 and number of observed genes > 400. 

Ambient RNA was decontaminated using scAR98. Mitochondrial and ribosomal genes were 

removed and samples were integrated using Harmony as described above, but using 25 780 

principal components. Cells were clustered using the leiden method with a resolution of 0.1. 

Epithelial cells were then sub-clustered, using 20 principal components and a resolution of 0.4 

for leiden clustering. A stem cell cluster was then identified based on the expression of marker 
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genes (LGR5, ASCL2, SMOC2) and Seurat’s FindAllMarkers function was used to identify a 

stem cell signature.  785 

Integration of published and Multiome liver metastatic CRC data       

  

To build a comprehensive scRNA-seq reference dataset for TME of liver metastatic CRC 

tumours, we integrated our snRNA-seq data with publicly available scRNA-seq datasets20,29 

using scVI (v0.16.4). Each cell source was processed independently with Scanpy workflow 790 

(v1.9.1) before integrating them into a single batch-corrected dataset. While the counts were 

decontaminated for single-nuclei data, raw counts were used for single-cell data. We extracted 

2000 HVGs using the Seurat V3 method. We log-normalised the raw counts using a scale 

factor of 10,000. The data were batch-corrected using scVI83 (v0.16.4) on raw counts and 

HVGs only, aligning all datasets and patients using cell source and patient as categorical 795 

covariates, and correcting for unwanted sources of variation: mitochondrial and ribosomal 

percentages. We used the default parameters (1 layer of size 128, 10 latent variables). The 

resulting scVI latent space of size 10 was used to build a KNN graph (n_neighbors=15) and 

to perform UMAP visualisation and Leiden clustering (r=0.2). Major cell types were annotated 

based on differentially expressed genes for each cluster and expression of canonical makers 800 

from the literature. Stromal, endothelial, myeloid, T/NK/ILC and hepatocytes cells were re-

analysed separately, repeating batch correction with scVI, dimensionality reduction and 

Leiden clustering to annotate fine-grained cell states. 

  

Malignant cells from our Multiome data were integrated with malignant cells from published 805 

datasets20,45,46 of liver metastatic CRC tumours using CCA in Seurat using each patient as a 

batch. We log-normalised the raw counts using a scale factor of 10,000 and extracted 2000 

HVGs using the Seurat V3 method. Covariates for the number of observed genes per cell and 

cell cycle effects were regressed out. Mitochondrial and ribosomal genes were removed. Cells 

were clustered using the default louvain method with a resolution of 1, using 30 principal 810 

components. Cancer cell states were annotated based upon the expression of marker genes, 

gene ontology analysis of the top genes in each cluster or by scoring cells for gene signatures. 

Differential gene expression in sc/sn-RNA-seq datasets 

  

Differentially expressed genes were identified in sc/sn-RNA-seq datasets using a Wilcoxon 815 

rank-sum test using Seurat’s FindAllMarkers (logfc.threshold > 0.25,  min.pct = 0.1) function. 

10X Visium spatial transcriptomics library preparation 

  

10 µm sections were taken from fresh frozen liver metastatic CRC samples from three 

patients. The tissue permeabilisation time was optimised using a Visium Spatial Tissue 820 

Optimization Slide & Reagent Kit (10x Genomics, 1000193), following the manufacturer’s 

instructions (Rev D). A 6 minute permeabilisation time was selected. 

  

Spatial transcriptomic libraries were created using a Visium Spatial Gene Expression Slide & 

Reagent Kit (10x Genomics, 1000187), following the manufacturer’s instructions (Rev E). 825 

Libraries were sequenced on an Illumina NovaSeq 6000. 
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Visium spatial transcriptomics analysis 

  

Using 10X Space Ranger (v.1.3), count matrices for each sample were generated. FASTQ 

files were aligned to the human genome reference version GRCh38-2020-A. Automated tissue 830 

detection was performed, and the spot locations were aligned to the fiducial border spots in 

the H&E slide image to select spots located on the tissue. This generated data containing 

1192 (CRC08), 937 (CRC09), and 1774 (CRC11) spots. Each Visium sample was processed 

independently using Scanpy (v1.9.1). Basic filtering was performed by discarding ribosomal 

and mitochondrial genes. We filtered out genes expressed in less than 3 spots and spots with 835 

fewer than 5 genes expressed. Segmentation was performed using the H&E image to 

approximate the number of nuclei per spot using Squidpy (v1.2.2) pipeline99. Downloaded 

publicly available 10X Visium data were also processed in the aforementioned manner: four 

primary CRC samples capturing the tumour core and the invasive edge derived from one 

patient41 and three liver metastatic CRC samples derived from three patients29. In primary 840 

CRC Visium samples, normal spots were excluded. 

