
ISFO-CS: An Improved Sail�sh Optimization
Algorithm for Controller Selection in SDWSN
Manisha Kumari Rajoriya ( manishakumarirajoriya23@gmail.com)

Rajasthan Technical University
Chandra Prakash Gupta

Rajasthan Technical University

Research Article

Keywords: Software De�ned Wireless Sensor Network (SDWSN), Controller Selection Problem (CSP),
Controller Nodes (CNs), clustering algorithm, data transmission, multi-objective �tness function

Posted Date: January 15th, 2024

DOI: https://doi.org/10.21203/rs.3.rs-3849743/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

Additional Declarations: No competing interests reported.

https://doi.org/10.21203/rs.3.rs-3849743/v1
mailto:manishakumarirajoriya23@gmail.com
https://doi.org/10.21203/rs.3.rs-3849743/v1
https://creativecommons.org/licenses/by/4.0/

ISFO-CS: An Improved Sailfish Optimization Algorithm for Controller
Selection in SDWSN

*1Manisha Kumari Rajoriya, 2Chandra Prakash Gupta

*1Research Scholar, Department of Computer Science & Engineering,

Rajasthan Technical University, Kota,
Rajasthan - 324010, India.

2Professor, Department of Computer Science & Engineering,

Rajasthan Technical University, Kota,
Rajasthan - 324010, India.

*Email: manishakumarirajoriya23@gmail.com

Abstract: Software-defined wireless sensor networks (SDWSNs) have recently been added to
networking, increasing scalability and performance. Choosing SDN controllers is a critical
issue for network administrators in SDNs. The control plane in SDN is a separate procedure
that operates on the control layer. In terms of applications and services, the controller provides
a comprehensive view of the entire network. The three key factors examined when selecting a
controller are open source, campus network, and productivity. An appropriate device for the
prompt processing of all switch requests is required for SDN to function properly and the
network to behave properly. To determine the optimum controller for the given parameters,
decision logic that allows controller comparison must be developed. As a result, an improved
Sailfish Optimization (ISFO) method is proposed in this study to ideally take the best controller
node (CN) from a group of sensor nodes. The ISFO selects the best CN by considering a multi-
objective fitness function incorporating distance, residual energy, node coverage, and sensor
node communication cost. After selecting CN, the Fuzzy C-means (FCM) Clustering algorithm
executes the subsequent data transmission process. The Matlab program is used to execute the
simulation, and the performance of the proposed methodology is assessed using several
performance criteria. The proposed model accomplishes a 0.95% packet delivery ratio for 500
rounds and takes 1.8s for 500 rounds of node to controller latency.

Index terms: Software Defined Wireless Sensor Network (SDWSN), Controller Selection
Problem (CSP), Controller Nodes (CNs), clustering algorithm, data transmission, multi-
objective fitness function.

1. Introduction
In response to the multiple basic challenges that WSNs face today, many academics have
proposed SDWSNs and SDN into WSNs [1]. SDWSNs are employed in a wide range of
applications, including 5G networks, smart homes, smart grids, and more. They are capable of
doing flexible network administration. The forwarding and control layers are kept apart in the
SDWSN paradigm, and a logically centralized Controller oversees the management of the
sensor nodes. Since the IoT is anticipated to play a substantial role in the sector, the objective
of using SDN in WSN is to enhance usability and applicability [2]. While delivering flexibility,
latent efficiency, innovations, and other benefits, this new networking paradigm was developed
to tackle the inherent challenges and complexities of WSN [3]. Inefficient energy consumption,
network architecture and management, scalability, security concerns, routing, mobility, and
localization are a few of the difficulties [4].

These days, a single controller design or a distributed/multiple controller design might
make up an SDN control plane. These control architectures can also be further divided into two

categories: physically or theoretically centralized control architectures and distributed control
architectures, each of which has a range of controller kinds [5]. However, in order to truly apply
the SDN concept, an appropriate controller must be chosen. This can be a difficult decision
because the number of controllers is growing, and it may be difficult to identify the right
metrics. Despite these benefits, having several controllers introduces a number of challenges,
one of which is the optimum controller placement problem (CPP) [6]. For example, adding
more controllers or distributing them randomly around the network would not provide
scalability because acceptable performance will not be achieved. This means that in order to
satisfy varied needs, several controllers must be strategically placed in relevant regions [7].

In terms of scalability, the controller selection problem (CSP) and CPP are just as important
as SDN for efficiently utilizing SDWSN services on a wide scale [8]. But because of the nature
of the WSN, other objectives like node mobility and energy efficiency will also need to be
considered by the CPP technique for the SDWSN [9]. In other words, while SDN-based CPP
procedures are critical for installing SDWSN controllers, the methods may not entirely address
all SDWSN-related issues. Furthermore, some placements are executed dynamically, while
others are performed statically [10]. As a result, a number of different dynamic controller
placement approaches, including virtualization, will be necessary for an SDWSN-based CPP
to guarantee the CPP strategy's success. CSP is treated as the controllers’ global point for the
entire model in this study.

Furthermore, the controllers are in charge of computing activities such as resource
allocation, traffic management, QoS, and route calculation [11]. The single controller cannot
balance between networks and switches in large networks. To overcome this, multi-controllers
with better scalability, reduced latency, dependability, and resilience are deployed [12].
Appropriate controller load balancing optimizes network evaluation. As more controllers are
required to boost network availability and performance, CSP aims to select the finest possible
collection of controllers for SDWSN. The following are the research’s main contributions:

❖ To increase the performance of the SDWSN, multiple controllers are distributed and
optimally selected for performing the data transmission process.

❖ To select the optimal number of controller nodes from the sensor nodes in SDWSN
using an Improved Sailfish Optimization (ISFO) algorithm.

❖ To create a multi-objective-based fitness function including node coverage, residual
energy, communication cost and node distance for performing the controller selection.

The research paper's following sections are arranged as follows: A few recent studies that
are relevant to the suggested methodology are reviewed in Section 2. The multi-objective-based
improved optimization technique and its operation are explained in Section 3. The performance
of the suggested methodology is examined using several performance parameters in Section 4,
along with the results of the simulation. Section 5 concludes the research article by
summarizing its overall findings and outlining how this research will be enhanced in future.

2. Literature Review

This review covers some of the material that has been written about the suggested methodology.
Tahmasebi et al. [13] introduced the Cuckoo algorithm (CA) for the CPP. This algorithm

was used for optimizing the latency of the network on the basis of the synchronization
overhead. The work focused on reducing synchronization overhead and latency while
improving the reliability of SDWSN. CA outperformed the conventional optimizations by
minimizing the mean distance between controllers and sensors up to 9% and 13%. Samarji and
Salamah [14] modelled CPP using a genetic algorithm (GA) and greedy-randomized adaptive
search problem (G-RASP). Based on the controller's response time, the quantity of active
nodes, the controller load, and the percentage of successfully received packets, the authors
concluded that three SDN controllers are adequate. The flow of controllers increased load

balancing between controllers, increased network longevity, and lowered latency. However, the
authors did not address the issue of energy and controller overhead.

Two optimization algorithms were described by Firouz et al. [15]. Manta Ray Foraging
(MRF) and Salp Swarm Optimization (SSO) were utilized to achieve the best CPP in SDN.
The shortest path was determined using Dijkstra's method. To determine the separation between
the switches, the Haversine formula was applied. The performance was tested by altering the
number of controllers in six different types of networks. Shiny and Murugan [16] presented a
T-SDN (threshold-SDN) protocol-based architecture to decrease control and data messages by
considering the threshold. The threshold was calculated automatically using data from the
server. PDR, controller reaction time, control message overhead, network lifetime time, and
EC were all taken into account when analyzing the results. The fundamental disadvantage of a
centralized controller was its limited bandwidth.

