Abdurakhmonov IY(2017) Cotton PHYA1 RNAi improves fiber quality root elongation flowering maturity and yield potential in Gossypium hirsutum L. U.S. Patent No US20130227723A1.
Abe M, Kobayashi Y, Yamamoto S, Daimon Y, Yamaguchi A, Ikeda Y, Ichinoki H, Notaguchi M, Goto K, Araki T(2005) FD a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science (New York N.Y.) 309:1052–1056.
Alonso R, Oñate-Sánchez L, Weltmeier F, Ehlert A, Diaz I, Dietrich K, Vicente-Carbajosa J, Dröge-Laser W(2009) A pivotal role of the basic leucine zipper transcription factor bZIP53 in the regulation of Arabidopsis seed maturation gene expression based on heterodimerization and protein complex formation. The Plant cell 21: 1747–1761. https://doi.org/10.1105/tpc.108.062968
Assunção AG, Herrero E, Lin YF, Huettel B, Talukdar S, Smaczniak C, Immink RG, Van Eldik M, Fiers M, Schat H, Aarts MG (2010) Arabidopsis thaliana transcription factors bZIP19 and bZIP23 regulate the adaptation to zinc deficiency. Pro of the Nat Acad of Sci USA 107: 10296–10301. https://doi.org/10.1073/pnas.100478810
Azeem F, Tahir H, Ijaz U, Shaheen T(2020) A genome-wide comparative analysis of bZIP transcription factors in G. arboreum and G. raimondii (Diploid ancestors of present-day cotton). Physiol Mol Biol Plants 26: 433–444. https://doi.org/10.1007/s12298-020-00771-9
Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids res 37: W202–W208. https://doi.org/10.1093/nar/gkp335
Chen ZJ, Sreedasyam A, Ando A, Song Q, De Santiago LM, Hulse-Kemp AM, Ding M, Ye W, Kirkbride RC, Jenkins J, Plott C, Lovell J, Lin YM, Vaughn R, Liu B, Simpson S, Scheffler BE, Wen L, Saski CA, Grover CE, Schmutz J (2020) Genomic diversifications of five Gossypium allopolyploid species and their impact on cotton improvement. Nat Genet 52: 525–533. https://doi.org/10.1038/s41588-020-0614-5
Dietrich K, Weltmeier F, Ehlert A, Weiste C, Stahl M, Harter K, Dröge-Laser W (2011) Heterodimers of the Arabidopsis transcription factors bZIP1 and bZIP53 reprogram amino acid metabolism during low energy stress. The Plant cell 23:381–395. https://doi.org/10.1105/tpc.110.075390
Dröge-Laser W, Snoek BL, Snel B, Weiste C (2018) The Arabidopsis bZIP transcription factor family-an update. Curr Opin Plant Biol 45: 36-49. https://doi.org/10.1016/j.pbi.2018.05.001
Dröge-Laser W, Weiste C (2018) The C/S1 bZIP Network: A Regulatory Hub Orchestrating Plant Energy Homeostasis. Trends Plant Sci 23: 422-433. doi: 10.1016/j.tplants.2018.02.003 PMID: 29525129
El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, Qureshi M, Richardson LJ, Salazar GA, Smart A, Sonnhammer ELL, Hirsh L, Paladin L, Piovesan D, Tosatto SCE, Finn RD (2019) The Pfam protein families database in 2019. Nucleic Acids Res 47(D1):D427-D432. doi: 10.1093/nar/gky995 PMID: 30357350 PMCID: PMC6324024
Evens NP, Buchner P, Williams LE, Hawkesford MJ (2017) The role of ZIP transporters and group F bZIP transcription factors in the Zn-deficiency response of wheat (Triticum aestivum). Plant J. 92:291-304. https://doi.org/10.1111/tpj.13655
Ezer D, Shepherd SJK, Brestovitsky A, Dickinson P, Cortijo S, Charoensawan V, Box MS, Biswas S, Jaeger KE, Wigge PA (2017) The G-Box Transcriptional Regulatory Code in Arabidopsis. Plant Physiol 175: 628-640. doi: 10.1104/pp.17.01086
Fan W, Dong X(2002) In vivo interaction between NPR1 and transcription factor TGA2 leads to salicylic acid-mediated gene activation in Arabidopsis. Plant Cell 14: 1377-1389. https://doi.org/10.1105/tpc.001628