  

We visualised the spatial distribution of signatures derived from 41 meta-programs obtained 

from a single-cell RNA-seq analysis of 24 tumour types (including CRC)100. We computed the 

gene signature scores for each spot using Scanpy’s tl.score_genes function. 845 

  

To assign cell types and cancer cell states annotated by our scRNA-seq analysis to spots, we 

used the deconvolution-based method cell2location (v0.1)42. Leveraging our annotated 

scRNA-seq reference, cell2location estimates the abundance of each cell type at each spot. 

Briefly, cell2location estimated cell type signatures from our raw count scRNA-seq dataset, 850 

removing genes expressed in less than 5 cells. Gene expression profile at each spot was 

decomposed into a weighted linear combination of cell type signatures. Each Visium sample 

was analysed separately. Additionally, to infer common patterns across a given tumour site 

(either primary CRC or liver metastatic CRC), we performed a joint inference by integrating 

and normalising Visium data across four primary CRC samples and six liver metastatic CRC 855 

samples respectively. We used raw spatial mRNA counts, filtered to genes shared with the 

scRNA-seq data. Cell2location uses priors on the tissue and experiment quality, such as the 

number of cells per spot. We determined the average number of nuclei per spot upon nuclei 

segmentation analysis (n=3) and set the regularisation of within-experiment variation in RNA 

detection sensitivity (α = 20) while the remaining hyperparameters were set to default. The 860 

model was trained for 30,000 iterations using GPU acceleration. We visualised the cell 

abundance and the absolute amount of mRNA, which represents the amount of mRNA 

contributed by each cell type in each location. 

  

We used SpatialDE2 (v1.1.1.dev103+g78da0ac)43 on raw mRNA counts to identify tissue 865 

regions in two Visium samples capturing the tumour core and the invasive edge in primary 

CRC (A1 and C1) and two Visium samples capturing different growth patterns in liver CRC 

metastasis (P13 and LM4), as this method takes into account spatial information. Briefly, the 

model is based on a Bayesian hidden Markov random field and leverages a graph 

representation of Visium data, assigning a cluster label to each spot based on its gene 870 

expression profile and its neighbouring spots. Each sample was analysed separately. We 

computed spatially variable genes on the slide and retained those with an adjusted p-value  

lower than 0.001. We used the top 2000 spatially variable genes to construct a graph which 
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embeds the spatial relationships among spots. SpatialDE2 determined regions in each Visium 

slide with a spatial smoothness parameter s (s=2 for A1, s=0.5 for B1, s=0.7 for C1 and D1 875 

and P13, s=0.2 for LM4). Clusters were merged to identify spatial clusters matching 

histological annotations. 

  

We identified differentially expressed genes between the two spatial clusters denoting the 

invasive edge and the tumour core using Wilcoxon rank-sum test with Benjamini-Hochberg p-880 

value correction in Scanpy. We selected differentially expressed genes with an adjusted p-

value lower than 0.05 and a log2 fold-change higher than 0.25 and expression observed in a 

minimum of 10% of spots in a spatial cluster. We performed gene set enrichment analysis of 

the differentially expressed genes at the invasive edge and the tumour core using GSEApy 

(v0.10.8)101, and ‘MSigDB_Hallmark_2020’ and ‘KEGG_2021_Human’ gene sets. 885 

  

To identify spatial cellular neighbourhoods, the subsequent analyses were applied separately 

to Visium data from primary CRC samples and to Visium data from liver metastatic CRC 

samples. Joint analysis of the Visium samples from the same tumour site enabled us to identify 

common patterns across samples. To identify colocalization of cell types and to build cellular 890 

neighbourhoods, we used the mRNA counts contributed by each cell state in each spot 

estimated by cell2location to partition each Visium slide into distinct cellular niches using 

SpatialDE2 (s=0.1 for joint primary CRC analysis, s=1.2 for joint liver metastatic CRC 

analysis). We built cellular neighbourhoods based on the estimated cell type abundance 

profiles of the spot itself and the surrounding neighbours, with the underlying assumption that 895 

spots having similar cell type abundance profiles will be grouped together. We leveraged the 

5% percentile of the posterior distribution of the mRNA counts estimated by cell2location, i.e. 

the number of mRNA molecules contributed by each cell state in each spot.   

