
Page 1/17

Metabolic index of the best preserved hemisphere
of 18F-FDG PET imaging combination behavioral
CRS-R scores predict recovery from disorders of
consciousness
Kun Guo  

 
Department of Nuclear Medicine, Xijing Hospital https://orcid.org/0000-0002-9728-2766

Guiyu Li 
Xijing Hospital, Department of Nuclear Medicine

Zhiyong Quan 
Xijing Hospital Department of Nuclear Medicine

Yirong Wang 
Xijing Hospital, Department of Nuclear Medicine

Junling Wang 
Xijing Hospital, Department of Nuclear Medicine

Fei Kang 
Xijing Hospital, Department of Nuclear Medicine

Jing Wang 
Xijing Hospital, Department of Nuclear Medicine

Research Article

Keywords: Consciousness Disorders, Positron Emission Tomography, Fluorodeoxyglucose F18,
Neuroimaging, Deep learning

Posted Date: February 27th, 2024

DOI: https://doi.org/10.21203/rs.3.rs-3849572/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.  
Read Full License

https://doi.org/10.21203/rs.3.rs-3849572/v1
https://orcid.org/0000-0002-9728-2766
https://doi.org/10.21203/rs.3.rs-3849572/v1
https://creativecommons.org/licenses/by/4.0/


Page 2/17

Abstract
Background The objective of this study was to develop a prognostic model for predicting one-year post-
injury outcomes in chronic disorders of consciousness (DoC) by detecting relatively preserved brain
metabolism through 18F-�uorodeoxyglucose positron emission tomography (18F-FDG PET). This
approach allows the assessment of the level of consciousness and the prediction of the likelihood of
wakefulness.

Methods Eighty-seven DoC patients newly diagnosed with behavioral Revised Coma Recovery Scale
(CRS-R) and 18F-FDG PET/CT studies were included. PET images were standardized by the metabolic
index of the best-preserved hemisphere (MIBH) and the ratio SUV (SUVR), respectively. The training of
image-based classi�cation was conducted using the DenseNet121 network, while tabular-based deep
learning was employed for training depth features extracted from imaging models and behavioral CRS-R
scores. The performance of the models was assessed using the area under the curve (AUC).

Results Of the 87 DoC patients who received routine treatments, consciousness recovery was observed in
52 patients, while consciousness non-recovery was observed in 35 patients. The classi�cation
performance of the MIBH model was found to be superior to that of the SUVR model, with AUC values of
0.751 ± 0.093 and 0.412 ± 0.104 on the test sets, respectively. The MIBH + CT multimodal model was
determined to perform better than the MIBH-only model, achieving an AUC of 0.784 ± 0.073 on the test
sets. The combination of MIBH + CT depth features with behavioral CRS-R scores resulted in the best
classi�cation accuracy, with AUC values of 0.950 ± 0.027 and 0.933 ± 0.015 on the training and test sets,
respectively.

Conclusions The prediction of recovery in DoCs was facilitated by a model based on a combination of
multimodal imaging features and behavioral CRS-R scores.

Introduction
Severe brain injury causes chronic disorders of consciousness (DoC) 1, primarily including unresponsive
awakening syndrome (UWS) and minimally conscious state (MCS). In China, there are over 500,000
patients with chronic DoC, witnessing an annual increase of 70,000-100,000 2. These patients endure
bedridden conditions, lack functional communication, exhibit no purposeful behavior, and are entirely
reliant on others for care. The medical community regularly encounters the challenge of providing
prognostic guidance to families of DoC patients. Despite limited treatment options, recent research
indicates potential bene�ts for certain chronic DoC cases through awakening interventions 3–5. Moreover,
determining a patient's suitability for recent pilot studies and ensuring accurate prognostication has
become an essential step.