Fu ZQ, Dong X (2013) Systemic acquired resistance: turning local infection into global defense. Annu Rev Plant Biol 64: 839-863. https://doi.org/10.1146/annurev-arplant-042811-105606
Gatz C (2013) From Pioneers to Team Players: TGA Transcription Factors Provide a Molecular Link Between Different Stress Pathways. Mol Plant-Microbe Inter 26:151-59. https://doi.org/10.1094/MPMI-04-12-0078-IA
Gibalová A, Renák D, Matczuk K, Dupl'áková N, Cháb D, Twell D, Honys D (2009) AtbZIP34 is required for Arabidopsis pollen wall patterning and the control of several metabolic pathways in developing pollen. Plant molecular biology 70: 581–601. https://doi.org/10.1007/s11103-009-9493-y
Gibalová A, Steinbachová L, Hafidh S, Bláhová V, Gadiou Z, Michailidis C, Műller K, Pleskot R, Dupľáková N, Honys D (2017) Characterization of pollen-expressed bZIP protein interactions and the role of ATbZIP18 in the male gametophyte. Plant Reprod 30: 1-17. doi: 10.1007/s00497-016-0295-5 PMID: 27896439
Gupta S, Stamatoyannopoulos JA, Bailey TL, Noble WS (2007) Quantifying similarity between motifs. Genome Biol 8: R24. doi: 10.1186/gb-2007-8-2-r24
Gutsche N, Holtmannspötter M, Maß L, O'Donoghue M, Busch A, Lauri A, Schubert V, Zachgo S (2017) Conserved redox-dependent DNA binding of ROXY glutaredoxins with TGA transcription factors. Plant direct 1: e00030. https://doi.org/10.1002/pld3.30
Hanson J, Hanssen M, Wiese A, Hendriks MM, Smeekens S (2008) The sucrose regulated transcription factor bZIP11 affects amino acid metabolism by regulating the expression of ASPARAGINE SYNTHETASE 1 and PROLINE DEHYDROGENASE2. The plant Journal 53: 935-49. https://doi.org/10.1111/j.1365-313X.2007.03385.x
Hasan MM, Ma F, Islam F, Sajid M, Prodhan ZH, Li F, Shen H, Chen Y, Wang X (2019) Comparative Transcriptomic Analysis of Biological Process and Key Pathway in Three Cotton (Gossypium spp.) Species Under Drought Stress. Int J Mol Sci 20:2076. https://doi.org/10.3390/ijms20092076
Hendrix B, Stewart JM (2005) Estimation of the nuclear DNA content of gossypium species. Ann Bot 95: 789-797. doi:10.1093/aob/mci078
Howell SH (2013) Endoplasmic Reticulum Stress Responses in Plants. Ann Rev Plant Bio 64: 477-99. https://doi.org/10.1146/annurev-arplant-050312-120053
Humbert S, Zhong S, Deng Y, Howell SH, Rothstein SJ (2012) Alteration of the bZIP60/IRE1 pathway affects plant response to ER stress in Arabidopsis thaliana. PLoS One 7: e39023. doi:10.1371/journal.pone.0039023
Inaba S, Kurata R, Kobayashi M, Yamagishi Y, Mori I, Ogata Y, Fukao Y (2015) Identification of putative target genes of bZIP19 a transcription factor essential for Arabidopsis adaptation to Zn deficiency in roots. Plant J 84: 323-34. doi: 10.1111/tpj.12996. PMID: 26306426
Iwata Y, Fedoroff NV, Koizumi N (2008) Arabidopsis bZIP60 is a proteolysis-activated transcription factor involved in the endoplasmic reticulum stress response. Plant Cell 20: 3107-3121.
Jakoby M, Weisshaar B, Dröge-Laser W, Vicente-Carbajosa J, Tiedemann J, Kroj T, Parcy F, & bZIP Research Group (2002) bZIP transcription factors in Arabidopsis. Trends in plant science 7: 106–111. https://doi.org/10.1016/s1360-1385(01)02223-3
Jin J, Tian F, Yang DC, Meng YQ, Kong L, Luo J, Gao G (2017) PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Res 45: D1040–D1045. https://doi.org/10.1093/nar/gkw982
Khanale V, Bhattacharya A, Parkhi V, Pathak R, Satpute R, Char B (2019) Genome Wide in-Silico Analysis of Cotton bZIP Transcription Factors and Over-Expression of Cotton bZIP17 in Rice for Abiotic Stress Tolerance. Poster presentation in 5th International Conference on Plant Genetics & Genomics New Delhi India October 17-18.