  

Additionally, to validate the identified cellular neighbourhoods, we used the non-negative 900 

matrix factorisation (NMF) module from cell2location to identify spatial co-occurrence of cell 

types. NMF decomposes cell type abundance estimates from cell2location into factors of cell 

types that colocalise. This model assumes an additive decomposition, entailing that multiple 

factors can co-exist at a single spot. The model was trained for a range of {5, ..., 20} factors. 

We chose the decomposition into 7 factors for the joint analysis of the primary CRC analysis, 905 

and 10 factors for the joint liver metastatic CRC analysis as these configurations captured a 

reasonable number of microenvironments without splitting the cell states into many distinct 

factors. 

 

We identified differentially expressed genes between the spatial cellular neighbourhoods 910 

using Wilcoxon rank-sum test with Benjamini-Hochberg p-value correction in Scanpy. We 

selected differentially expressed genes with an adjusted p-value lower than 0.05 and a log2 

fold-change higher than 0.25 and with expression observed in a minimum of 10% of spots in 

a spatial neighbourhood. We performed gene set enrichment analysis of the differentially 

expressed genes in each cellular neighbourhood using GSEApy (v0.10.8)101, and 915 

‘MSigDB_Hallmark_2020’ and ‘KEGG_2021_Human’ gene sets. 

Spatially resolved ligand-receptor interactions analysis 
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Spatial analysis of liver CRC metastases from patient samples identified cellular niches of 

segregated cancer cell states and cell subpopulations of the tumour microenvironment. Two 920 

different computational methods, CellPhoneDB (v3.1.0, database v4.0.0)64 and NicheNet 

(v2.0.0)65, were leveraged to investigate cell-cell interactions in the cellular neighbourhood 

surrounding the iREC cancer cell state. First, to predict the potential ligand-receptor 

interactions between cell types of the tumour microenvironment (senders) and the iREC 

cancer cell state (receiver), CellPhoneDB was performed on the identified cellular 925 

neighbourhood surrounding the iREC cancer cell state. The ligand-receptor interactions were 

inferred using our single-cell transcriptomics dataset of liver CRC metastases, by focusing on 

the cell types and cancer cell states that were congregating in the cellular neighbourhood. 

Ligand-receptor interactions satisfying the following criteria were selected: (1) all ligands and 

receptors were expressed in at least 10% of the cells of each cell state; (2) the ligand-receptor 930 

interactions between two cell states were inferred using the statistical analysis method in 

CellPhoneDB with a p-value threshold of 0.05; (3) ligand-receptor interactions were pruned 

based on mean expression levels. Second, the predicted interactions were further filtered 

using NicheNet, retrieving ligand-receptor interactions whose downstream TF is active, as 

inferred by SCENIC+. Combining TF activity to ligand-receptor interactions using NicheNet 935 

highlighted the relevant interactions that activate downstream signalling in the responder cell 

state. Specifically, ligand-receptor pairs known to induce AP-1 regulon and NF-κB regulon 

(RELB) expression in the iREC state were investigated. We considered genes positively 

regulated by AP-1 and NF-κB respectively. Inferred ligands were ranked according to the prior 

potential score, i.e. how well a ligand induces the expression of target genes of the AP-1 940 

regulon and the NF-κB regulon respectively. Additionally, ligands were not only prioritised 

based on their potential score but also according to the ligand and receptor gene expression. 