Historically, the prognostication for DoC patients has relied on meticulous and repeated behavioral
assessments over a su�cient period. However, these assessments are unavoidably subjective and
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susceptible to various personal biases 6. Motor impairments, sensory de�cits, cognitive damage,
�uctuations in vigilance, and medical complications may contribute to misjudgments. There is an urgent
need for accurate and objective biomarkers in clinical practice. Some clinical studies have highlighted the
signi�cance of etiology, incidence age, and duration of DoC as crucial indicators for prognosis, resulting
in the development of prognostic models predicting conscious recovery 7. Over the past decades, pilot
prognostic models based on neurological examination features 8, electroencephalogram abnormalities 9–

10, and anatomical and functional changes observed in neuroimaging have been also explored 11–13.
Despite considerable efforts, any singular method carries the risk of false predictions, making the
identi�cation of e�cient biomarkers for outcome prediction still challenging.

18F-�uorodeoxyglucose positron emission tomography (18F-FDG PET) facilitates the visualization of
brain glucose metabolism, where preserved metabolism aligns with speci�c behavioral or perceptual
functions. The ratio standard uptake value (SUVR), typically standardized by whole brain or cerebellar
metabolism, quanti�es glucose metabolism in key networks of DOC patients. Stender et al. demonstrated
that preserved metabolism in the frontoparietal networks predicts clinical outcomes one year later in 74%
of patients 14. However, SUVR may be overestimated in patients with extensive injuries. Stender et al.
introduced the metabolic index of the best-preserved hemisphere (MIBH), considering evidence that
conscious awareness can be maintained with only one hemisphere. This index scales metabolic activity
by setting the mean activity of extracerebral regions. The metabolic criterion accurately predicted 88% of
all known patient outcomes 15. Nevertheless, existing studies primarily focus on classifying healthy and
pathological groups, and to date, the metabolic network pattern allowing single patient prognosis
prediction remains incompletely established.

In this study, our initial objective was to assess the predictive e�cacy of two distinct PET image
standardization methods, MIBH and SUVR. Additionally, given the progress in medical science, the
prognostication of patients with chronic DoC has evolved towards a multidomain paradigm, the second
aim was to develop an approach for forecasting the individual prognosis of DoC patients by
incorporating superior standardization techniques for 18F-FDG PET and behavioral scores.

Materials and methods

2.1 Subjects
We conducted a retrospective review of a dataset comprising 114 patients recently diagnosed with
chronic DoC who underwent 18F-FDG PET/CT scans between January 2013 and December 2021. The
level of consciousness was determined through a comprehensive assessment involving the Coma
Recovery Scale Revised (CRS-R) and 18F-FDG PET imaging 14. CRS-R assessments were administered by
a trained neuropsychologist at least once a day over 5 days, and the best result was selected. The
interpretation of 18F-FDG PET scans involved visual examination by two Nuclear Medicine physicians to
identify hypometabolic and preserved regions. Complete bilateral hypometabolism in the associative
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frontoparietal cortex with preserved metabolism pointed toward a diagnosis of UWS, while incomplete
hypometabolism and partial preservation of activity within these areas indicated a MCS. In cases of
disagreement, a third doctor was consulted to make a �nal decision. If ambiguity persisted or there was
disagreement within the team, reassessment of the patient was carried out until a consensus was
reached. Inclusion criteria were: 1) DoC patients (age > 18 years) diagnosed with CRS-R and subclassi�ed
into UWS or MCS, and 2) more than 28 days post-brain injury. 3) During the PET examination, the patient
remained still, and the image quality was satisfactory. Exclusion criteria were: 1) neuroimaging
examination within 28 days from brain insult (10 cases excluded), 2) signi�cant focal brain damage
involving more than two-thirds of one hemisphere or severe deformation due to surgery or trauma, as
con�rmed by a certi�ed neuroradiologist (9 cases excluded), 3) absence of follow-up data after 1 year (6
cases excluded), and 4) poor image quality (2 cases excluded), such as severe image artifacts caused by
head movement. Ultimately, a total of 87 patients newly diagnosed with chronic DoC and receiving
routine treatment were included in the subsequent analysis.