Jurado-Lasso et al. [17] presented an energy aware routing (EAR) paradigm to minimize
controller interface and control overhead by utilizing the checksum function. The primary goal
of the previous study was to reduce control overhead and extend network longevity. The
primary function that drained energy was discovered, and the aggregation of data packets was
decreased. The network’s lifetime was increased by 6.5%, while overhead was reduced by 12%.
However, because the controller was placed in one of the sensor nodes, its performance
suffered.

Selecting the best controller in SDWSN is difficult. Manisha Kumari Rajoriya and Chandra
Prakash Gupta [18] looked into an energy-efficient multi-objective meta-heuristic-based
routing technique to find out which nodes to use as CNs. The method to solve the Controller
Selection and Placement (CSPP) issue makes use of fitness, distance, and residual energy
functions. The SFO technique is used in the MATLAB program to treat the problem as a multi-
objective function. Both energy usage and transmission distance (delay) are decreased by the
SFO-CS approach. Simulation experiments demonstrate that SFO-CS performs better than
previous approaches in terms of packet delivery ratio (PDR), energy consumption, latency, and
overall network lifetime.

In this work, Elham Hajian et al. [19] created a novel SDN architecture with the goal of
improving durability and decreasing load distribution. The architecture comprises many
components, including virtual routing, links, BS and controller discovery, and topology.
Consequently, a unique virtualization and SDN-based load-balancing routing solution is
suggested. In many IoT uses, the OpenFlow protocol implementation may ascertain load-
balancing routing for every flow by directly analyzing connection load statistics and network
performance. There are numerous ways in which a base station can accept flows from different
resource applications. This technique reduces the amount of relevant data that is exchanged,
like network status. For each Internet of Things (IoT) application, virtual routing chooses the
optimal node by pre-weighing variables. The proposed method outperforms the LEACH,
modified LEACH, and LEACH-C algorithms in terms of network lifetime and energy
consumption balance, according to the simulation findings.

Sathyamoorthy Malathy et al. [20] provide a successful load-balancing and clustering
method based on Q-learning and an improved K-Means algorithm. It is divided into two phases:
node balancing and clustering. The suggested method employs the Q-learning algorithm to
select a CH and place sensor nodes in relevant clusters. The clustering method involves
grouping the nodes together according to the average values that have been determined.
Separating the cluster into 'k' pieces follows the proper placement of sensors within each
cluster. Taking into account throughput, end-to-end delay, packet delivery ratio, and energy
consumption, the suggested clustering algorithm based on Q-Learning maximizes the reward.
Finally, compare and contrast the state-of-the-art k-means-based clustering methodology with
the Q-learning-based clustering approach to determine its effectiveness. A 1.56% improvement

in packet delivery ratio, a 3.34% increase in network lifespan, an 8.23% drop in end-to-end
latency, and a 2.34% rise in throughput are all results of the proposed strategy.

Xiao Yan et al. [21] developed an energy-efficient clustering approach (GEC) for WSNs
based on game theory, in which each sensor node represents a player in the game. By keeping
track of how much time it spends listening in its active state before opting to sleep or not, the
sensor node can determine its optimal techniques. To prevent sensor nodes from acting selfishly
in the future, a punishment system can be set up to encourage them to work together. According
to the results of the simulation, using game theory to the sensor network may increase data
transmission throughout it while decreasing energy consumption, achieving the objective of
prolonging its lifespan.

Shirin Tahmasebi et al. [22] characterized the CPP as a multi-objective optimization
problem and developed the Cuckoo optimization (CO) population-based meta-heuristic
technique. This algorithm mimics the brood parasitism of different species of cuckoo birds in
an attempt to find the global optimum. Finally, a comparison with a range of other techniques
is used to assess the suggested methodology. The results of the studies show that the
recommended technique beats the most modern methods in terms of synchronization cost and
performance, notably Quantum Annealing (QA) and Simulated Annealing (SA). Furthermore,
the proposed method is much more scalable than ILP (integer linear programming).

2.1 Problem description and motivation
The SDWSN paradigm employs network programmability to ensure network flexibility,
efficiency, and innovation, thereby overcoming the core challenges of traditional networks [3].
However, when it comes to the deployment of many or dispersed controllers, there are
challenges with the networking paradigm. There are several significant concerns to consider
when designing an effective and dependable distributed SDN controller platform, including
scalability, consistency, reliability, and interoperability [13-15]. SDN scalability is also affected
by a number of other characteristics, including flow setup latency, consistency, controller
placement, and controller failure. Among these challenges, controller location posed a
considerable impediment to meeting other critical network requirements and SDN scalability.
This is known as the CSP, and numerous approaches for large-scale SDWSN networks have
been developed or proposed in this context. Several studies were conducted and several
methodologies were found, such as heuristic-based techniques, cluster-based approaches, bio-
inspired techniques [18], greedy algorithms, and others. Network portioning or clustering
approaches dominate the CPP method. These are followed by heuristic-based, mathematical
model-based, biologically inspired Linear Programming (LP) strategies. In addition, each
approach optimizes its performance metrics through reduction or maximization in order to get
the desired Quality of Service (QoS) and network performance. While some CPP techniques
took into account single objectives like cost, latency, reliability, etc., others took into account
multi-objectives in their optimization model.

Furthermore, the placement and choice of controller greatly minimize load and latency on
the network. No published research has been done on the analysis of SDWSNs with several
controllers distributed throughout the network using multi-objective optimization approaches.
For instance, the authors in [18] adopt the SFO approach for CSP with the node distance and
residual energy as their two main objectives. Additionally, in order to conduct controller
placement in SDWSN, authors in [22] devised a fitness function with only two objectives:
synchronization cost and node distance. This encourages the development of a better multi-
objective optimization method to choose the best nodes to be CNs.

3. Proposed Methodology

A novel network architecture called SDWSN was created to tackle the challenges that arise
when managing conventional networks like SDN and WSN. The architecture offers two
deployment options: either a single controller or several controllers. While the former is not
appropriate for extensive networks, the latter faces a Constraint Satisfaction Problem (CSP)
and a Constraint Programming Problem (CPP) in the context of a large-scale network. The
difficulty with CPP and CSP is finding out how to divide up and choose a network's controller
count wisely in order to meet conflicting performance demands such computation time, latency,
load balancing, dependability, and energy economy. In CSP, it may be impossible to find a
single optimum or random alternative; consequently, extensive planning is required to
determine the best trade-off between the metrics. An ISFO algorithm is designed to pick ideal
nodes as CNs from a large number of sensor nodes. In addition, a multi-objective fitness
function with node distance, communication cost, residual energy, and node coverage is
designed to pick the node as a CN optimally. The FCM method is then used to execute the
clustering and data transfer processes. Figure 1 depicts the workflow of the research paper.

Figure 1: Workflow model of the proposed methodology for CSP

3.1 System model and energy model
In an operational WSN architecture, an SDWSN model is seen as a digraph 𝐺𝑛 = (𝑉, 𝐿). The
vertex set in the model is designated by V and consists of control nodes (CNs), sink nodes, and
software-defined WSNs (common nodes), as well as control servers (CSs). They are dispersed
at random within the designated monitoring region. The directed transmission collection or
communication connection that is dedicated to transmitting the gathered data from common
nodes to the CN is indicated by the 𝐿 in the graph.