We computed the average scaled gene expression values of ligands in senders and of 

corresponding receptors in the iREC state and other cancer cell states. A final set of relevant 

ligand-receptor interactions satisfying the following criteria were retrieved: (1) common ligand-945 

receptor interactions between NicheNet and CellPhoneDB analyses that were statistically 

significant in CellPhoneDB analysis; (2) interactions inferred by NicheNet that were not 

present in the CellPhoneDB database (3) the average scaled expression of the corresponding 

receptor was higher in the iREC state relative to other cancer cell states. A circos plot using 

R package circlize (v0.4.15) was designed to highlight the main target genes for the predicted 950 

set of ligands. Ligands were assigned to senders by computing ligand specificity. The ligands 

that were expressed in more than one sender were labelled as common ligands. 

  

We performed gene set enrichment analysis of the predicted ligands in the cellular 

neighbourhood colocalising with iREC cancer cell state using GSEApy (v0.10.8), and 955 

‘MSigDB_Hallmark_2020’ and ‘KEGG_2021_Human’ gene sets. 

  

We computed spatial enrichment of potential ligands predicted to influence the iREC 

phenotype in the cellular neighbourhood Ck containing iREC using the spatial gene expression 

of liver metastatic 10X Visium samples. The spatial neighbourhood analysis was carried out 960 

on all liver metastatic samples together based on the cell type abundance, while spatial ligand 

enrichment was computed for each liver metastatic sample separately. We log-normalised the 

raw counts using a scale factor of 10,000. We implemented the ligand spatial enrichment of 

ligand t in the cellular neighbourhood Ck (odds ratio) as the ratio of the odds of the ligand t 

being expressed by the odds of the other genes being expressed. The odds of ligand t being 965 

expressed in spots belonging to Ck were calculated by dividing the number of spots in Ck 
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expressing ligand t by the number of spots that are not part of Ck expressing ligand t. For each 

ligand t, a 2-by-2 contingency table (2 regions: part of Ck and not part of Ck; 2 categories: 

ligand t and other genes) was built. Significance was assessed with a Chi-square test using 

scipy.stats.chi2_contingency (SciPy v1.8.1)102 and by adjusting p-values for multiple testing 970 

with Benjamini-Hochberg correction method using statsmodels.stats.multitest.multipletests 

(statsmodels v0.13.2). A ligand t was considered statistically significantly enriched in 

neighbourhood Ck with adjusted p-value lower than 0.05 and with a positive log odds ratio. We 

computed the 95% confidence interval for the log odds ratio. 

Analysis of cancer cell state signatures in TCGA CRC bulk tumours 975 

  

TCGA bulk RNA-seq count data was downloaded for colon and rectal cancers using the 

TCGAbiolinks R package103. Count data was then normalised using variance stabilising 

transformation (VST) using DESeq2104 and VST counts were z-scored. Samples from patients 

with multiple samples in the dataset were removed. 980 

  

Primary cancer cell state signatures were obtained using Seurat’s FindAllMarkers function, on 

‘cell subtype’ level annotations for all cells in the primary CRC dataset (e.g. cell 

states/subtypes for epithelial, myeloid cells…). The top 50 differentially expressed genes 

ranked by log2 fold change were then used as a gene signature, and each tumour was scored 985 

for expression of the cancer cell state signature by calculating the mean of z-scored VST 

counts for genes in the signature. For ligands expressed by tumour microenvironment cells, 

each tumour was scored for expression of the ligands in the same manner. Scores for cancer 

state signatures and ligand expression values were then correlated using the Pearson method. 

To investigate cancer state gene signature expression in MSS/MSI subtypes, only TCGA bulk 990 

RNA-seq samples with MSS/MSI annotations were used.  

  

To investigate differential abundance of proteins and phospho-peptides, we accessed TCGA 

reverse phase protein array (RPPA) data using cBioPortal and compared the top tertile of bulk 

TCGA tumours by expression of REC or iREC signature to the bottom tertile. 995 

Gene enrichment analysis 

  

We performed gene enrichment analysis (GEA) on differentially expressed genes using 

GSEApy (v0.10.8)101. 

ChIP-seq analysis 1000 

  

ChIP-seq data for JUND (GSE32465)105 and HNF4A (GSE49402)106 generated from HCT-116 

and LoVo CRC cell lines respectively were downloaded from the NCBI sequence read archive. 