One year after the initial assessment, functional outcomes were evaluated using the Glasgow Outcome
Scale-Extended (GOS-E), extracted from the patients' medical records in our institution. In cases of
incomplete data, the attending physician or legal guardian was contacted. The outcomes were
categorized into two groups: "consciousness recovery" (GOS-E > 2) and "consciousness non-recovery"
(GOS ≤ 2). This study received approval from the Human Subject Research Ethics Committee of Xijing
Hospital, Fourth Military Medical University, and informed consent was obtained as required.

2.2 18F-FDG PET imaging acquisition
All participants received an injection of 3.7 MBq/kg of 18F-FDG with a radiochemical purity exceeding
95%, following a fasting period of more than 6 hours, in a subdued and quiet environment for a 40-minute
uptake duration. PET images were acquired using a PET/CT scanner (United Imaging, uMI780) during a
15-minute bed position and 3D whole-head acquisition. A low-dose attenuation correction CT was
performed, covering the entire skull with the following scan parameters: tube voltage of 120 kV and tube
current of 200 mA. All images were reconstructed with a slice thickness and increment of 0.5 mm. Axial
PET images, corrected for attenuation, were reconstructed using a 3D ordered-subset expectation
maximization (OSEM) algorithm (8 iterations and 32 subsets, 3-mm cutoff).

2.3 Imaging preprocessing
The 18F-FDG PET images underwent visual examination by two experienced board-certi�ed Nuclear
Medicine physicians, blinded to clinical information, adhering to current international terminology. Using
the 3D Slicer tool (version 5.1.0, https://www.slicer.org), the original 3D CT and 18F-FDG PET images were
manually cropped to eliminate areas below the skull base and unused background parts. Subsequently,
each subject's PET image underwent partial volume correction (PVC) using the Van Citert algorithm 16

and was coregistered with CT using the General BRAINS registration algorithm from the 3D Slicer tool.
The CT and PET images were then skull-stripped using the HD-Brain Extraction Tool from 3D Slicer, and
brain masks were obtained simultaneously. Finally, utilizing a deep learning-based segmentation model
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17, the PET images were automatically segmented into different brain regions. The cerebellar region was
chosen, and the mean SUV (SUVmean) value of the cerebellar VOI served as a reference for subsequent
SUVR calculations.

2.4 PET image standardization
For CT image standardization, the CT values underwent clipping within a range of 0 to 200 after CT
preprocessing. Regarding PET image standardization, this study employed two methods, MIBH and
SUVR. The MIBH method, derived from Johan Stender et al. 15, involved calculating individualized MIBH
values using the subject's extracellular regions. The extracerebral VOI of each subject was determined as
follows:

The extracerebral VOI = whole brain PET with skull - skull-stripped brain PET

Subsequently, the SUVmean of the extracerebral VOI served as a standardized reference. The MIBH value
for each PET brain image was calculated using the following formula:

MIBH = (voxelwise SUV of sull-stripped PET image)/(SUVmean-of-extracerebral VOI)

The second standardized method was the conventional SUVR method, utilizing the SUVmean of the
cerebellum as a reference to calculate the SUVR of the cerebellum in PET, expressed as:

SUVR = (voxelwise SUV of sull-stripped PET image)/(SUVmean-of-cerebellum VOI)