Energy dissipation: Based on the route loss idea, the most popular data transmission model
under consideration is SDWSN, which includes channel usage for multipath (𝐸𝑚𝑝), fading (𝑑4
power loss), and free space (𝐸𝑓𝑠) (𝑑2 power loss). The model’s energy consumption is a
function of the separation (𝑑) between two entities. The coordinates for the transmitter are (𝑋𝑖, 𝑌𝑖), and the coordinates for the receiver are (𝑋𝑗, 𝑌𝑗). The Euclidean distance formula,
which may be used to compute the distance, is as follows: (𝑋𝑗, 𝑌𝑗) = √(𝑋𝑗 − 𝑋𝑖)2 + (𝑌𝑗 − 𝑌𝑖)2 (1)

When the estimated 𝑑 is below the threshold (𝑑0), this work employs the power control
mechanism and compensates for the route loss concept using either the free space model or the
multipath model. The following equation can be used to determine the energy dissipation to
transmit data for the common SDWSN node (𝐸𝑇𝑋𝑁𝑆𝐷𝑊𝑆𝑁) in order to convey a 𝑙-bit message
over a 𝑑 -distance: 𝐸𝑇𝑋𝑁𝑆𝐷𝑊𝑆𝑁(𝑙,𝑑) = { 𝑘 × 𝐸𝑒𝑙𝑒𝑐 + 𝑘 × 𝐸𝑓𝑠 × 𝑑2𝑑 ≤ 𝑑0𝑘 × 𝐸𝑒𝑙𝑒𝑐 + 𝑘 × 𝐸𝑚𝑝 × 𝑑4𝑑 > 𝑑0 (2)

The energy transmission for the control node of 𝑙 bit data packet is as follows: 𝐸𝑇𝑋𝑁𝐶𝑁(𝑙,𝑑) = { 𝑘 × (𝐸𝑒𝑙𝑒𝑐 + 𝐸𝐷𝐴) + 𝑘 × 𝐸𝑓𝑠 × 𝑑2𝑑 ≤ 𝑑0𝑘 × (𝐸𝑒𝑙𝑒𝑐 + 𝐸𝐷𝐴) + 𝑘 × 𝐸𝑚𝑝 × 𝑑4𝑑 > 𝑑0 (3)

The 𝐸𝑇𝑋𝑁 is recognized for the energy needed for transmission; the control node uses
energy EDA for data aggregation. On the other hand, d defines the distance between two
SDWSN sensor units or between nodes and the control server. The energy required to run a
transmitter or receiver circuit is denoted by the symbol 𝐸𝑒𝑙𝑒𝑐. It is dependent on a number of
factors, including signal dispersion, modulation, source coding, and filtering. 𝐸𝑓𝑠 plus 𝐸𝑚𝑝are
dependent on the model of transmitter amp. Here, (𝑑0), the transmission distance threshold, is
commonly stated as follows, and 𝑙 indicates the size of the packet to be sent. 𝑑0 = √ 𝐸𝑓𝑠𝐸𝑚𝑝 (4)

To carry out the data transmission procedure, the radio transmitter uses the following
energy: 𝐸𝑇𝑋𝑁(𝑙) = 𝑙 ∗ 𝐸𝑒𝑙𝑒𝑐 [23]. The symbols and their meanings utilized in the proposed
model are listed in Table 1.

Table 1: Used symbols and its explanations

Symbols Explanation 𝐺𝑛 Diagraph

V Vertex set

L Communication link 𝐸𝑓𝑠 Free space model 𝑑4 Fading channel 𝐸𝑚𝑝 Energy model for multipath

d Distance or dimension of the variable

i Transmitter

j Receiver 𝐸𝑇𝑋𝑁𝑆𝐷𝑊𝑆𝑁 Energy dissipation to transmit the data 𝑙 Data packet 𝐸𝑇𝑋𝑁𝐶𝑁(𝑙,𝑑) The energy required for transmission 𝑑0 Threshold value for transmission distance 𝑚 Number of sailfish

t Number of the current iteration 𝐹𝑆𝐹(𝑡) Fitness matrix of the sailfish 𝐹′𝑖(𝑡) Fitness value of the ith sailfish 𝐹𝑆(𝑡) Fitness matrix of the sardine 𝑋𝑒𝑙𝑖𝑡𝑒(𝑡)
 Position of elite sailfish 𝑋′𝑖𝑛𝑗𝑢𝑟𝑒𝑑(𝑡)

 Position of injured sardine 𝑋𝑒𝑙𝑖𝑡𝑒(𝑡−1)
 Elite sailfish in the 𝑡 − 1 iteration 𝑋′𝑖𝑛𝑗𝑢𝑟𝑒𝑑(𝑡)

 Sardine, who was seriously injured in the 𝑡 −1 iteration 𝑋𝑖(𝑡−1) ith sailfish in the 𝑡 − 1 iteration 𝑋𝑖(𝑡) ith sailfish in the 𝑡 iteration 𝑟𝑎𝑛𝑑 Random value 𝜆𝑖 Update coefficient 𝑀𝑆𝐹(𝑡) Number of sailfish in the 𝑡 iteration 𝑀𝑆(𝑡) Number of sardines in the 𝑡 iteration 𝐴 and 𝜉 Attack strength coefficients 𝛾 Number of updated sardines 𝜂 Number of variables 𝑢 Weight inertia 𝑢𝑚𝑖𝑛 and 𝑢𝑚𝑎𝑥 Lower and upper limits of weight inertia 𝑢 𝑟 Random variable 𝑆𝐿𝑒𝑣𝑦 The step size of the Levy flight 𝜏 Constant value 𝛤 Gamma function

RE Residual energy 𝑒𝑠𝑛 The total energy of sensor node 𝑒𝑐𝑜 Energy used for data collection 𝑒𝑟𝑒𝑐𝑝 Energy used for data transmission 𝑁𝐶 Node coverage 𝑅(𝑋𝑦) Radius of sensor node 𝑁𝑃 Node proximity 𝑁𝑛(𝑥, 𝑦) Distance 𝐶𝐶 Communication cost 𝑑𝑎𝑣𝑔2 The average distance of the node 𝑑𝑟2 Average distance of the nearest node 𝑤𝑖 Weight value 𝑐 Clusters 𝑢𝑖𝑗 Node j’s degree of belonging to cluster 𝑖 𝑑𝑖𝑗 Distance between node 𝑗 and the centre point

of cluster 𝑖 𝑚 Fuzzified number

3.2 Optimal CN selection using ISFO algorithm

This section discusses the CSP using the IFSO algorithm in detail. The following subsection
briefly explains the working process of the proposed methodology in detail.

3.2.1 Basics of SFO algorithm
According to Shadravan et al. (2019) [24], SFO is a brand-new, hyper-heuristic optimization
technique that draws inspiration from nature. The approach is composed of two populations:
one that diversifies the search space and improves search capabilities, and the other that boosts
search skills.