Reads were trimmed using trimmomatics (LEADING:5 TRAILING:5 SLIDINGWINDOW:4:15 

MINLEN:20)107 and mapped to hg38 (GRCh38, refdata-cellranger-arc-GRCh38-2020-A-2.0.0) 1005 

using bowtie2108. Samtools109 was used to filter reads, keeping high quality (q30) reads, 

mapping to known chromosomes. Reads aligned to blacklist regions were removed using 

bedtools intersect, and duplicates were marked using Picard MarkDuplicates. 
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Peaks were called using MACS2 callpeak using input or IgG controls and the following 1010 

parameters: -q 0.01 -g hs -f AUTO -B --SPMR --call-summits. The summit file was extended 

+/- 250bp using bedtools slop. Bedgraphs were converted into bigwig files for visualisation 

using UCSC tools bedGraphToBigWig. Deeptools110 computeMatrix and plotHeatmap were 

used to generate heatmaps showing TF ChIP-seq signal at chromatin regions identified in 

SCENIC+ JUND and HNF4A regulons. 1015 

Data availability 

  

Sequencing data generated in this study have been deposited at ArrayExpress under the 

accession numbers: E-MTAB-13651, E-MTAB-13652 and E-MTAB-13655. Processed count 

matrices and metadata will be made available at ArrayExpress. 1020 

Code availability 

  

Code will be made available at github. 
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Figure legends 

Figure 1. Integrated scRNA-seq analysis reveals heterogeneous cancer cell states in 

pCRC. 
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a. Experimental outline and overview of the computational workflow. b. UMAP representation 

of cell types present in pCRC. c. UMAP representation of malignant pCRC cell states. d. 1050 

Proportions of cancer cell states present in pCRC datasets. e. Heatmap showing GEA of 

differentially expressed genes (DEGs) in cancer cell states for the indicated signatures. 

Interferon/MHC-II, hypoxia, and EMT-II100, CRIS24, EpiHR and coreHRC25, revCSC23, RSC111, 

fetal112, YAP113, pEMT114, CMS2 and CMS3115, iCMS2 and iCMS328, all other signatures are 

from MSigDB Hallmarks. Genes in each signature are listed in Supplementary Table 2. f. 1055 

Dotplot showing the scaled mRNA expression levels of the indicated marker genes, interferon 

stimulated genes (ISGs) and differentiation marker KRT20 expression in pCRC cell states. 

The size of the dot indicates the fraction of cells in each state in which expression of the gene 

is detected. 

  1060 

Figure 2. Spatial neighbourhoods surrounding cancer cell states in pCRC 

a. H&E staining of primary colorectal cancer sample A1, manual annotations and clustering 

annotations based on spatial gene expression. b. H&E staining of primary colorectal cancer 

sample C1, manual annotations and clustering annotations based on spatial gene expression. 

c. Gene enrichment analysis of upregulated genes in the invasive edge and the tumour core. 1065 

d. Abundance of cancer cell states across spatial locations of representative samples A1 and 

C1 capturing the tumour core and invasive edge. Cell abundance (colour represents intensity, 

size represents score) per spot assigned to each cell type and cancer cell state is estimated 

by cell2location. e. Identification of spatial neighbourhoods shown in representative samples 

A1 and C1. Spatial cellular neighbourhoods were deciphered by joint modelling of four Visium 1070 

samples to infer common patterns across samples using SpatialDE2. f. Dotplot representing 

the average cell abundance (dot size and colour) for each cell state, per neighbourhood, and 

normalised between 0 and 1 per cell state. g. Estimated cell type abundances for distinct 

stromal cells and immune subpopulations colocalising with REC and iREC cancer cell states. 

  1075 

Figure 3. Cancer cell states are re-established in liver mCRC. 

a. UMAP representation of cell types in mCRC Multiome (paired snRNA-seq + snATAC-seq) 

data, based upon the RNA modality. b. UMAP representation of cancer cells in mCRC 

Multiome data, based upon the RNA modality. c. Boxplot showing the proportion of cancer 

cell states in each mCRC patient sample. d. Heatmap showing GEA of differentially expressed 1080 

genes in mCRC cell states for the indicated signatures. Genes in the signatures are listed in 

Supplementary Table 2. e. Dotplot showing the scaled mRNA expression levels of the 

indicated marker genes, ISGs and differentiation marker KRT20 in mCRC cell states. 