Kosugi S, Hasebe M, Entani T, Takayama S, Tomita M, Yanagawa H (2008) Design of peptide inhibitors for the importin α/β nuclear import pathway by activity-based profiling. Chem Biol 15: 940-949.
Kosugi S, Hasebe M, Tomita M, Yanagawa H (2009) Systematic identification of yeast cell cycle-dependent nucleocytoplasmic shuttling proteins by prediction of composite motifs. Proc Natl Acad Sci USA 106: 10171-10176.
Kosugi S, Hasebe M, Matsumura N, Takashima H, Miyamoto-Sato E, Tomita M, Yanagawa H (2009) Six classes of nuclear localization signals specific to different binding grooves of importin α. J Biol Chem 284: 478-485.
Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Bio Evo 35: 1547-154. https://doi.org/10.1093/molbev/msy096
Kushanov FN, Pepper AE, Yu JZ, Buriev ZT, Shermatov SE, Saha S, Ulloa M, Jenkins JN, Abdukarimov A, Abdurakhmonov IY. Development genetic mapping and QTL association of cotton PHYA PHYB and HY5-specific CAPS and dCAPS markers. BMC genetics 17:141. https://doi.org/10.1186/s12863-016-0448-4
Li F, Fan G, Wang K, Sun F, Yuan Y, Song G, Li Q, Ma Z, Lu C, Zou C, Chen W, Liang X, Shang H, Liu W, Shi C, Xiao G, Gou C, Ye W, Xu X, Zhang X, Yu S (2014) Genome sequence of the cultivated cotton Gossypium arboreum. Nat Genet 46: 567–72. https://doi.org/10.1038/ng.2987
Liang C, Meng Z, Meng Z, Malik W, Yan R, Lwin KM, Lin F, Wang Y, Sun G, Zhou T, Zhu T, Li J, Jin S, Guo S, Zhang R (2016) GhABF2 a bZIP transcription factor confers drought and salinity tolerance in cotton (Gossypium hirsutum L.). Scientific reports 6: 35040. https://doi.org/10.1038/srep35040
Lindemose S, O'Shea C, Jensen MK, Skriver K (2013) Structure function and networks of transcription factors involved in abiotic stress responses. Int J Mol Sci 14: 5842-5878. https://doi.org/10.3390/ijms14035842
Skubacz A, Daszkowska-Golec A, Szarejko I (2016) The Role and Regulation of ABI5 (ABA-Insensitive 5) in Plant Development Abiotic Stress Responses and Phytohormone Crosstalk. Front Plant Sci 7: 1884. doi: 10.3389/fpls.2016.01884.
Liu JX, Srivastava R, Howell SH (2008) Stress-induced expression of an activated form of AtbZIP17 provides protection from salt stress in Arabidopsis. Plant Cell Environ 31: 1735-1743. https://doi.org/10.1111/j.1365-3040.2008.01873.x
Ma J, Hanssen M, Lundgren K, Hernández L, Delatte T, Ehlert A, Liu CM, Schluepmann H, Dröge-Laser W, Moritz T, Smeekens S, Hanson J (2011) The sucrose-regulated Arabidopsis transcription factor bZIP11 reprograms metabolism and regulates trehalose metabolism. The New phytologist 191:733–745. https://doi.org/10.1111/j.1469-8137.2011.03735.x