• Initialization of the location of the sardine and sailfish populations

SFO considers sailfish as a solution. The sardine population is specified by many solutions.
Sailfish and sardine locations in the search space solve the controller selection problem. This
generates a random population in solution space. Initialized sailfish position matrix:

𝑋𝑆𝐹(𝑢) = [
 𝑋1,1(𝑢) 𝑋1,2(𝑢) 𝑋1,𝑑(𝑢)𝑋2,1(𝑢) 𝑋2,2(𝑢) 𝑋2,𝑑(𝑢)⋮𝑋𝑚,1(𝑢) ⋮𝑋𝑚,2(𝑢) ⋮𝑋𝑚,𝑑(𝑢)]

 (5)

where 𝑋𝑖𝑗(𝑢) represents the value of the jth dimension of the ith sailfish, 𝑢 is the number of
current iterations, 𝑑 is the variable’s dimension, and 𝑚 denotes the quantity of sailfish in
population. Following the sardine position initialization, the matrix is displayed in the equation
below.

𝑋𝑆(𝑢) = [𝑋𝑖,𝑗(𝑢)]𝑛𝑥𝑑 = [
 𝑋1,1(𝑢) 𝑋1,2(𝑢) 𝑋1,𝑑(𝑢)𝑋2,1(𝑢) 𝑋2,2(𝑢) 𝑋2,𝑑(𝑢)⋮𝑋𝑛,1(𝑢) ⋮𝑋𝑛,2(𝑢) ⋮𝑋𝑛,𝑑(𝑢)]

 (6)

There are 𝑛 sardines in the population, with 𝑋𝑖,𝑗(𝑢) representing the jth dimension of the ith
sardine. The algorithm's fitness function 𝐹 is determined by solving the sailfish and sardine
solution's fitness with the SDWSN problem's objective function to assess fish and sardine
quality. The results are stored as a matrix, and the sailfish fitness matrix is displayed in the
equation below.

𝐹𝑆𝐹(𝑢) = [
 𝐹1(𝑢)𝐹2(𝑢)⋮𝐹𝑚(𝑢)]

 = [
 𝐹(𝑋1,1(𝑢) 𝑋1,2(𝑢) 𝑋1,𝑑(𝑢))𝐹(𝑋2,1(𝑢) 𝑋2,2(𝑢) 𝑋2,𝑑(𝑢))⋮𝐹(𝑋𝑚,1(𝑢) ⋮𝑋𝑚,2(𝑢) ⋮𝑋𝑚,𝑑(𝑢))]

 (7)

where 𝑚 is the sailfish quantity, 𝐹′𝑖(𝑢)is the fitness value of the ith sailfish, and 𝐹𝑆𝐹(𝑢) is the
sailfish’s fitness matrix. Sardines’ fitness matrix is displayed as follows:

𝐹𝑆(𝑢) = [
 𝐹1(𝑢)𝐹2(𝑢)⋮𝐹𝑛(𝑢)]

 = [
 𝐹(𝑋1,1(𝑢) 𝑋1,2(𝑢) 𝑋1,𝑑(𝑢))𝐹(𝑋2,1(𝑢) 𝑋2,2(𝑢) 𝑋2,𝑑(𝑢))⋮𝐹(𝑋𝑛,1(𝑢) ⋮𝑋𝑛,2(𝑢) ⋮𝑋𝑛,𝑑(𝑢))]

 (8)

Where 𝑛 is the number of sardines, 𝐹𝑖′(𝑢) is the fitness value of the ith sardine, and 𝐹𝑆(𝑢) is
the sardine fitness matrix.

• Elite selection strategy
The elite sailfish in the SFO algorithm’s iterative phase is the one with the lowest fitness, and
its location is noted as 𝑋𝑒𝑙𝑖𝑡𝑒(𝑢) . Sardines are also susceptible to injury by sailfish; badly damaged
sardines are located at 𝑋′𝑖𝑛𝑗𝑢𝑟𝑒𝑑(𝑢) , and their fitness is the lowest in the sardine population.

• Alternate attack strategy

When hunting, sailfish change their location relative to other sailfish that are near sardines. The
following formula is displayed to adjust the Sailfish position: 𝑋𝑖(𝑢) = 𝑋𝑒𝑙𝑖𝑡𝑒(𝑢−1) − 𝜆𝑖(𝑢−1) (𝑟𝑎𝑛𝑑 ∗ (𝑋𝑒𝑙𝑖𝑡𝑒(𝑢−1)−𝑋′𝑖𝑛𝑗𝑢𝑟𝑒𝑑(𝑢)2) − 𝑋𝑖(𝑢−1)) (9)

where 𝑋𝑒𝑙𝑖𝑡𝑒(𝑢−1) represents the elite sailfish in the 𝑢 − 1 iteration, 𝑋′𝑖𝑛𝑗𝑢𝑟𝑒𝑑(𝑢) , symbolizes the
sardine gravely hurt in 𝑢 − 1, 𝑋𝑖(𝑢−1) represents the ith sailfish in the 𝑢 − 1iteration, and 𝑋𝑖(𝑢)
represents the 𝑖𝑡ℎ sailfish in the 𝑢 iteration. The update coefficient is represented as follows: {𝜆𝑖(𝑢) = 2 ∗ 𝑟𝑎𝑛𝑑 ∗ 𝐷(𝑢) − 𝐷(𝑢)𝐷(𝑢) = 1 − (𝑀𝑆𝐹(𝑢)𝑀𝑆𝐹(𝑢)+𝑀𝑆(𝑢)) (10)

where 𝑀𝑆𝐹(𝑢) is the sailfish quantity at the iteration of 𝑡 and the sardines quantity is given as 𝑀𝑆(𝑢) for the 𝑢 iteration.

• Evasion strategy
Sardines will move to avoid the elite sailfish by assessing its location and attack ferocity with
each repetition. The sardine position update equation is: {𝑋′𝑖(𝑢) = 𝑟𝑎𝑛𝑑(𝑋𝑒𝑙𝑖𝑡𝑒(𝑢−1) − 𝑋𝑖(𝑢−1) + 𝑄(𝑢−1))𝑄(𝑢−1) = 𝐴 ∗ −(1 − (2(𝑢 − 1)𝜉) (11)

In the current iteration, 𝑢 is the number of iterations, 𝑋′𝑖(𝑢−1) is the 𝑖𝑡ℎ sardine in the 𝑢 −1 iteration, 𝑋′𝑖(𝑢)is the 𝑖𝑡ℎ sardine in the 𝑢 iteration, 𝑄(𝑢−1) is the attack strength of sailfish in
the 𝑢 − 1 iteration, 𝐴 and 𝜉 are coefficients with values of 4 and 0.001, and 𝑄(𝑢−1) is the
sailfish attack strength The assault strength of sailfish affects both the quantity of updated
sardines 𝛾 and variables 𝜂. {𝛾(𝑢) = 𝑀𝑠(𝑢) ∗ 𝑄(𝑢)𝜂(𝑢) = 𝑑𝑖(𝑢) ∗ 𝑄(𝑢) (12)

In this case, 𝑑𝑖(𝑢) indicates the number of the 𝑖𝑡ℎ sardine variables in the 𝑢 iteration, while 𝑀𝑠(𝑢) indicates the number of sardines in the 𝑢 iteration.

• Hunting strategy

When the sardine's fitness is lower than the sailfish's, the sailfish's position replaces the
captured sardine's, as shown by equation (13). 𝑋𝑖(𝑢) = 𝑋𝑖(𝑢) 𝑖𝑓 𝐹(𝑋𝑖(𝑢)) > 𝐹′(𝑋′𝑖(𝑢)) (13)

In this case, the positions of the sailfish and sardine in the 𝑢 iteration are represented by
the variables 𝑋𝑖(𝑢) and 𝑋′𝑖(𝑢), respectively.

