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Abstract
Objective: To assess the prognostic relevance of the maximum standard uptake value (Suvmax) in
Nasopharyngeal carcinoma (NPC), establish a gene signature correlated with Suvmax and explore the
potential biological mechanisms underlying these associations for predicting clinical outcomes.

Methods: A cohort of 726 NPC patients underwent analysis to determine correlations between Suvmax
and various clinical variables, including tumor stage, metabolic tumor volume (MTV), and lactate
dehydrogenase (LDH) levels. RNA sequencing data was utilized to identify genes related to Suvmax,
which were then used to develop a 'Suv-signature'. Additionally, transcriptome enrichment analysis was
conducted to investigate the potential biological mechanisms underlying the observed correlations.

Results:Higher Suvmax values were associated with increased tumor burden and worse prognosis. The
'Suv-signature' consisting of 10 genes, showed a positive correlation with Suvmax and predicted poorer
survival outcomes. This signature was highly expressed in malignant epithelial cells and was associated
with hypoxia and resistance to radiotherapy. Additionally, the signature showed a negative correlation
with immune function.

Conclusion: Suvmax is a valuable prognostic indicator in NPC, with higher values predicting worse
outcomes. The 'Suv-signature' offers further prognostic insights, linking glucose metabolism to tumor
aggressiveness, treatment resistance, and immune function, and may serve as a potential biomarker for
NPC.

Introduction
Nasopharyngeal carcinoma (NPC), arising from the mucosal epithelium of the nasopharynx, poses a
significant challenge due to its aggressiveness and distinctive anatomical location[1]. The primary
treatment modality for NPC is radiotherapy, particularly with the advancements brought about by
intensity-modulated radiation therapy (IMRT)[2]. While IMRT has significantly improved the 5-year overall
survival rate, recurrent and distant metastatic NPC remains a therapeutic challenge[3]. Identifying
effective biomarkers is crucial for predicting clinical outcomes and tailoring individualized treatments to
enhance overall prognosis.

F18-FDG PET/CT, a functional imaging modality allowing quantitative assessment of glucose uptake,
plays a crucial role in NPC diagnosis and staging[4]. Notably, the maximum standard uptake value
(Suvmax) derived from F18-FDG PET/CT has demonstrated predictive capabilities for survival outcomes
in various malignancies[5, 6]. Studies consistently highlight Suvmax as a significant predictor of clinical
prognosis in NPC[4, 7]. Research suggests a negative correlation between Suvmax and the expression of
fructose-1,6-diphosphatase 1 (FBP 1), indicating Suvmax's potential role as a prognostic indicator
through mechanisms associated with glucose metabolism[5]. However, the detailed exploration of
glucose metabolism genes at the transcriptome level remains limited.
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This study aims to identify significant glucose metabolism genes associated with Suvmax using RNA
sequencing datasets and formulate a gene marker, termed the "Suv-signature." Additionally, the
investigation delves into the mechanism by which Suvmax predicts prognosis through enrichment
analysis.

Materials and Methods

Patients
This retrospective study included 726 newly diagnosed individuals with nasopharyngeal carcinoma
(NPC) who underwent complete treatment at our center between January 2012 and December 2018.
Inclusion criteria were as follows: a) confirmation of primary NPC through biopsy; b) availability of
comprehensive baseline clinical data; c) pre-treatment whole-body 18F-FDG PET/CT; d) receipt of radical
treatment. Exclusion criteria comprised: a) Suvmax of the primary tumor less than 2.5; b) presence of
distant metastasis; c) concurrent other malignancies; d) coexistence with a fatal disease; e) history of
cancer treatment; f) insufficient follow-up data and image information. All patients underwent restaging
according to the 8th edition of the AJCC/TNM staging system. The study was conducted in compliance
with the Helsinki Declaration, and the Ethics Committee of Fujian Cancer Hospital approved this research.