  

Figure 4. Regulation of cancer cell states. 1085 

a. Putative enhancer-gene (PE-GL) linkages (n = 1444) in mCRC cell states. Left heatmap 

shows chromatin accessibility of putative enhancers. Right heatmap shows mRNA expression 

of genes linked to putative enhancers. K-means clustering was performed on the chromatin 

accessibility data. Selected transcription factor (TF) de novo motifs enriched in accessible 

regions of each k-means cluster were identified using Homer (Supplementary Table 7) and 1090 

are shown on the left. Motifs are annotated using the top annotation from Homer. b. Genome 

browser view of chromatin accessibility at the EMP1 locus in the indicated mCRC cell states. 

PE-GL linkages are shown and chromHMM enhancers47. c. GEA of genes in k-means clusters 

shown in Fig. 5a using KEGG pathways and MSigDB Hallmarks. d. Heatmap showing 

chromVAR motif deviation z-scores for TFs in mCRC cell states. Only statistically significant 1095 

motifs are shown (Wilcoxon, FDR < 0.05). TFs are annotated based on the DNA binding 
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domain (DBD)116. e. Accessibility of chromatin regions in the indicated SCENIC+ regulons. f. 

Z-scored mRNA expression of genes in the indicated SCENIC+ regulons across mCRC cell 

states. g. Z-scored mRNA expression levels of AP-1 target genes61 across mCRC cell states. 

  1100 

Figure 5.  Spatial niches of cancer cell states in liver metastasis. 

a. Desmoplastic growth pattern: H&E staining of publicly available liver metastatic sample 

LM4, manual annotations and clustering annotations based on spatial gene expression. 

Sample LM4 captures the desmoplastic rim separating the tumour and the liver parenchyma. 

The dashed line in black denotes the desmoplastic rim. b. Replacement growth pattern: H&E 1105 

staining of publicly available liver metastatic colorectal cancer sample P13, manual 

annotations and clustering annotations based on spatial gene expression. In the replacement 

growth pattern, tumour cells are in direct contact with hepatocytes. The dashed line in black 

denotes the tumour-liver border. c. H&E staining of liver metastatic colorectal cancer sample 

CRC11. d. Abundance of cancer cell states across spatial locations of three representative 1110 

samples (LM4, P13, CRC11). Cell abundance (colour represents intensity, size represents the 

score) per spot assigned to each cell type and cancer cell state is estimated by cell2location. 

e. Estimated cell type abundances for distinct stromal subpopulations in LM4, P13 and 

CRC11. f. Spatial cellular neighbourhoods in LM4, P13 and CRC11. Spatial cellular 

neighbourhoods were deciphered by joint modelling of six Visium samples to infer common 1115 

patterns across samples using SpatialDE2. g. Estimated cell type abundances for distinct 

immune subpopulations in the immunosuppressive niche in representative samples LM4, P13 

and CRC11. h. Dotplot representing the average cell abundance (dot size and colour) for each 

cell state, per neighbourhood, and normalised between 0 and 1 per cell state. 0 and 5 are the 

cellular neighbourhoods containing iREC. Niche 7 is the cellular neighbourhood containing 1120 

REC. Niche 4 is the cellular neighbourhood containing Stem NOTUM. Cellular 

neighbourhoods 1 and 9 denote the liver parenchyma, depending on the growth pattern. i. 

GEA of upregulated genes in the spatial cellular neighbourhoods. 

  

Figure 6. Spatially resolved cell-cell interactions in the cellular neighbourhood 1125 

surrounding iRECs. 

a. Heatmaps summarising the inferred spatial cell-cell interactions mediated by stromal and 

myeloid cells in the cellular neighbourhood containing iRECs with iRECs as the receiver, using 

CellPhoneDB and NicheNet. Specifically, we identified potential upstream ligand-receptor 

pairs which can induce the AP-1 regulon program in the neighbouring pro-metastatic 1130 

phenotype. Z-score of the gene expression of selected potential ligands in each cell type of 

the cellular neighbourhood (top panel) and z-score of gene expression of corresponding 

receptors in cancer cell states (bottom panel). In both heatmaps, the x-axis denotes ligand-

receptor interactions, with the ligand in bold and receptor in grey for sender cells (top panel) 

and the ligand in grey and the receptor in bold for cancer cell states (bottom panel). b. GEA 1135 

of ligands predicted to activate genes in the AP-1 regulon in iRECs. c. Circos plot depicting 

links between predicted ligands from stromal and myeloid cells and target genes of the AP-1 

regulon, as inferred by NicheNet. Links denote the regulatory potential scores between ligands 

and target genes of the AP-1 regulon, as predicted by NicheNet. d. Correlation in TCGA bulk 