3.2.2 ISFO
In this research, the SFO algorithm is improved by adopting three different concepts, including
Inertia weight, global search formula and Levy flight strategy.

• Inertia weight
Weight inertia 𝑖𝑤 is included in the SFO algorithm’s alternating attack and pursuit phase to
improve the local search efficiency of sardines and sailfish. Based on this, the location update
equation is displayed as follows:

{𝑋𝑖(𝑢) = 𝑖𝑤(𝑢 − 1) ∗ 𝑋𝑒𝑙𝑖𝑡𝑒(𝑢−1) − 𝜆𝑖(𝑢−1) (𝑟𝑎𝑛𝑑 ∗ (𝑋𝑒𝑙𝑖𝑡𝑒(𝑢−1)−𝑋′𝑖𝑛𝑗𝑢𝑟𝑒𝑑(𝑢)2) − 𝑋𝑖(𝑢−1))𝑋′𝑖(𝑡) = 𝑟𝑎𝑛𝑑(𝑖𝑤(𝑢 − 1) ∗ 𝑋𝑒𝑙𝑖𝑡𝑒(𝑢−1) − 𝑋𝑖′(𝑢−1) + 𝑄(𝑢−1)) (14)

where the variable 𝑟𝑎𝑛𝑑 denotes random values, which span from 0 to 1. The following is
the expression for weight inertia: 𝑖𝑤(𝑡) = 𝑖𝑤𝑚𝑎𝑥 + (𝑖𝑤𝑚𝑎𝑥 − 𝑖𝑤𝑚𝑖𝑛) ∗ 𝑒𝑥𝑝 (−25 ∗ (𝑢𝑇))3 (15)

where 𝑡 and 𝑇 stand for the current and maximum number of iterations, and 𝑖𝑤 and 𝑖𝑤𝑚𝑎𝑥
for the lower and upper bounds of weight inertia 𝑖𝑤 (𝑖𝑤 = 0.4, 𝑖𝑤𝑚𝑎𝑥 = 0.9.).

• Global search formula
Throughout the population location update process, the global search formula is employed to
enhance the global search performance of the SFO algorithm while preventing it from
transitioning into local optimization. The global search can be stated numerically as:

{ 𝑋𝑖(𝑢+1) = 𝑋𝑖(𝑢) + (𝑋𝑒𝑙𝑖𝑡𝑒(𝑢) − 𝑋𝑖(𝑢)) ∗ exp (𝐹(𝑋𝑒𝑙𝑖𝑡𝑒(𝑢−1)) − 𝐹(𝑋𝑖(𝑢))) 𝑟𝑋′𝑖(𝑢+1) = 𝑋′𝑖(𝑢) + (𝑋𝑖𝑛𝑗𝑢𝑟𝑒𝑑(𝑢) − 𝑋𝑖′(𝑢)) ∗ exp (𝐹′(𝑋𝑖𝑛𝑗𝑢𝑟𝑒𝑑′(𝑢)) − 𝐹′(𝑋′𝑖(𝑢))) 𝑟 (16)

where 𝑟 is a random value between 0 and 1.

• Levy flight strategy
The Levy flight method is a random search technique that adheres to the Levy distribution and
broadens the population of algorithms. The equation given below represents the Levy flight
technique. 𝑥𝑖(𝑢+1) = 𝑥𝑖(𝑢) + 𝑆𝐿𝑒𝑣𝑦 (17)

where the sailfish or sardine's position in the 𝑢 iteration is denoted by 𝑥𝑖(𝑢). The Levy
flight's step size, or 𝑆𝐿𝑒𝑣𝑦, is represented in the equation below.

{
 𝑆𝐿𝑒𝑣𝑦 = 𝑟𝑎𝑛𝑑∗𝜁|𝑟𝑎𝑛𝑑|1 𝜏⁄𝜁 = (Γ(1+𝜏)∗sin (𝜏𝜋 2⁄)Γ(1+𝜏2)∗𝜏∗2(𝜏−12))1 𝜏⁄ (18)

where 𝜏 is a constant and the value is 1.5, 𝛤 is the gamma function. Algorithm 1 depicts the
steps involved in the selection of optimal CNs using the ISFO algorithm.

Algorithm 1: Selection of CN using multi-objective-based ISFO algorithm

Input: N number of SNs, initial population and max iterations.

Output: Selection of optimal node as ‘CN’
Initialize all the algorithm parameters

Randomly initialize the sardine and sailfish population.

 for i = 1 to N do

calculate the fitness values for sailfish and choose severe sardine to record the global

optimal solution.

 While (Selecting the CN)

 if rand>0.5

 Update the location of sailfish using the inertia weight formula in equation

(14).

 else

 Update the location of sailfish using the global search formula in equation

(16).

 if Q<0.5

 Update the location of the sardine using the inertia weight formula in

equation (14).

 else

 Update the location of sailfish using the global search formula in equation

(16).

 end if

 end if

Perform levy flight operation for updated sailfish and sardine using equation (17).

Compute the fitness value using equation (27)

Sort the fitness function

Update the elite fish and seriously injured sardines to record the global optimal

solution.

end for

 if max iteration reached (T<u)

 Output the global optimal sailfish (CN)

 else

 Repeat the process until the optimal solution is obtained.

 end if

Return optimal CNs

3.2.3 Fitness function calculation

Using a number of variables, including research into communication costs, distance, node
coverage, and residual energy, the fitness function selects the sensor nodes that are most suited
to serve as the CN. The sensor node’s residual energy is the initial goal, which is determined
using the equation below. 𝑅𝐸 = 𝑒𝑠𝑛 − (𝑒𝑐𝑜 + 𝑒𝑡𝑟𝑎𝑛𝑠 + 𝑒𝑟𝑒𝑐𝑝) (19)

Here, 𝑒𝑠𝑛, 𝑒𝑐𝑜, 𝑒𝑡𝑟𝑎𝑛𝑠 and 𝑒𝑟𝑒𝑐𝑝 signifies the total energy of the sensor node, energy used
for data collection, energy utilized for data transmission and energy used for data reception,
respectively. Finally, this is mentioned in the equation given below. 𝑀𝑎𝑥 (𝐹1(𝑥)) = 1𝑆𝑁𝑡∑ 𝑅𝐸(𝑋𝑦)𝑥𝑦=1 (20)

Here, 𝑆𝑁𝑡 mentions the number of sensor nodes. The second objective function is node
coverage, which is calculated based on the equation given below. 𝑁𝐶 = 𝑅(𝑋𝑦) (21)

Here, 𝑅(𝑋𝑦) is the radius of the sensor node, which is mentioned as the second objective,
and it is mathematically expressed as follows: 𝑀𝑎𝑥 (𝐹2(𝑥)) = 1𝑆𝑁𝑡∑ 𝑁𝐶(𝑋𝑦)𝑥𝑦=1 (22)

The third objective function is distance, which is also known as node proximity, and it is
computed based on the equation given below. 𝑁𝑃 = 1𝑆𝑁𝑡∑ 𝑁𝑛(𝑥, 𝑦)1−𝑆𝑁𝑡𝑦=1 (23)

Here, the distance between the nodes is mentioned as 𝑁𝑛(𝑥, 𝑦) and the third objective
function is defined in the given equation below.