FDG PET / CT imaging
The Gemini TF 64 PET/CT scanner (Philips, The Netherlands) was employed for the studies. Prior to the
injection of 18F-FDG, all patients observed a fasting period of more than 6 hours, and their serum glucose
levels were maintained between 3.9 and 6.5 mmol/L. Subsequently, 18F-FDG was intravenously
administered at doses ranging from 148 to 296 MBq. Following injection, patients rested for 60 minutes
in a dimly lit room. CT scans were then acquired for all patients, covering from the head to the proximal
thigh (140 kV; 2.5 mA; matrix 512×512; and scan slice thickness 4 mm). The recorded parameters
included the Suvmax and MTV of the primary lesion, with MTV defined as the volume of the region with
an SUV greater than 2.5.

Treatment and follow-up
A total of 682 patients (93.9% of the initial 726) underwent platinum-based chemotherapy. Within the
entire cohort, 624 (86%), 532 (73.3%), and 162 (22.3%) cases received neoadjuvant, concurrent, and
adjuvant chemotherapy, respectively. The predominant regimen employed was platinum in combination
with paclitaxel or gemcitabine. Radiotherapy was conducted using intensity-modulated radiotherapy
(IMRT), and the target volume and radiotherapy dose adhered to a previously established protocol[8]. The
prescribed radiotherapy doses were as follows: GTV:70 ~ 72.6Gy/31 ~ 33fx, CTV1:62 ~ 62.7Gy/31 ~ 33fx,
and CTV2:54.4 ~ 56.2Gy/31 ~ 33

Local Recurrence-Free Survival (LRFS) was defined as the duration from pathological diagnosis to local
relapse or the conclusion of the follow-up period. Distant Metastasis-Free Survival (DMFS) denoted the
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duration a patient could survive without cancer spreading from the primary tumor to distant organs.
Progression-Free Survival (PFS) was characterized as the interval from pathological diagnosis to the
progression of tumor development or death. Overall Survival (OS) is defined as the period from the
pathological diagnosis to the time when the patient succumbs to any cause. All patients adhered to a
regular follow-up schedule, with assessments every 3 months for the first 2 years, every 6 months for
years 3–5, and subsequently on an annual basis.

Acquistion and processing of RNA-seq data
Additional 29 tissue samples were obtained from NPC patients before treatment(Supplementary
information, Table S1). RNA-seq experiment was performed at Geneplus-Beijing (Beijing, China)Tissues
were subjected to total RNA isolation using a commercial RNA extraction kit. After whole transcriptome
amplification, library construction was performed. Library quality analysis was performed using Aligent
2100 DNA 1000 Kit.Samples were sequenced using the DNBSEQ-T7 platform.

We used NPC gene expression profile GSE102349 with prognostic data to verify suv-signature prognostic
ability, because there was no external NPC transcriptome dataset with SUV information, we used the
dataset of GSE135565 of breast cancer to verify whether Suvsignature represents Suvmax, and the NPC
single cell dataset used GSE150430. These data are were downloaded from the GEO
(https://www.ncbi.nlm.nih.gov/geo/) for the database.

Construction of the SUV-signature model
Relevant genes encoding glucose metabolism proteins were selected from the Molecular Features
database (mSigDB). A total of 326 genes were manually curated into the glucose metabolism gene sets
for further transcriptomic analysis (Supplementary information, Table S2). In order to make the results
more representative, among the 29 patients who underwent transcriptome sequencing, the transcriptome
data of the 8 patients with the lowest Suvmax and the 8 patients with the highest Suvmax were selected
for analysis.Through Pearson correlation analysis of glucose metabolism gene set and Suvmax, all
related genes (p < 0.05) were defined as Suvmax-related glucose metabolism genes, and 55 genes were
selected for subsequent analysis(Supplementary information, Table S3).The selected Suvmax-related
glucose metabolism genes were modeled by lasso-logistics, 10-fold cross-validation was carried out,
lambda of the model with the lowest average cross-validation error was taken, coef coefficients were
extracted and added to obtain the transcripome tag of Suvmax, which was defined as SUV-signature.

The single-cell RNA-seq analysis
Single-cell mRNA-seq data have been reported by Yu-Pei Chen et al[9].The Python package Scanpy
(version 1.4.6) was used to analyze these dataset. Clustering was performed using the UMAP
algorithm.Suv-signature was calculated for each single cell.We then annotated the clusters following
major cell types: B cells,epithelial cells,T cells,myeloid cells,NK cells and plasma cells.The suv-signature
of each class of cells was compared.T cells were divided into high score group and low score group
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according to the median value of suv-signature, and the expression of HAVCR2,PDCD1,LAG3 and TIGIT in
different groups were compared.