CRC RNA-seq data of the expression of the indicated pCRC cancer cell state signatures and 1140 

ligands expressed in TME subpopulations that potentially drive the expression of AP-1 and 

RELB regulons in CRC malignant cells. Ligands are shown in Fig. 6a (AP-1) and Extended 

Data Fig. 9a (RELB). Common AP-1 and common RELB are ligands whose expression is 

shared in more than one TME subpopulation. 
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Figures

Figure 1

Integrated scRNA-seq analysis reveals heterogeneous cancer cell states in pCRC.

a. Experimental outline and overview of the computational work�ow. b. UMAP representation of cell types
present in pCRC. c. UMAP representation of malignant pCRC cell states. d. Proportions of cancer cell
states present in pCRC datasets. e. Heatmap showing GEA of differentially expressed genes (DEGs) in
cancer cell states for the indicated signatures. Interferon/MHC-II, hypoxia, and EMT-II100, CRIS24, EpiHR
and coreHRC25, revCSC23, RSC111, fetal112, YAP113, pEMT114, CMS2 and CMS3115, iCMS2 and
iCMS328, all other signatures are from MSigDB Hallmarks. Genes in each signature are listed in
Supplementary Table 2. f. Dotplot showing the scaled mRNA expression levels of the indicated marker



genes, interferon stimulated genes (ISGs) and differentiation marker KRT20 expression in pCRC cell
states. The size of the dot indicates the fraction of cells in each state in which expression of the gene is
detected.

Figure 2

Spatial neighbourhoods surrounding cancer cell states in pCRC

a. H&E staining of primary colorectal cancer sample A1, manual annotations and clustering annotations
based on spatial gene expression. b. H&E staining of primary colorectal cancer sample C1, manual
annotations and clustering annotations based on spatial gene expression. c. Gene enrichment analysis of
upregulated genes in the invasive edge and the tumour core. d. Abundance of cancer cell states across
spatial locations of representative samples A1 and C1 capturing the tumour core and invasive edge. Cell
abundance (colour represents intensity, size represents score) per spot assigned to each cell type and
cancer cell state is estimated by cell2location. e. Identi�cation of spatial neighbourhoods shown in
representative samples A1 and C1. Spatial cellular neighbourhoods were deciphered by joint modelling of
four Visium samples to infer common patterns across samples using SpatialDE2. f. Dotplot representing



the average cell abundance (dot size and colour) for each cell state, per neighbourhood, and normalised
between 0 and 1 per cell state. g. Estimated cell type abundances for distinct stromal cells and immune
subpopulations colocalising with REC and iREC cancer cell states.

Figure 3

Cancer cell states are re-established in liver mCRC.

a. UMAP representation of cell types in mCRC Multiome (paired snRNA-seq + snATAC-seq) data, based
upon the RNA modality. b. UMAP representation of cancer cells in mCRC Multiome data, based upon the
RNA modality. c. Boxplot showing the proportion of cancer cell states in each mCRC patient sample. d.
Heatmap showing GEA of differentially expressed genes in mCRC cell states for the indicated signatures.
Genes in the signatures are listed in Supplementary Table 2. e. Dotplot showing the scaled mRNA
expression levels of the indicated marker genes, ISGs and differentiation marker KRT20 in mCRC cell
states.