𝑀𝑖𝑛 (𝐹3(𝑥)) = 1𝑆𝑁𝑡∑ 𝑁𝑃(𝑋𝑦)𝑥𝑦=1 (24)
Finally, communication costs are considered the fourth objective function. This function

calculates the cost of the node used to communicate with the neighboring node. 𝐶𝐶 = 𝑑𝑎𝑣𝑔2𝑑𝑟2 (25)
The node's average distance is represented by 𝑑𝑎𝑣𝑔2 , while the nearest node's average

distance is represented by 𝑑𝑟2. Based on this, the fourth objective function is computed based
on the equation given below. 𝑀𝑖𝑛 (𝐹4(𝑥)) = 1𝑆𝑁𝑡∑ 𝐶𝐶(𝑋𝑦)𝑥𝑦=1 (26)

The preceding equations show that the first two aims are in contradiction with the next two.
Because two are minimal functions, and two are maximum functions that should be avoided.
For that, the objection function should be either maximum or minimum. In this research, the
final objective function is to be a maximum value, and based on that, the final fitness function
is calculated using equation (27). 𝐹(𝑥) = 𝑚𝑎𝑥 (𝑤1𝐹1(𝑥)+𝑤2𝐹2(𝑥))(𝑤3𝐹3(𝑥)+𝑤4𝐹4(𝑥)) (27)

Since the user is expected to supply the weights, the approach is known as the priori
approach here, where the value of ∑𝑤𝑖 = 1. The suggested ISFO algorithm's flowchart for the
best CN selection in SDWSN is shown in Figure 2.

Figure 2: Flowchart of the proposed model for CNs selection in SDWSN

3.3 FCM algorithm for node clustering

The clustering technique has two stages: setup and “data transmission.” The tasks performed
during the setup phase include cluster construction and CH selection. The sensor nodes in each
cluster supply the CHs with data during the data transmission stage. The CHs then combine
and fuse the data, compress it, and send it to the BS. The cluster in this study is constructed
using the FCM methodology. A centralized clustering mechanism is the FCM clustering
protocol. After the BS computes and clusters sensor nodes according to their geographic
coordinates, the sensor node with the highest residual energy inside the cluster is assigned the
CH position. 𝑁 sensor nodes arranged in a network into 𝑐 clusters: 𝐶1, 𝐶2, … 𝐶𝑐. The following
objective function was reduced using the cluster creation technique. 𝐽𝑚 = ∑ ∑ 𝑢𝑖𝑗𝑚𝑑𝑖𝑗2𝑁𝑗=1𝑐𝑖=1 (28)

where 𝑚 is the fuzzified parameter, 𝑑𝑖𝑗 is the distance between node 𝑗 and the cluster 𝑖
center point, and 𝑢𝑖𝑗is the node 𝑗′s degree of cluster 𝑖 membership. The following formula
computes and fuzzifies the degree 𝑢𝑖𝑗 of node j with regard to cluster 𝑖 using the real number 𝑚 > 1. 𝑢𝑖𝑗 = 1∑ (𝑑𝑖𝑗𝑑𝑘𝑗)2/(𝑚−1)𝑐𝑘=1 (29)

Sensor node to center point distance is Euclidean distance. Limiting geographic distance
optimizes node cluster dispersion and energy balance.

Phase1: Cluster formation
In one application scenario, 𝑀 ×𝑀 𝑚𝑚 is covered by N sensor nodes that are haphazardly
placed around the field. These sensor nodes transmit an advertising message to the base station
(BS) at the beginning of this phase, containing their position and remaining energy. The BS
assigns sensor nodes to clusters and identifies cluster centers based on data from the sensor
nodes using the FCM approach. Each node is not fully part of a single cluster; instead, it is
given a level of cluster belongingness. So, nodes that are closer to the edge of a cluster may
join it with a degree that is close to the degree of belonging to the next cluster. After the
grouping process, the BS chooses the CH node as the one with the most remaining energy in
each cluster.

Phase 2: Data transmission

After setting the transmission plan, all nodes get the assignment message. Sensor nodes will
gather and communicate data to CHs. The FCM algorithm maximizes cluster member node
transmission power by finding the shortest path to CHs. Time-scheduled cluster member nodes
only turn on their radio component when sending data packets and off when sending packet.
The BS only gets compressed data bits; the CH level is where data fusion and aggregation
happen. The effect is that less information is sent across the network, which means less energy
is used. [25].

4. Simulation results and analysis

This part explains the result of the proposed method, which demonstrates the effectiveness of
the introduced system compared to other methods. The simulations are carried out using the
MATLAB tool. The experiments are performed using the Matlab tool installed in the personal
computer (PC) with 12GB RAM. The tests were kept running on an Intel(R) Core (TM) i7-
8700CPU@3.20GHz processor with the 64-bit operating system, x64-based processor. This
display does not support pen or touch input. The proposed methodology's effectiveness is
proved through an evaluation and comparison to competing techniques in terms of several
performance measures. These metrics include total energy consumption, node-to-controller

mailto:i7-8700CPU@3.20GHz
mailto:i7-8700CPU@3.20GHz

latency, remaining energy, average energy consumption, number of alive nodes, packet delivery
ratio, synchronization cost, network lifetime, and average latency. Tables 2 and 3 list the system
parameters and simulation parameters of the proposed method.

Table 2: System parameters of the proposed method

Scenarios No. of

sensors

Deployment

area (m2)

Optimal

controllers

Scenario 1 100 100x100 3

Scenario 2 200 300x300 6

Scenario 3 300 500x500 8

Scenario 4 400 700x700 10

Scenario 5 500 1000x1000 12

Table 3: Simulation parameters of the proposed method

Parameters Values

Area of deployment 100 × 100 (m2) to 1000 × 1000 (m2)

Initial energy utilized 1-2 Joules

Number of sink nodes 1

Number of sensor nodes 100-500

Data packets size 512x512

Packet length 250

Transmission distance 75m

Table 4: Algorithmic parameters and their values of existing and proposed methods

Methods Parameters Values

GA Population size

Chromosome length

Number of iterations

Selection and crossover rate

Mutation rate

50

16

200

0.8

0.2

SA Population size

Hydration rate

Number of iterations

Initial temperature

Termination temperature

50

0.8

500

1000

0.01

ABP-CO Number of iterations

Initial population

Step length

Levy distribution parameter

100

100

0.01

1.5

SFO-CS Number of initial populations

Maximum iteration

A 𝜀

50

50

4

0.01

ISFO

(Proposed)

Number of initial populations

Maximum iteration 𝑟𝑎𝑛𝑑

A 𝜀

50

50

0 to 1

4

0.001

0.4 and 0.9

Inertia weight (𝑢𝑚𝑖𝑛) and (𝑢𝑚𝑎𝑥)
r 𝜏

Step size of the Levy flight

0 to 1

1.5

0.01

Table 4 lists the existing and proposed algorithm’s parameters and their values. Based on
the system parameters, the network model with optimal controller selection is displayed in
Figure 3. Figure 3 represents the node visualization for 100 nodes.

Figure 3: Visualization of controller selection in SDWSN for 100 nodes

4.1 Performance analysis with existing methods

The performance of the suggested method was briefly discussed in this section using a variety
of performance parameters, including convergence analysis, average energy consumption,
packet delivery ratio vs. rounds, latency vs. rounds, number of alive nodes vs. rounds,
synchronization cost vs. nodes, total energy consumption, average latency vs. nodes, rounds
until first node dies vs. number of rounds, and energy consumption analysis vs. nodes.