Differential gene analysis and Functional enrichment
analysis
We conducted differential expression analysis on the groups categorized as high and low SUV based on
the median Suvmax using the Lima package. Characteristics meeting the criteria of |log2FC| > 2 and
adj.P < 0.05 were designated as differential expression features.Subsequently, hub genes underwent Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, facilitated
by the cluster profile package[10]. Furthermore, gene set enrichment analysis (GSEA) was executed on the
gene expression matrix using the clusterProfiler package[11].

Hypoxic score and Immune function analysis
We selected a 15-gene expression signature (ACOT7, ADM, ALDOA, CDKN3, ENO1, LDHA, MIF, MRPS17,
NDRG1, P4HA1, PGAM1, SLC2A1, TPI1, TUBB6 and VEGFA) that has been shown to perform the best
when classifying hypoxia status[12]. The hypoxia score for each tumor sample was calculated by using
gene set variation analysis (GSVA) based on 15 mRNA-based hypoxia signatures.The immune scores,
stromal scores, estimate scores, and tumor purity in the study were calculated using the ESTIMATE
algorithm. Then Pearson correlation analysis was applied to the relationship between these indicators
and suv signature in our center data and the GSE102349 dataset. The Persson correlation coefficient R
value is calculated.

Statistical analysis
R software (version 3.6.1) and Python software (version 3.10) were used to organize, analyze and
visualize relevant data. We used KM curves, log rank test to assess survival data between different risk
groups. Two-sample t-test was used for comparison between groups and correlation between groups by
Spearman rank correlation or Pearson correlation. Test levels were considered statistically significant at
P < 0.05.
Ethics approval and Consent to participate

The study was approved by the Ethical Committee of Fujian Cancer Hospital (YKT2020-011-01) and was
in accordance with the 1964 Helsinki declaration and its later amendments or comparable ethical
standards. Patient identifiers such as names were not collected, instead patients were given a numerical
identifier. Informed consent was obtained from all participants and for those under 18 years, from a
parent or legal guardian. For confidentiality, the patients’ charts were used only within the confines of the
records department and only the investigators and study assistant had access to the files.

Results
Higher Suvmax values suggest a larger tumor burden and poor prognosis
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In this study, the median follow-up duration was 49.0 months (range: 3.0-118.0 months). The median age
of patients was 47 years (range: 11.0-78.0 years), and the majority of patients presented with AJCC
stages III (43.4%) and IV (37.1%). Patient characteristics are summarized in Table 1. Throughout the
follow-up period, 63 (8.7%) experienced local failure, 88 (12.1%) experienced distant metastasis, 161
(22.2%) encountered disease progression, and 75 (10.3%) succumbed to mortality. The 5-year rates for
Local Recurrence-Free Survival (LRFS), Distant Metastasis-Free Survival (DMFS), Progression-Free
Survival (PFS), and Overall Survival (OS) were 89.7%, 87.7%, 76.7%, and 87.8%, respectively.

The correlation between Suvmax and clinical variables was examined. Suvmax demonstrated
associations with T stage (P < 0.01, Figure 1A), MTV (r=0.691, P < 0.001, Figure 1C), and LDH (r=0.178, P
< 0.001, Figure 1D). Suvmax exhibited limited correlation with N-stage (Figure 1B).Subsequently, a
survival analysis was conducted. The ROC curve determined the optimal cutoff value for Suvmax to
predict overall survival, maximizing Youden's index. Patients were then categorized into high and low
Suvmax groups. The results revealed that  LRFS (HR=0.42; P=0.003, Figure 1E), PFS (HR=0.71; P=0.036,
Figure 1G), and OS (HR=0.50; P=0.007, Figure 1H) in patients with high Suvmax were all significantly
lower than those in patients with low Suvmax. Unexpectedly, there was no significant difference in DMFS
between patients with high Suvmax and those with low Suvmax (P=0.318, Figure 1F).

The SUV-signature was formulated utilizing genes associated with glucose metabolism.