Mitchell AL, Attwood TK, Babbitt PC, Blum M, Bork P, Bridge A, Brown SD, Chang HY, El-Gebali S, Fraser MI, Gough J, Haft DR, Huang H, Letunic I, Lopez R, Luciani A, Madeira F, Marchler-Bauer A, Mi H, Natale DA, Necci M, Nuka G, Orengo C, Pandurangan AP, Paysan-Lafosse T, Pesseat S, Potter SC, Qureshi MA, Rawlings ND, Redaschi N, Richardson LJ, Rivoire C, Salazar GA, Sangrador-Vegas A, Sigrist CJA, Sillitoe I, Sutton GG, Thanki N, Thomas PD, Tosatto SCE, Yong SY, Finn RD (2019) InterPro in 2019: improving coverage, classification and access to protein sequence annotations. Nucleic Acids Res 47 :D351-D360. doi: 10.1093/nar/gky1100
Nazri AZ, Griffin JHC, Peaston KA, Alexander-Webber DGA, Williams LE (2017) F-group bZIPs in barley-a role in Zn deficiency. Plant Cell Environ 40:2754-2770. https://doi.org/10.1111/pce.13045
Nijhawan A, Jain M, Tyagi AK, Khurana JP (2008) Genomic survey and gene expression analysis of the basic leucine zipper transcription factor family in rice. Plant Physiol 146:333-350. https://doi.org/10.1104/pp.107.112821
Peng Z, He S, Gong W, Sun J, Pan Z, Xu F, Lu Y, Du X (2014) Comprehensive analysis of differentially expressed genes and transcriptional regulation induced by salt stress in two contrasting cotton genotypes. BMC genomics 15: 760. https://doi.org/10.1186/1471-2164-15-760
Pyo H, Demura T, Fukuda H (2006) Vascular cell expression patterns of Arabidopsis bZIP group I genes. Plant Biotechnol 23: 497-501. https://doi.org/10.5511/plantbiotechnology.23.497
Ranjan A, Nigam D, Asif MH, Singh R, Ranjan S, Mantri S, Pandey N, Trivedi I, Rai KM, Jena SN, Koul B, Tuli R, Pathre UV, Sawant SV (2012) Genome wide expression profiling of two accession of G. herbaceum L. in response to drought. BMC genomics 13:94. https://doi.org/10.1186/1471-2164-13-94
Rhee SY, Beavis W, Berardini TZ, Chen G, Dixon D, Doyle A, Garcia-Hernandez M, Huala E, Lander G, Montoya M, Miller N, Mueller LA, Mundodi S, Reiser L, Tacklind J, Weems DC, Wu Y, Xu I, Yoo D, Yoon J, Zhang P (2003) The Arabidopsis Information Resource (TAIR): a model organism database providing a centralized curated gateway to Arabidopsis biology research materials and community. Nucleic Acids Res 2003 31: 224–228. https://doi.org/10.1093/nar/gkg076
Rolly NK, Imran QM, Lee IJ, Yun BW(2020) Salinity Stress-Mediated Suppression of Expression of Salt Overly Sensitive Signaling Pathway Genes Suggests Negative Regulation by AtbZIP62 Transcription Factor in Arabidopsis thaliana. Int J Mol Sci. 21:1726. https://doi.org/10.3390/ijms21051726
Schwarz R, Dayhoff M(1979) Matrices for Detecting Distant Relationships. In: Dayhoff M, Ed, Atlas of Protein Sequences. National Biomedical Research Foundation 353-358.
Schultz J, Copley RR, Doerks T, Ponting CP, Bork P (2000) SMART: a web-based tool for the study of genetically mobile domains. Nucleic Acids Res 28: 231-4. doi: 10.1093/nar/28.1.231
Shen H, Cao K, Wang X (2007) A conserved proline residue in the leucine zipper region of AtbZIP34 and AtbZIP61 in Arabidopsis thaliana interferes with the formation of homodimer. Biochem Biophys Res Commun 362: 425–430. doi: 10.1016/j.bbrc.2007.08.026.