2.5 Image-based deep learning classi�cation
Five classi�cation tasks were examined based on different PET image standardization methods and
different modality combinations, including MIBH + CT, SUVR + CT, MIBH only, SUVR only, and CT only. The
deep learning model training was conducted using the Medical Open Network for Artistic Intelligence
(MONAI) framework (version 1.0.1, https://monai.io) in a Windows 11 operating system, and Nvidia RTX
A2000 GPU 8GB. The DenseNet121 network, provided by the MONAI framework, was adopted with
default parameter con�gurations, including 64 �lters in the �rst convolution layer, 32 �lters added in each
subsequent layer, (6, 12, 24, 16) layers in each pooling block, RELU activation, and batch normalization
for feature normalization. The loss function employed was cross-entropy, and the optimization algorithm
used was the adaptive moment estimation (Adam) optimizer with a learning rate of 1e-5 and a weight
decay of 1e-4. Moreover, all input images were uniformly resized to (128, 128, 128), Min-Max normalized,
and data-augmented by applying random �ipping and rotating techniques before starting model training.
The training epoch was set to 250 and the batch size to 4.

2.6 Tabular-based deep learning classi�cation
In the DenseNet121-based deep learning classi�cation, the multimodal MIBH + CT classi�er
demonstrated optimal classi�cation performance. Consequently, 1024 deep features were extracted,
representing the 1024 vector values output by the last fully connected layer in the DenseNet121 model.
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After applying a common logarithmic transformation to the CRS-R scores of each subject, (lg10 (CRS-R)
was concatenated with its 1024 deep features. Python Tabular (v1.0.2, https://pytorch-
tabular.readthedocs.io/en/latest/) utilized the provided Tab Transformer Model for deep learning
classi�cation modeling based on tabular data. During training, the optimizer employed the Adam
algorithm, and the loss function was cross-entropy. Epochs were set to 400, and the batch size was set to
128.

2.7 Statistical analysis
A total of 87 cases were randomly divided into training, validation, and test datasets in a 4:1:1 ratio. Each
classi�er underwent strati�ed 5-fold cross-validation with 100 repetitions to assess performance. The
performance of each repetition was computed as the mean across the �ve folds, and the overall model
performance was determined as the mean across all 100 repetitions. Binary classi�cation model
performance was evaluated based on sensitivity (Sen), speci�city (Spe), accuracy (ACC), and the area
under the ROC curve (AUC).

To visualize deep learning outputs, Grad CAM [18] was employed to extract the gradient class activation
map generated by the last convolutionlayer in the �nal MIBH + CT DenseNet121 classi�cation model.
Then, a heatmap was generated by multiplying the gradient class activation maps with the original PET
MIBH image, which produced a coarse localization map highlighting the important regions in the image
for predicting the target. For tabular-based MIBH + CT deep features and CRS-R scores, the principal
component analysis (PCA) algorithm was �rstly utilized to reduce feature dimensionality to 10.
Subsequently, t-SNE [19] was employed to generate a two-dimensional distribution map. The entire
work�ow is depicted in Fig. 1.

Results

3.1 Clinical Data
A total of 114 patients with consciousness disorders due to brain damage underwent 18F-FDG PET/CT
examinations at the Department of Nuclear Medicine, Xijing Hospital. Following stringent exclusion
criteria, our study included 87 patients (58 (66.7%) males, mean age ± SD 64.4 ± 8.04 years). During PET
scans, 32 (36.8%) patients were diagnosed with unresponsive wakefulness syndrome, while 55 (63.2%)
were diagnosed with a minimally conscious state according to CRS-R. Among these, 45 (51.7%) patients
had traumatic brain injuries, 33 (37.9%) had intracerebral hemorrhage and ischemic stroke, and 9 (10.3%)
had toxic encephalopathy. The average time from the event occurrence to PET scan was 56.42 ± 42.5
days (ranging from 28 to 210 days). CRS-R scores at the PET scan were signi�cantly higher in the
consciousness recovery groups (P < 0.001). Patients with non-traumatic brain injuries exhibited worse
consciousness recovery than those with traumatic brain injuries (P = 0.026). No signi�cant differences
were observed in age, sex, or time from event occurrence to PET scan between the consciousness
recovery and non-recovery groups (P > 0.05). Detailed clinical characteristics are presented in Table 1.
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Table 1
Detailed clinical characteristics in DOC patients