In a cohort of 29 patients undergoing transcriptome sequencing, individuals were categorized into two
groups based on the median value of Suvmax. Differential gene analysis (Figure 2A), Gene Ontology (GO)
analysis (Figure 2B), and Gene Set Enrichment Analysis (GSEA) (Figure 2C) revealed the enrichment of
Suvmax differential genes in pathways related to glucose metabolism. Consequently, we explored the
construction of the Suv-signature using genes associated with glucose metabolism.

Through correlation analysis between genes related to glucose metabolism and Suvmax, we identified 55
genes associated with glucose metabolism. Lasso-logistics modeling (Figure 2D and 2E) was conducted
with 10-fold cross-validation, and the lambda value (0.00392) corresponding to the model with the
smallest cross-validation mean error was selected. The coef coefficients were then extracted and
combined to derive the Suv-signature (Figure 2F). The formulated formula is as follows: Suv-signature =
0.007 * PKM + 0.375 * SEH1L - 0.44 * LHPP + 0.007 * LDHA + 3.713 * PPFIA4 + 0.015 * PFKFKB3 - 0.099
* MPI - 11.022 * ZBTB20 - 0.672 * CLDN9 + 3.186 * PGAM4.

Verify whether Suv-signature can predict Suvmax and poor prgonosis

In order to prove that Suv-signature model can predict Suvmax, correlation analysis was conducted
between Suv-signature and Suvmax using our dataset of 16 cases and 29 cases (Figure3A and FigureS1)
and GSE135565 dataset (Figure3B).Suv-signature was found to be positively correlated with Suvmax,
which proved that Suv-signature could represent Suvmax. Meanwhile, we conducted a prognosis
validation using the GSE102349 dataset and stratified the cohorts based on the median Suv-signature
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values. Our findings revealed a significantly poorer prognosis in the high Suv-signature group compared
to the low Suv-signature group. (P=0.006, Figure3C).

Subsequently, we utilized the single-cell RNA sequencing dataset (GSE150430) from NPC to investigate
the intrinsic biological characteristics of Suvmax.Employing UMAP, we categorized the cells into six
clusters, encompassing B cells, T cells, NK cells, myeloid cells, plasma cells, and epithelial cells (Figure
3D). SUV-signature scores were then computed across these distinct clusters, revealing the highest
expression in epithelial tissues (Figure 3E). Further delineating epithelial cells into malignant and normal
subtypes, we observed a significantly elevated Suv-signature expression in malignant epithelial cells
compared to their non-malignant counterparts (Figures 3F-3I).

Suv-signature was associated with hypoxic and radiotherapy resistance

A correlation analysis was conducted on our center's dataset (Figure 4A) and the GSE102349 dataset
(Figure 4D) to examine the relationship between Suv-signature and hypoxia score. The results revealed a
significant correlation, with an R value of 0.76 in our center dataset and 0.62 in the GSE102349 dataset,
indicating a close association between Suv-signature and hypoxia score.The outcomes from the Gene
Set Enrichment Analysis (GSEA) further validate the enrichment of Suv-signature within hypoxia-
associated hallmarks, as illustrated in Figure 4B and 4E. This observation supports the notion that Suv-
signature could potentially serve as an indicator of hypoxia.

Additionally, our investigation revealed a notable enrichment score for Suv-signature within the
radiotherapy (RT) resistance gene set, as depicted in Figure 4C and 4F. Given that radiotherapy stands as
the primary treatment for NPC, and its insensitivity implies a poor prognosis, the connection between Suv-
signature and RT resistance becomes pivotal. Notably, hypoxia serves as a known mechanism
contributing to radiotherapy resistance. This implies that Suvmax may potentially predict an unfavorable
prognosis by influencing radiotherapy sensitivity through oxygen deficiency.

SUV-signature was associated with immune function 

In the single-cell RNA dataset, T cells were stratified into high and low Suv-signature groups based on the
median values of Suv-signature. Our observations revealed a significant upregulation of
immunosuppressive markers, including HAVCR2, PDCD1, LAG3, and TIGIT, in T cells exhibiting high Suv-
signature scores (Figure 5A-D).