Sirichandra C, Davanture M, Turk BE, Zivy M, Valot B, Leung J, Merlot S (2010) The Arabidopsis ABA-activated kinase OST1 phosphorylates the bZIP transcription factor ABF3 and creates a 14-3-3 binding site involved in its turnover. PLoS One 5: e13935. doi: 10.1371/journal.pone.0013935 PMID: 21085673
Sonnhammer EL, Eddy SR, Durbin R (1997) Pfam: a comprehensive database of protein domain families based on seed alignments. Proteins 28: 405-20. doi: 10.1002/(sici)1097-0134(199707)28:3<405::aid-prot10>3.0.co;2-l
Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P, Jensen LJ, Mering CV (2019) STRING v11: protein-protein association networks with increased coverage supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019 47:D607-D613. doi: 10.1093/nar/gky1131
Ullah I, Magdy M, Wang L, Liu M, Li X (2019) Genome-wide identification and evolutionary analysis of TGA transcription factors in soybean. Sci Rep 1: 11186. doi:10.1038/s41598-019-47316-z
Wang K, Wang Z, Li F, Ye W, Wang J, Song G, Yue Z, Cong L, Shang H, Zhu S, Zou C, Li Q, Yuan Y, Lu C, Wei H, Gou C, Zheng Z, Yin Y, Zhang X, Liu K, Wang B, Song C, Shi N, Kohel RJ, Percy RG, Yu JZ, Zhu YX, Wang J, Yu S (2012) The draft genome of a diploid cotton Gossypium raimondii. Nat Genet 44:1098-103. doi: 10.1038/ng.2371
Wang B, Liu C, Zhang D, He C, Zhang J, Li Z. Effects of maize organ-specific drought stress response on yields from transcriptome analysis (2019) BMC Plant Biol 19: 335. doi: 10.1186/s12870-019-1941-5
Wang Z, Yan L, Wan L, Huai D, Kang Y, Shi L, Jiang H, Lei Y, Liao B (2019) Genome-wide systematic characterization of bZIP transcription factors and their expression profiles during seed development and in response to salt stress in peanut. BMC Genomics 20: 51. doi: 10.1186/s12864-019-5434-6
Wang X, Lu X, Malik WA, Chen X, Wang J, Wang D, Wang S, Chen C, Guo L, Ye W (2020) Differentially expressed bZIP transcription factors confer multi-tolerances in Gossypium hirsutum L. Int J Biol Macromol 146: 569-578. doi: 10.1016/j.ijbiomac.2020.01.013
Weltmeier F, Rahmani F, Ehlert A, Dietrich K, Schütze K, Wang X, Chaban C, Hanson J, Teige M, Harter K, Vicente-Carbajosa J, Smeekens S, Dröge-Laser W(2009) Expression patterns within the Arabidopsis C/S1 bZIP transcription factor network: availability of heterodimerization partners controls gene expression during stress response and development. Plant Mol Biol 69: 107-19. doi: 10.1007/s11103-008-9410-9
Yao D, Zhang X, Zhao X, Liu C, Wang C, Zhang Z, Zhang C, Wei Q, Wang Q, Yan H, Li F, Su Z (2011) Transcriptome analysis reveals salt-stress-regulated biological processes and key pathways in roots of cotton (Gossypium hirsutum L.). Genomics 98: 47-55. doi: 10.1016/j.ygeno.2011.04.007
Yoshida T, Fujita Y, Maruyama K, Mogami J, Todaka D, Shinozaki K, Yamaguchi-Shinozaki K (2015) Four Arabidopsis AREB/ABF transcription factors function predominantly in gene expression downstream of SnRK2 kinases in abscisic acid signalling in response to osmotic stress. Plant Cell Environ 38:35-49. doi: 10.1111/pce.12351
Yoshida T, Mogami J, Yamaguchi-Shinozaki K (2015) Omics Approaches Toward Defining the Comprehensive Abscisic Acid Signaling Network in Plants. Plant Cell Physiol 56: 1043-52. doi: 10.1093/pcp/pcv060
Yu J, Jung S, Cheng CH, Ficklin SP, Lee T, Zheng P, Jones D, Percy RG, Main D (2014) CottonGen: a genomics genetics and breeding database for cotton research. Nucleic Acids Res 42: D1229-36. doi: 10.1093/nar/gkt1064
Zhang B, Chen X, Lu X, Shu N, Wang X, Yang X, Wang S, Wang J, Guo L, Wang D, Ye W(2018) Transcriptome Analysis of Gossypium hirsutum L. Reveals Different Mechanisms among NaCl NaOH and Na2CO3 Stress Tolerance. Scientific reports 8: 13527. https://doi.org/10.1038/s41598-018-31668-z
Zhang X, Yao D, Wang Q, Xu W, Wei Q, Wang C, Liu C, Zhang C, Yan H, Ling Y, Su Z, Li F(2013) mRNA-seq analysis of the Gossypium arboreum transcriptome reveals tissue selective signaling in response to water stress during seedling stage. PLoS One 8: e54762. doi: 10.1371/journal.pone.0054762
Zhang YN, Cai DR, Huang XZ (2016) Identification of BZIP Protein Family in Gossypium arboreum and Tissue Ex-pression Analysis of GaFDs Genes. Acta Agro Sin 42: 832-43.