  Consciousness
recovery

(n = 52)

Consciousness not
recovery

(n = 35)

P

Gender (n,%)

Male

Female

35 (67.3%)

17 (32.7%)

23(65.7%)

12(34.3%)

0.877

Age (years, mean ± SD) 46.0 ± 17.2 50.74 ± 16.1 0.432

Diagnosis at PET scan (n,%)

UWS

MCS

5 (9.6%)

47 (90.4%)

27 (77.1%)

8 (22.9%)

0.001

CRS-R scores at PET scan 4.75 ± 0.94 2.00 ± 0.00 0.001

Time from event occur to PET scan (days,
mean ± SD)

60.3 ± 53.1 54.6 ± 35.6 0.326

Etiology(n,%)

Traumatic

Non-traumatic

32 (61.5%)

20 (38.5%)

13 (37.1%)

22 (62.9%)

0.026

3.2 Performance of image-based deep learning classi�er
We assessed the ability to predict consciousness recovery in all patients with �ve tasks: MIBH + CT, SUVR 
+ CT, MIBH only, SUVR only, and CT only.

The MIBH-only task outperformed the SUVR-only task in predicting consciousness recovery, with AUCs of
0.764 ± 0.028 vs. 0.667 ± 0.039, 0.686 ± 0.170 vs. 0.670 ± 0.091, and 0.751 ± 0.093 vs. 0.412 ± 0.104 in the
training, validation, and independent test sets, respectively. Accuracy in these datasets between MIBH and
SUVR tasks was 0.670 ± 0.059 vs. 0.610 ± 0.027, 0.771 ± 0.123 vs. 0.605 ± 0.061, and 0.629 ± 0.070 vs.
0.500 ± 0.000. Sensitivity in the SUVR task was higher than that in the MIBH task in the training,
validation, and independent test sets (0.852 ± 0.035 vs. 0.788 ± 0.100, 0.834 ± 0.034 vs. 0.796 ± 0.103,
and 0.830 ± 0.040 vs. 0.707 ± 0.096, respectively). Speci�city in the MIBH task was higher than that in the
SUVR task in these datasets (0.629 ± 0.153 vs. 0.500 ± 0.006, 0.695 ± 0.133 vs. 0.522 ± 0.061, 0.796 ± 
0.123 vs. 0.532 ± 0.052). Grad-CAM was utilized to visualize the MIBH heatmap for a single patient, as
shown in Fig. 2.

The MIBH + CT task demonstrated superior performance in predicting consciousness recovery, achieving
AUCs of 0.803 ± 0.024, 0.804 ± 0.059, and 0.784 ± 0.073 in the training, validation, and independent test
sets, respectively. In these datasets, sensitivity was 0.813 ± 0.041, 0.845 ± 0.069, and 0.794 ± 0.055, while
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speci�city was 0.807 ± 0.043, 0.806 ± 0.076, and 0.807 ± 0.062, respectively. The SUVR + CT task
exhibited poorer performance compared to MIBH + CT, with AUCs of 0.791 ± 0.036, 0.632 ± 0.067, and
0.612 ± 0.192 in the training, validation, and independent test sets, respectively. The MIBH + CT task
outperformed SUVR + CT in both sensitivity and speci�city. Figure 3 displays the average AUC
comparisons for MIBH + CT and SUVR + CT classi�ers.

The CT-only task yielded suboptimal results in predicting consciousness recovery, with AUCs of 0.632 ± 
0.080, 0.563 ± 0.155, and 0.624 ± 0.160 in the training, validation, and independent test sets, respectively.
In these datasets, sensitivity was 0.570 ± 0.140, 0.585 ± 0.153, and 0.580 ± 0.160, while speci�city was
0.870 ± 0.260, 0.820 ± 0.186, and 0.820 ± 0.136, respectively. The average performance results are
summarized in Table 2. Figure 4 illustrates the boxplots of accuracy, AUC, sensitivity, and speci�city on
the test dataset for all �ve tasks after 5-fold cross-validation.