Expanding our analysis to the GSE102349 cohort, we further explored the association between Suv-
signature and immune score, stromal score, predicted score, and tumor purity (Figure 5E-H). Remarkably,
we found a negative correlation between Suv-signature and immune score, stromal score, and predicted
score, while a positive correlation was observed with tumor purity. These findings suggest an inverse
relationship between Suv-signature and immune function.

Discussion
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In this study, our focus on genes associated with glucose metabolism enabled the formulation of
transcriptomic signatures linked to Suvmax in NPC patients. To the best of our knowledge, our study is
the first to delineate the transcriptomic profile of glucose uptake, assess its prognostic value, and explore
underlying mechanisms in individuals with NPC. The findings underscored that patients with a high Suv-
signature score faced an unfavorable prognosis. Delving into biological mechanisms, we established that
the SUV-signature could function as an indicator of hypoxia, suggesting a plausible association between
elevated Suv levels and hypoxia-induced phenomena in NPC patients, such as radiotherapy resistance
and immunosuppression. These insights contribute to a better understanding of the prognostic
landscape and potential therapeutic targets in NPC.

The well-established Warburg effect posits that cancer cells preferentially metabolize glucose through
glycolysis rather than more efficient mitochondrial oxidative phosphorylation, even under conditions of
ample oxygen. FDG PET/CT capitalizes on increased glucose uptake precisely for tumor detection[13].
Notably, studies have identified substantial differences in the expression of glucose uptake-dependent
transporters in individuals with high and low Suvmax in HCC patients[5]. Therefore, employing the gene
expression associated with glucose metabolism to predict NPC prognosis emerges as a potentially
valuable tool for precisely stratifying risk groups.In this study, we focused on ten glucose metabolism-
related genes associated with Suvmax in NPC: PKM, SEH1L, LHPP, LDHA, PPFIA4, PFKFKB3, MPI,
ZBTB20, CLDN 9, and PGAM 4. The encoded pyruvate kinase from the PKM gene crucially regulates
cellular metabolism by converting phosphoenolpyruvate (PEP) into pyruvate in glycolysis[14]. SEH1L
encodes a protein integral to the Nup107-160 nuclear pore complex, impacting cell growth and
proliferation [15]. LHPP encodes proteins participating in phosphorylation metabolism with anticancer
effects [16]. LDHA-encoded proteins, part of the lactate dehydrogenase family, are frequently
overexpressed in cancer, promoting glycolysis and cancer progression [17].PPFIA4 encodes the Liprin-α 4
protein, associated with abnormal metabolic processes. Silencing PPFIA4 has been found to attenuate
glycolysis, regulate glycolysis-related genes (PFKFB3 and ENO2), and inhibit cancer cell proliferation,
migration, and invasion[18]. The encoded phosphomannose isomerase by MPI plays a vital role in
glycosylation reactions[19]. ZBTB20, a transcriptional repressor, influences neurogenesis, glucose, and
lipid metabolism. ZBTB20 induces ChREBP-A promoter transcriptional activity, regulating glycolytic and
lipogenic enzyme genes and affecting glycolipid metabolism[20].CLDN 9 has been correlated with
glycolytic levels in endometrial carcinoma and esophageal adenocarcinom[21]. PGAM, encoding proteins
catalyzing the reversible reaction of 3-phosphoglycerate (3-PGA) to 2-phosphoglycerate (2-PGA) in the
glycolysis pathway, regulates metabolism and energy production[22]. 