Figure 4: Convergence analysis

The convergence study of the suggested approach with the current methodologies is shown
in Figure 4. The suggested approach converges at the tenth iteration in this case, while the
current SFO-CS algorithm converges at the fifteenth iteration after a total of fifty iterations.
This is due to the advantage of the IFSO algorithm, which improves the solution speed as well
as search performance.

(a)

(b)

(c)

Figure 5: Energy consumption analysis

The performance of the suggested model is tested against current techniques such as
Adaptive Population-Based Cuckoo Optimization (APB-CO) for optimal controller placement
[26] and SFO-CS [18] algorithms. Figure 5 shows the energy consumption analysis against the
number of rounds. The average and total energy consumption of the suggested methods are
shown in Figures 5(a) and 5(b). The investigation shows that energy use is far lower than
current models. Similarly, the remaining energy level is shown in figure 5(c), which is far
higher than the models that are currently in usage.

The amount of rounds is used to figure out the packet delivery ratio, which is shown in
Figure 6. It is the number of packets that were delivered out of all the packets that were sent
from the source node to the target node in the network. This analysis was also compared with
the APB-CO and SFO-CS techniques. The study of the graph shows that the suggested method
has a much higher packet delivery rate than the current methods.

Figure 6: Performance analysis of packet delivery ratio

Figure 7: Performance analysis of node-to-controller latency (s) vs number of rounds

Figure 7 displays the node-to-controller latency analysis of the proposed methodology
against the number of rounds. Worst-case latency is defined as the maximum propagation delay
from node to controller. The number of rounds varies from 50 to 500 in this analysis. Because
there are fewer forwarding nodes available, latency increases with a decrease in the number of
nodes. Similarly, there is less of a gap between nodes. Packet delivery time’s decrease as the
number of nodes rises since there are more forwarding nodes available and the distance is
shorter. The investigation demonstrates that the suggested model's latency is significantly less
than that of the current APB-CO and SFO-CS techniques.

Figure 8: Number of alive nodes vs number of rounds

Figure 8 shows the number of alive nodes compared to the number of rounds. The suggested
approach outperforms the current approaches, such as APB-CO and SFO-CS, during the 2500
rounds of analysis.

Figure 9: Synchronization cost vs number of nodes

Figure 9 displays the performance analysis of synchronization cost against number of
nodes. Generally, the synchronization cost is calculated based on two parameters:
synchronization delay and synchronized data transmission. The synchronization delay is the
time it takes for one controller to learn about an event that another controller set off. It also
includes the amount of synchronization data that is sent between controllers. The range of
nodes in this instance is 100 to 500. Also, the proposed method is compared against existing
methods like Simulated Annealing (SA), Greedy Approach (GA), and ABP-CO. For 100 nodes,
the synchronization cost of the proposed methodology is 30; for 200 nodes, it is 38; and for
500 nodes, the synchronization cost is 45. The investigation indicates that the suggested
methodology's synchronization cost is significantly less than that of the current models.

 Figure 10: Network lifetime comparison vs number of nodes

A comparison of the network lifetime and node count is shown in Figure 10. It is obvious
that node density must be used to increase the lifespan of networks. The present analysis
employs the FCM clustering technique to carry out the node clustering procedure, whereby the
nodes' minimalized transmission and residual energy are identical to those of HEED and

Hausdorff clustering [27]. All of the nodes use less energy because there is less space between
the CNs and the sensor nodes. Consequently, the suggested approach's lifetime is increased in
comparison to the current clustering process approaches.

4.2 Parametric study for the proposed methodology

The parametric study of the suggested methodology utilizing several performance metrics, such
as energy usage, packet delivery ratio, and delay, is briefly covered in this part. Also, this
analysis is performed by varying network size from 100 to 500 nodes, varying deployment area
from 100x100 to 1000x1000 and varying number of rounds from 500 to 2500 rounds. In
addition, the performance analysis is taken for varying numbers of controllers against packet
delivery ratio, energy consumption and latency analysis. The primary purpose of these analyses
is to demonstrate how well the suggested methodology works with various performance
metrics.

(a)

(b)

(c)

Figure 11: Performance analysis of proposed methodology vs number of nodes

Figure 11 shows the results of the performance analysis of the suggested methodology
utilizing several factors, including (a) energy usage, (b) packet delivery ratio, and (c) delay.
Here, the number of nodes varied from 100 to 500, and the network area varied from
100x100m2 to 1000x1000m2. Figure 11(a) shows the energy consumption analysis, which
shows that as the number of nodes increases, so does the energy consumption. The packet
delivery ratio vs the number of nodes for various region deployment ranges is shown in Figure
11(b). This study shows that the suggested model's packet delivery rate goes up as the area size

and sensor node range get bigger. As the number of nodes and deployment area go up, so does
the packet delivery ratio. This is because as the number of nodes goes up, the network gets
faster. Lastly, the latency analysis is displayed in Figure 11(c), which means that as the number
of nodes goes up, the delay goes down. This is because the rate at which packets are sent slows
down as the number of nodes increases, which causes the variable number of nodes to
experience less latency.

(a)

(b)

(c)

Figure 12: Performance analysis of proposed methodology vs number of nodes

The performance analysis of the suggested methodology by different numbers of rounds is
shown in Figure 12. The number of rounds varies from 500 to 2500 in this instance. The
suggested approach uses more energy as the number of network rounds goes up, as shown in
Figure 12(a) of this study. Figure 12(b) shows the packet delivery ratio versus the number of
rounds. It shows that the suggested model's delivery ratio is better as the number of rounds
moves upwards. Finally, latency analysis is shown in Figure 12(c), which shows that latency
decreases with increasing number of rounds. This is due to node density, which reduces the
distance between each node. As a result, the latency of the proposed model becomes lesser for
the increasing number of network rounds.

Figure 13 displays the performance analysis of selecting optimal CNs from varying network
sizes. The analysis shows that there are 3 CNs that are optimally selected for 100 nodes.
Likewise, 6 CNs, 8 CNs, 10 CNs and 12 CNs are optimally selected for 200, 300, 400 and 500

nodes, respectively. The selection of CNs in each network size is enough for efficient data
transmission, and this is proven by the performance analysis graphs in Figure 14.

Figure 13: Number of nodes vs number of controllers

(a)

(b)

(c)

Figure 14: Performance analysis of proposed methodology vs number of controllers

Figure 14 shows the results of the performance analysis of the suggested methodology using
a variety of factors, including (a) energy usage, (b) packet delivery ratio, and (c) latency. This

analysis is taken for the optimally selected CNs from the sensor nodes. The energy consumption
analysis, as shown in Figure 14(a), reveals that the power consumption rises in direct
proportion to the number of controllers. The packet delivery ratio against a few controllers for
different area deployment ranges is shown in Figure 14(b). This analysis shows that as the
range of controllers and area size rise, so does the packet delivery ratio of the suggested model.
Finally, the latency analysis is displayed in Figure 14(c), which indicates that the latency
decreases with the increasing number of nodes. This is due to the fact that the increasing node
density decreases the packet transmission rate, which results in less latency for the varying
number of controllers in each network size.