Figure 4

Regulation of cancer cell states.

a. Putative enhancer-gene (PE-GL) linkages (n = 1444) in mCRC cell states. Left heatmap shows
chromatin accessibility of putative enhancers. Right heatmap shows mRNA expression of genes linked to
putative enhancers. K-means clustering was performed on the chromatin accessibility data. Selected
transcription factor (TF) de novo motifs enriched in accessible regions of each k-means cluster were
identi�ed using Homer (Supplementary Table 7) and are shown on the left. Motifs are annotated using
the top annotation from Homer. b. Genome browser view of chromatin accessibility at the EMP1 locus in
the indicated mCRC cell states. PE-GL linkages are shown and chromHMM enhancers47. c. GEA of genes
in k-means clusters shown in Fig. 5a using KEGG pathways and MSigDB Hallmarks. d. Heatmap showing



chromVAR motif deviation z-scores for TFs in mCRC cell states. Only statistically signi�cant motifs are
shown (Wilcoxon, FDR < 0.05). TFs are annotated based on the DNA binding domain (DBD)116. e.
Accessibility of chromatin regions in the indicated SCENIC+ regulons. f. Z-scored mRNA expression of
genes in the indicated SCENIC+ regulons across mCRC cell states. g. Z-scored mRNA expression levels of
AP-1 target genes61 across mCRC cell states.

Figure 5

Spatial niches of cancer cell states in liver metastasis.



a. Desmoplastic growth pattern: H&E staining of publicly available liver metastatic sample LM4, manual
annotations and clustering annotations based on spatial gene expression. Sample LM4 captures the
desmoplastic rim separating the tumour and the liver parenchyma. The dashed line in black denotes the
desmoplastic rim. b. Replacement growth pattern: H&E staining of publicly available liver metastatic
colorectal cancer sample P13, manual annotations and clustering annotations based on spatial gene
expression. In the replacement growth pattern, tumour cells are in direct contact with hepatocytes. The
dashed line in black denotes the tumour-liver border. c. H&E staining of liver metastatic colorectal cancer
sample CRC11. d. Abundance of cancer cell states across spatial locations of three representative
samples (LM4, P13, CRC11). Cell abundance (colour represents intensity, size represents the score) per
spot assigned to each cell type and cancer cell state is estimated by cell2location. e. Estimated cell type
abundances for distinct stromal subpopulations in LM4, P13 and CRC11. f. Spatial cellular
neighbourhoods in LM4, P13 and CRC11. Spatial cellular neighbourhoods were deciphered by joint
modelling of six Visium samples to infer common patterns across samples using SpatialDE2. g.
Estimated cell type abundances for distinct immune subpopulations in the immunosuppressive niche in
representative samples LM4, P13 and CRC11. h. Dotplot representing the average cell abundance (dot
size and colour) for each cell state, per neighbourhood, and normalised between 0 and 1 per cell state. 0
and 5 are the cellular neighbourhoods containing iREC. Niche 7 is the cellular neighbourhood containing
REC. Niche 4 is the cellular neighbourhood containing Stem NOTUM. Cellular neighbourhoods 1 and 9
denote the liver parenchyma, depending on the growth pattern. i. GEA of upregulated genes in the spatial
cellular neighbourhoods.



Figure 6

Spatially resolved cell-cell interactions in the cellular neighbourhood surrounding iRECs.

a. Heatmaps summarising the inferred spatial cell-cell interactions mediated by stromal and myeloid cells
in the cellular neighbourhood containing iRECs with iRECs as the receiver, using CellPhoneDB and
NicheNet. Speci�cally, we identi�ed potential upstream ligand-receptor pairs which can induce the AP-1
regulon program in the neighbouring pro-metastatic phenotype. Z-score of the gene expression of
selected potential ligands in each cell type of the cellular neighbourhood (top panel) and z-score of gene
expression of corresponding receptors in cancer cell states (bottom panel). In both heatmaps, the x-axis
denotes ligandreceptor interactions, with the ligand in bold and receptor in grey for sender cells (top



panel) and the ligand in grey and the receptor in bold for cancer cell states (bottom panel). b. GEA of
ligands predicted to activate genes in the AP-1 regulon in iRECs. c. Circos plot depicting links between
predicted ligands from stromal and myeloid cells and target genes of the AP-1 regulon, as inferred by
NicheNet. Links denote the regulatory potential scores between ligands and target genes of the AP-1
regulon, as predicted by NicheNet. d. Correlation in TCGA bulk CRC RNA-seq data of the expression of the
indicated pCRC cancer cell state signatures and ligands expressed in TME subpopulations that
potentially drive the expression of AP-1 and RELB regulons in CRC malignant cells. Ligands are shown in
Fig. 6a (AP-1) and Extended Data Fig. 9a (RELB). Common AP-1 and common RELB are ligands whose
expression is shared in more than one TME subpopulation.
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