The prognostic model incorporating these genes, termed Suv-signature, demonstrated robust
stratification of Progression-Free Survival (PFS). The Suv-signature may hold significant implications for
individualized precision therapy. Furthermore, our exploration into the cellular biology associated with
Suv-signatures, utilizing single-cell RNA-seq data, revealed that malignant epithelial tissues exhibited the
highest Suv-signature expression. This aligns with findings from Jin Meng[6], supporting the notion of
increased F18-FDG uptake by tumor cells. The Suvmax is relevant to various factors such as tumor
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metabolic activity, tumor cell concentration, serum glucose level, and fat content. In parallel with these
considerations, our study uncovered associations between Suvmax and MTV, LDH, and T stage. MTV and
LDH, reflective of tumor burden [23], suggested that Suvmax is linked to tumor burden. T stage, indicative
of the biological aggressiveness of tumors, further supported the association between Suvmax and the
biological aggressiveness of NPC. Previous studies have also indicated the clinical prognostic value of
Suvmax in NPC[7, 24]. For instance, in a study involving 253 patients with newly diagnosed metastatic
NPC, those with higher Suvmax exhibited lower 3-year Overall Survival (OS)[7]. Consistent with these
findings, our survival analysis demonstrated that patients with high Suvmax experienced worse OS,
Progression Free Survival (PFS), and Local Recurrence-Free Survival (LRFS) compared to patients with
low Suvmax. Simultaneously, the transcriptome signature representing Suvmax, constructed in our study,
also indicated poor PFS, underscoring the prognostic significance of Suvmax in NPC. The ability of
Suvmax to predict distant metastasis remains a topic of debate. While Meryem Aktan et al. identified
Suvmax as an important prognostic factor for distant metastasis and its utility in evaluating Disease Free
Survival (DFS) results [24], Kazuhiro Kitajima et al. found no significant correlation between primary tumor
Suvmax and Distant Metastasis Free Survival (DMFS)[25]. Our study aligns with the latter, indicating that
Suvmax may predict prognosis more through local treatment failure than distant metastasis.

Several studies have delved into the association between SUVmax or its related genomic features and
radiosensitivity in various malignancies[6, 26]. Recently, there's emerging evidence that radiomics
characteristics derived from PET/CT imaging, in combination with clinical parameters, hold promise for
accurate therapeutic effect evaluation in NPC[27]. The potential of PET/CT to predict radiosensitivity was
further demonstrated in an NPC xenograft nude mouse model [28]. Consistent with these findings, our
enrichment analysis demonstrated an enrichment of gene sets associated with radiotherapy resistance in
the high Suvsignature score group. Given that radiotherapy stands as the primary treatment for NPC, a
high SUV-signature score in our study suggests that nasopharyngeal carcinoma may not be sensitive to
radiotherapy, implying a poor prognosis. Additionally, both correlation analysis and enrichment analysis
in our study highlighted a close relationship between SUV-signature and hypoxia. This aligns with prior
reports indicating a hypoxia gene signature association with FDG uptake in liver and lung cancers[5, 29]. It
is plausible that byproducts of glycolysis drive crucial biosynthetic pathways, providing a selective
advantage to rapidly dividing cancer cells, and hypoxia signaling confers a survival advantage to tumor
cells in a normoxic environment [30]. Studies have also shown that tumor hypoxia leads to radiotherapy
resistance, primarily dependent on the generation of reactive oxygen species (ROS) and the formation of
irreparable DNA damage resulting from peroxidation events [31]. Therefore, SUVmax emerges as a
potential biomarker of hypoxia, influencing radiotherapy sensitivity and serving as a predictor of poor
prognosis.

    Moreover, in a study involving 84 NPC patients, Suvmax exhibited a positive correlation with PD-L1
expression in tumor cells and a negative correlation with PD-L1 expression in tumor-infiltrating immune
cells [32]. A phase 1/2 trial similarly identified T cells within neoplastic lesions as pivotal mediators of



Page 11/20

immunotherapy, assessable through whole-body PET imaging[33]. In alignment with these investigations,
our cohort also revealed a significant upregulation of immunosuppressive markers in T cells with high
SUV-signature scores.The correlation between Suvmax and immunosuppression may be mediated
through the effects of hypoxia. Hypoxia has been shown to impact immune function through hypoxia-
induced factor-1 (HIF-1)[34]. Immunosuppressive cells under hypoxic conditions can utilize fatty acid
oxidation for cellular energy, maintaining immunosuppressive capabilities against effector T cells[35].
Consequently, SUV-signature may serve as a tool to characterize the tumor immune microenvironment
and potentially guide the use of immunosuppressive agents.