5. Conclusion
This study proposed an ISFO method to select the best CNs from a large number of sensor
nodes. To determine the optimal CN, a multi-objective function was designed that combines
node coverage, communication cost, node distance, and residual energy of the nodes. The FCM
clustering technique was used to accomplish both the clustering and data transfer processes
after the optimal CN was completed. Furthermore, the performance of the suggested
methodology was assessed using several performance characteristics such as energy
consumption, synchronization cost, average latency, and network lifetime. From the analysis,
it was known that the proposed ISFO method consumes 0.13mJ, which was comparatively
lesser than the existing SFO-CS and APB-CO algorithms as they consume 0.42mJ and 0.53mJ
for 500 nodes, respectively. In a similar vein, both the average latency of the suggested
approach and the packet delivery ratio of the proposed model were considerably lower than
those of the present approaches. In the future, the proposed methodology will be evaluated on
the different scenarios and versions of the network with multiple mobile sink nodes.

Compliance with Ethical Standards

Funding: No funding is provided for the preparation of manuscript.
Conflict of Interest: Authors declare that they have no conflict of interest.
Ethical Approval: This article does not contain any studies with human participants or animals
performed by any of the authors.
Consent to participate: All the authors involved have agreed to participate in this submitted
article.
Consent to Publish: All the authors involved in this manuscript give full consent for
publication of this submitted article.
Authors Contributions: All authors have equal contributions in this work.
Data Availability Statement: Data sharing not applicable to this article.

References

[1] Vishnu, V. M., & Manjunath, P. (2019). SeC‐SDWSN: Secure cluster‐based SDWSN
environment for QoS guaranteed routing in three‐tier architecture. International Journal of
Communication Systems, 32(14), e4020.

[2] Cui, X., Huang, X., Ma, Y., & Meng, Q. (2019). A load balancing routing mechanism based
on SDWSN in smart city. Electronics, 8(3), 273.

[3] Letswamotse, B. B., Malekian, R., Chen, C. Y., & Modieginyane, K. M. (2018). Software
defined wireless sensor networks (SDWSN): a review on efficient resources, applications
and technologies. Journal of Internet Technology, 19(5), 1303-1313.

[4] Alves, R. C., Oliveira, D. A., Pereira, G. C., Albertini, B. C., & Margi, C. B. (2018). WS3N:
wireless secure SDN-based communication for sensor networks. Security and
Communication Networks, 2018.

[5] Abdou, A., Van Oorschot, P. C., & Wan, T. (2018). Comparative analysis of control plane
security of SDN and conventional networks. IEEE Communications Surveys &
Tutorials, 20(4), 3542-3559.

[6] Kgogo, T., Isong, B., Lugayizi, F., & Abu-Mahfouz, A. M. (2021). A survey of resource
allocation and controller placement problem in SDN-SDWSN. In 2021 3rd International
Multidisciplinary Information Technology and Engineering Conference (IMITEC), 1-8.
IEEE.

[7] Kobo, H. I. (2018). An efficient distributed control system for software-defined wireless
sensor networks (Doctoral dissertation, University of Pretoria).

[8] Shiny, S. S. G., Priya, S. S., & Murugan, K. (2021). Repeated game theory-based reducer
selection strategy for energy management in SDWSN. Computer Networks, 193, 108094.

[9] Wang, R., Zhang, Z., Zhang, Z., & Jia, Z. (2018). ETMRM: An energy-efficient trust
management and routing mechanism for SDWSNs. Computer Networks, 139, 119-135.

[10] Ali, J., & Roh, B. H. (2021). Quality of service improvement with optimal software-
defined networking controller and control plane clustering. Comput. Mater. Contin, 67,
849-875.

[11] Ali, J., Roh, B. H., & Lee, S. (2019). QoS improvement with an optimum controller
selection for software-defined networks. Plos one, 14(5), e0217631.

[12] Letswamotse, B. B., Malekian, R., Chen, C. Y., & Modieginyane, K. M. (2018). Software
defined wireless sensor networks and efficient congestion control. IET Networks, 7(6), 460-
464.

[13] Tahmasebi, S., Safi, M., Zolfi, S., Maghsoudi, M. R., Faragardi, H. R., & Fotouhi, H.
(2020). Cuckoo-PC: an evolutionary synchronization-aware placement of SDN controllers
for optimizing the network performance in WSNs. Sensors, 20(11), 3231.

[14] Samarji, N., & Salamah, M. (2021). A fault tolerance metaheuristic‐based scheme for
controller placement problem in wireless software‐defined networks. International Journal
of Communication Systems, 34(4), e4624.

[15] Firouz, N., Masdari, M., Sangar, A. B., & Majidzadeh, K. (2021). A novel controller
placement algorithm based on network portioning concept and a hybrid discrete
optimization algorithm for multi-controller software-defined networks. Cluster
Computing, 24, 2511-2544.

[16] Shiny, S. S. G., & Murugan, K. (2021). TSDN-WISE: Automatic threshold-based low
control-flow communication protocol for SDWSN. IEEE Sensors Journal, 21(17), 19560-
19569.

[17] Jurado-Lasso, F. F., Clarke, K., Cadavid, A. N., & Nirmalathas, A. (2021). Energy-aware
routing for software-defined multihop wireless sensor networks. IEEE Sensors
Journal, 21(8), 10174-10182.

[18] Rajoriya, M. K., & Gupta, C. P. (2023). Sailfish optimization-based controller selection
(SFO-CS) for energy-aware multi-hop routing in software defined wireless sensor network
(SDWSN). International Journal of Information Technology, 15(7), 3935-3948.

[19] Hajian, E., Khayyambashi, M. R., & Movahhedinia, N. (2022). A mechanism for load
balancing routing and virtualization based on SDWSN for IoT applications. IEEE
Access, 10, 37457-37476.

[20] Sathyamoorthy, M., Kuppusamy, S., Dhanaraj, R. K., & Ravi, V. (2022). Improved K-
means based q learning algorithm for optimal clustering and node balancing in
WSN. Wireless Personal Communications, 122(3), 2745-2766.

[21] Yan, X., Huang, C., Gan, J., & Wu, X. (2022). Game theory-based energy-efficient
clustering algorithm for wireless sensor networks. Sensors, 22(2), 478.

[22] Tahmasebi, S., Rasouli, N., Kashefi, A. H., Rezabeyk, E., & Faragardi, H. R. (2021).
SYNCOP: An evolutionary multi-objective placement of SDN controllers for optimizing
cost and network performance in WSNs. Computer Networks, 185, 107727.

[23] Rahimifar, A., Seifi Kavian, Y., Kaabi, H., & Soroosh, M. (2021). Predicting the energy
consumption in software defined wireless sensor networks: a probabilistic Markov model
approach. Journal of Ambient Intelligence and Humanized Computing, 12, 9053-9066.

[24] Shadravan, S., Naji, H. R., & Bardsiri, V. K. (2019). The Sailfish Optimizer: A novel
nature-inspired metaheuristic algorithm for solving constrained engineering optimization
problems. Engineering Applications of Artificial Intelligence, 80, 20-34.

[25] Abdulzahra, A. M. K., & Al-Qurabat, A. K. M. (2022). A clustering approach based on
fuzzy C-means in wireless sensor networks for IoT applications. Karbala International
Journal of Modern Science, 8(4), 579-595.

[26] Qaffas, A. A., Kamal, S., Sayeed, F., Dutta, P., Joshi, S., & Alhassan, I. (2023). Adaptive
population-based multi-objective optimization in SDN controllers for cost
optimization. Physical Communication, 58, 102006.

[27] Xiang, W., Wang, N., & Zhou, Y. (2016). An energy-efficient routing algorithm for
software-defined wireless sensor networks. IEEE Sensors Journal, 16(20), 7393-7400.