Table 2
Multimodal classi�cation performance

Modality Dataset Accuracy

(mean ± SD)

AUC

(mean ± SD)

Sensitivity

(mean ± SD)

Speci�city

(mean ± SD)

MIBH + CT training 0.816 ± 0.025 0.803 ± 0.024 0.813 ± 0.041 0.807 ± 0.043

validation 0.808 ± 0.084 0.804 ± 0.059 0.845 ± 0.069 0.806 ± 0.076

test 0.723 ± 0.054 0.784 ± 0.073 0.794 ± 0.055 0.807 ± 0.062

SUVR + CT training 0.685 ± 0.020 0.785 ± 0.034 0.722 ± 0.124 0.752 ± 0.272

validation 0.630 ± 0.024 0.629 ± 0.060 0.692 ± 0.090 0.733 ± 0.075

test 0.636 ± 0.049 0.623 ± 0.173 0.687 ± 0.070 0.700 ± 0.288

MIBH training 0.670 ± 0.059 0.764 ± 0.028 0.788 ± 0.100 0.629 ± 0.153

validation 0.771 ± 0.123 0.686 ± 0.170 0.796 ± 0.103 0.695 ± 0.133

test 0.629 ± 0.070 0.751 ± 0.093 0.707 ± 0.096 0.796 ± 0.123

SUVR training 0.610 ± 0.027 0.667 ± 0.039 0.852 ± 0.035 0.500 ± 0.006

validation 0.605 ± 0.061 0.670 ± 0.091 0.834 ± 0.034 0.522 ± 0.061

test 0.500 ± 0.000 0.412 ± 0.104 0.830 ± 0.040 0.532 ± 0.052

CT training 0.517 ± 0.034 0.632 ± 0.080 0.570 ± 0.140 0.870 ± 0.260

validation 0.535 ± 0.055 0.563 ± 0.155 0.585 ± 0.153 0.820 ± 0.186

test 0.500 ± 0.000 0.624 ± 0.160 0.580 ± 0.160 0.820 ± 0.136

3.3 Performance of Tabular based deep learning classi�er based on MIBH + CT image depth features and
CRS-R scores
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Compared to image-based deep learning classi�ers, the tabular-based classi�er combined MIBH + CT
deep features and clinical CRS-R scores achieved optimal classi�cation performance, with an accuracy of
88.5% and 82.2%, AUC of 0.950 and 0.933, sensitivity of 0.93 and 0.8, and speci�city of 0.83 and 0.85 on
the training and test sets, respectively. Figure 5 displays the average AUC comparisons between the
combination of CRS-R scores and deep features abular-based classi�er and MIBH + CT image-based
classi�ers. Visualization of the Tabular-based classi�er, combined with clinical CRS-R scores and PET/CT
deep features, is presented in Fig. 6. The t-SNE plot resulted in a clear differentiation between MCS and
UWS two clusters which re�ected the feasibility and advantages of using a joint of image deep features
and clinical behavioral scores for classi�cation.

Discussion
Predicting which patients will recover consciousness is a challenging task. In this prospective cohort
study of chronic DoC patients, image-based deep learning revealed that PET MIBH outperformed the PET
SUVR task in predicting consciousness recovery. A prognostic model combining PET MIBH + CT with
behavioral CRS-R scores successfully discriminated patients who would recover consciousness one year
later from those who would not, achieving an AUC of 0.93 in independent test datasets.