However, our study has several limitations.Firstly, the small sample size of patients undergoing
transcriptomic sequencing for nasopharyngeal cancer, coupled with the absence of external
transcriptomic data on Suvmax in this context, prompted us to perform external validation using breast
cancer data. As such, the accuracy and reliability of the SUV-signature necessitate further confirmation
through larger cohort studies with dedicated nasopharyngeal cancer datasets.Secondly, the retrospective
nature of our study introduces the possibility of bias, underscoring the need for prospective studies to
mitigate potential biases and enhance the robustness of our findings.Thirdly, while our bioinformatics
analysis suggests that Suvmax may serve as a marker of hypoxia, the sensitivity and specificity of
Suvmax in this role remain unclear. Rigorous studies with well-defined methodologies are essential to
clarify the utility of Suvmax as a marker of hypoxia, shedding light on its potential diagnostic accuracy.

In summary, our study highlights the utility of Suvmax as a predictive indicator for poor prognosis in NPC.
The development of a Suvmax based transcriptomic signature underscores its potential as a marker for
predicting tumor hypoxia. Furthermore, our findings suggest that the biological behavior associated with
Suvmax may contribute to a diminished prognosis by impacting radiation sensitivity and suppressing
immune function. These insights offer valuable perspectives for understanding the clinical implications
of Suvmax in NPC and may guide future therapeutic strategies.
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Table 1
Clinical characteristics of patients

Characteristic Overall

Total patients 726

Gender, n (%)  

Male 527 (72.6)

Female 199 (27.4)

T stage, n (%)  

T1 171 (23.5)

T2 150 (20.7)

T3 271 (37.3)

T4 134 (18.5)

N stage, n (%)  

N0 91 (12.5)

N1 250 (34.4)

N2 233 (32.1)

N3 152 (20.9%)

TNM stage, n (%)  

I 41 (5.6)

II 101 (13.9)

III 315 (43.4)

IV 269 (37.1)

LRFS state,n (%)  

No 663(91.3)

Yes 63 (8.7)

DMFS state,n (%)  

No 638(87.9 )

Yes 88(12.1)

PFS state,n (%)  
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Characteristic Overall

No 565 (77.8)

Yes 161 (22.2)

OS state,n (%)  

No 564 (89.7)

Yes 75(10.3)

Age,median(range) 47(11–78)

T-SUVmax, median(range) 8.89(2.51–48.88)

T-MTV, median(range) 12.71(0.77-131.01)

LDH, median(range) 166.5 (71–823)

Figures

Figure 1

Suvmax Associations with Clinical Variables in Nasopharyngeal Carcinoma
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(A and B) Boxplots illustrate the distribution of Suvmax across different T and N stages in NPC patients.
(C and D) Scatter plots demonstrate the correlation of Suvmax with key parameters such as MTV and
LDH. (E, F, G, and H) The figure presents survival curves for LRFS, DMFS, PFS, and OS, respectively.

Figure 2

Suv-signature Building.

(A) Heatmap depicting differential gene expression between the high and low Suvmax groups.(B and C)
GO enrichment analysis and GSEA conducted on the differentially expressed genes within the high and
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low Suvmax groups.(D, E) Genes selected through LASSO regression and logistic analysis. (F)
Contribution of the selected genes in constructing the Suv-signature along with their corresponding
regression coefficients.

Figure 3

-signature Predicts Suvmax and Prognosis

(A,B) Association between Suv-signature and Suvmax in our 16 patient cohort and GSE135565.(C)
Prognostic prediction by Suv-signature in GSE102349.(D) UMAP plot visualizing the clusters of each cell
type in NPC.(E) Violin plot depicting the expression of Suv-signature score in each cell type.(F, G) UMAP
plot illustrating the expression of Suv-signature in epithelial cells.(H, I) Density and Violin plot showing
the expression of Suv-signature score in malignant epithelial cells and normal epithelial cells.
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Figure 4

Suv-signature Association with Hypoxia and Radiotherapy Resistance

(A, D) Scatter plots illustrating the relationship between SUV-signature and hypoxic score in our center
data and GSE102349.(B, C, E, and F) GSEA enrichment analysis conducted in our center data and
GSE102349.
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Figure 5

Relationship between SUV-signature and Immune Function

(A-D) Violin plots depict the expression levels of HAVCR2, PDCD1, LAG3, and TIGIT in T cells with high
and low SUV-signature scores.(E-H) Illustrate the correlation between SUV-signature and immune score,
stromal score, predictive score, and tumor purity.
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