The correlation between whole-brain energy metabolism and the individual level of consciousness have
been substantiated 15. SUVR standardizes regional 18F-FDG activity to global brain 18F-FDG activity; thus,
widespread reductions in brain glucose metabolism may be underestimated. Nevertheless, researcher
have demonstrated that normalization to the cerebellum does not impact whole-brain glucose
metabolism [20]. MIBH enables accurate diagnosis and prediction of recovery from DoC because multiple
studies con�rm that a preserved glucose metabolic rate in at least one hemisphere is a crucial condition
for regaining awareness after brain injury 15. Bertrand et al. a�rmed that quantitative 18F-FDG PET using
the MIBH quanti�cation procedure is robust in diagnosing the state of consciousness, outperforming
EEG-based automatic classi�cation of the conscious state 21. In our study, employing a deep learning
framework, we demonstrated that the PET MIBH task surpasses the PET SUVR task in predicting
consciousness recovery. Building on previous research, it is con�rmed that PET MIBH standardization
based on extracerebral mean SUV as a reference is more suitable for evaluating the level of
consciousness in DoC patients. However, a crucial point in our research is that, although the speci�city in
the PET MIBH task surpassed that in the PET SUVR task, the classi�cation threshold signi�es the
minimal energetic requirements for sustained awareness, highlighting the value of PET MIBH in
predicting a good prognosis. The sensitivity in the SUVR task outperformed that in the PET MIBH task,
indicating that PET SUVR standardization identi�es more patients likely to regain consciousness.
Predicting consciousness recovery with high sensitivity is crucial to avoid premature withdrawal of life-
sustaining therapy.

Each imaging technology brings unique advantages, and the trend toward multimodal imaging for
comprehensive evaluation aims to enhance diagnostic accuracy and develop prognostic models. Diego
et al. demonstrated that combining EEG with PET based on cardiac-evoked responses yielded superior



Page 10/17

diagnostic e�ciency compared to behavioral studies, indicating better detection of implicit
consciousness over explicit consciousness 22. Carol et al. highlighted preserved default mode network
anti-correlations and high metabolism in patients with EMCS and healthy controls, while UWS or MCS
patients exhibited decreased metabolism and pathological between-network hyperconnectivity 23. In our
study, we observed that multimodal combinations, whether PET MIBH + CT or PET SUVR + CT,
outperformed single modalities in predicting consciousness recovery. Despite the gradual replacement of
brain CT by MRI, structural and density changes still contribute value to consciousness assessment 24.
Additionally, CT scans serve for attenuation correction of PET images, especially in the current scenario
where PET/MR applications are not yet widespread.

Prior studies have separately compared models using only imaging features or only clinical
characteristics, with �ndings suggesting that combining these predictors achieves greater accuracy 25–28.
Our results align with these previous studies, showing that combining whole-brain energy metabolism
detected from 18F-FDG PET with clinical CRS-R scores delivers the best performance in predicting whether
a patient will recover from DoC or not. This underscores the necessity of accumulating evidence from
multiple assessments, each possessing different sensitivity and speci�city in detecting the capacity for
consciousness recovery. Our model a�rms that the combination of the metabolic index of the best-
preserved hemisphere from 18F-FDG PET imaging and behavioral CRS-R scores plays crucial roles in
predicting consciousness recovery. The accuracy in classifying a patient as "consciousness recovery" or
not one year after injury reached 82.2%, and the sensitivity of 80% across the testing datasets
demonstrated a low false-negative rate, preventing the misprediction of nonrecovery in a patient capable
of recovery. Simultaneously, the speci�city across the testing datasets was 85.0%, indicating the model's
precision in identifying patients with a high potential for consciousness recovery and reducing false
positives in predicting low-potential patients.

In addition, this study also explored the intrinsic mechanisms of image-based deep learning classi�cation
models via feature visualization. The Grad-CAM 15 algorithm is a novel class-discriminative localization
technique and is commonly used to visualize and localize suspicious lesion areas. Although the DoC
patients may not present obvious lesion areas, the Grad-CAM heatmap can help reveal and visualize
which regions in the image are important ones for predicting the target. As shown in Fig. 2, which
compares the Grad-CAM MIBH heatmaps of one UWS patient and one MCS case the brain cortex
demonstrates its importance in classi�cation. Moreover, there exists an obvious difference in the
highlighted cortex regions between UWS and MCS cases in terms of range and value, which is consistent
with the generally different metabolic levels of UWS and MCS.

While this study combined MIBH of 18F-FDG PET imaging and behavioral CRS-R scores for predicting
whether a patient recovery from DoC, several limitations exist. First, the sample size used for constructing
deep learning frameworks, although consisting of data from 87 DoC patients, is relatively small, requiring
a larger cohort for further validation. Second, numerous additional factors, such as medical
complications and nutrition, are associated with DoC patient outcomes. Future work should integrate
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more information to construct a comprehensive prediction model. Third, the study focused on DoC
patients from a single center, lacking external data for veri�cation.

Conclusions
In conclusion, the proposed prognostic model, combining MIBH of 18F-FDG PET imaging and behavioral
CRS-R scores, predicts one-year outcomes for DoC patients at an individual level. The model achieved an
AUC of 0.950 and 0.933 in the training and testing datasets for classifying a patient as "consciousness
recovery" or not. Additionally, visualizing the results of image-based deep learning allows physicians and
scientists to comprehend the potential mechanisms for consciousness recovery. These advantages offer
an objective prognosis for DoC patients, optimizing their management and deepening our understanding
of brain function during unconsciousness.

Abbreviations

DoC disorders of consciousness

UWS unresponsive awakening syndrome 

MCS minimally conscious state

18F-FDG PET  18F-�uorodeoxyglucose positron emission tomography

CRS-R Revised Coma Recovery Scale

MIBH metabolic index of the best-preserved hemisphere

SUVR ratio SUV

GOS-E Glasgow Outcome Scale-Extended

AUC area under the curve
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Figures

Figure 1

Whole procedure of the present study. (A) PET and CT images were preprocessed and standardized. (B)
The DenseNet121, provided by the MONAI framework, was used for deep learning training, setting a
binary classi�cation of consciousness recovery or not. (C) CRS-R concatenated with 1024 deep features
extracted from MIBH+CT in the DenseNet121 model. Python Tabular was used for deep learning
classi�cation modeling. (D) Sensitivity (Sen), speci�city (Spec), accuracy (Acc), and the area under the
ROC curve were evaluated to assess the performance of the models. Grad CAM was used for
visualization of image-based deep-learning classi�cation, and t-SNE was used to generate a two-
dimensional distribution map of the original data.
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Figure 2

Grad-CAM MIBH heatmap visualization of image-based DL classi�er. (A) Transverse, coronal, sagittal
views of an MCS case. (B) Transverse, coronal, sagittal views of a UWS case.

Figure 3
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MIBH+CT and SUVR+CT classi�ers average ROC comparison. The AUCs of the MIBH+CT model are
higher in the training (A) validation (B) and independent test sets (C) compared to the SUVR+CT model.

Figure 4

Acc, AUC, Sen and Spec boxplots on the test dataset for all �ve image tasks after 5-fold cross-validation.
(A) MIBH+CT model (B) SUVR+CT model (C) MIBH only model (D) SUVR model (E) CT only.
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Figure 5

CRS-R combination MIBH+CT deep-feature classifers and MIBH+CT classi�ers average ROC comparison.
Compared to the MIBH+CT image-based classi�er, CRS-R combination MIBH+CT deep-feature classi�ers
achieved better performance, with an accuracy of 88.5% and 82.2%, AUC of 0.950 and 0.933, Sen of 0.93
and 0.8, Spec of 0.83 and 0.85 on the training set (A) and test set (B), respectively.

Figure 6

t-SNE visualization of tabular-based DL classi�er. A classi�er combining clinical CRS-R scores and
MIBH+CT deep features accurately predicts patients' recovery from disorders of consciousness or not.


