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Abstract
Objective

We determined whether the pathogenesis of perimenopausal depression (PMD) is associated with
allopregnanolone (3a,5a-THR, ALLO) mediated GABAA receptors subunits expression changes in different
brain regions. Simultaneously, we aimed to investigate the therapeutic efficacy and intervention
mechanisms of the flavonoid rutin in treating PMD.

Methods

The PMD rat model was established by ovariectomy surgery followed by chronic unpredictable mirutin
stress processes. ALLO was administered via intraperitoneal injection to increase ALLO levels in PMD
rats, while rutin was administered via oral gavage for PMD treatment. Behavioral assessments, including
open-fierutin test, sucrose preference test, and forced swimming test, were conducted to evaluate
depressive-like behaviors in rats. ELISA was employed to measure the levels of E2, 5-HT, NE, ALLO, and
GABA in the serum. Quantitative PCR was used to assess the mRNA expression of Gabra4, Gabrb2, and
Gabrd in the prefrontal cortex, hippocampus, hypothalamus, and amygdala.

Results

The PMD rats exhibited depressive-like behavior, with decreased levels of E2, 5-HT, NE, ALLO, and GABA in
the serum. The mRNA expression of Gabra4 and Gabrb2 increased in the prefrontal cortex, hippocampus,
and hypothalamus of PMD rats, while Gabrd showed a increase in the hypothalamus and amygdala.
ALLO improved depressive-like behavior and increased serum levels of E2, 5-HT, NE, and ALLO in PMD
rats. ALLO acted on PMD rats, reduced mRNA expression of Gabra4 and Gabrb2 in the prefrontal cortex,
increased MRNA expression of Gabrd in the prefrontal cortex, elevated mRNA expression of Gabra4 and
Gabrd in the hippocampus, and decreased Gabrb2 mRNA expression in the hypothalamus.Rutin improved
depressive-like behavior in PMD rats, increased serum levels of 5-HT and ALLO, and decreased mRNA
expression of Gabra4 and Gabrb2 in the prefrontal cortex.

Conclusion

ALLO-mediated mRNA expression of Gabra4, Gabrb2 in the prefrontal cortex, and Gabrb2 in the
hypothalamus is one of the pathological mechanisms in PMD. ALLO can improve depressive symptoms
in PMD rats. Rutin (8.65 mg/kg) exerts a therapeutic effect on PMD by upregulating serum ALLO levels,
subsequently downregulating mRNA expression of prefrontal cortex Gabra4 and Gabrb2.

1. Introduction
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Depression is an emotional disorder, and the probability of females experiencing depression is twice that
of males[1]. The perimenopausal period is a susceptible time for depression. In China, the detection rate
of depressive symptoms in perimenopausal women is 36.0-41.6%[2]. A meta-analysis found that the
prevalence of depression during the perimenopausal period is 42.47% in India[3].The perimenopausal
period refers to the time in women from the onset of menopause to within 12 months after menopause.
During this stage, ovarian function begins to decline, and women often exhibit symptoms such as
depressive emotions, melancholy, chest tightness, palpitations, hot flashes, etc. Due to continuous
pressure from various aspects such as family and society, depressive emotions are difficult to self-relieve,
gradually developing into (perimenopausal depression, PMD)[4].

The pathogenesis of PMD primarily involves various factors such as epigenetic changes, monoamine
neurotransmitter and receptor hypothesis, glial cell-induced neuroinflammation, estrogen receptor,
interaction between the HPA axis and HPG axis, and the microbiota-gut-brain axis[5]. The specific
pathogenic mechanisms of PMD remain unclear, and exploring novel research directions may represent
the optimal approach to elucidate the precise etiology of PMD. Allopregnanolone (3a,5a-THP, ALLO), a
neurosteroid derived from progesterone and cholesterol, undergoes cyclic fluctuations during the female
physiological cycle and plays a crucial role in emotional disorders in women[6]. Research indicates that
aberrant fluctuations in ALLO levels cause premenstrual anxiety and depressive emotions|7]. The
reduction in ALLO levels is considered a crucial pathogenic mechanism in postpartum depression, and
Brexanolone injection (GABA-A receptor-modulating allopregnanolone) is employed as a therapeutic
medication for postpartum depression[8, 9]. ALLO acts as a positive allosteric modulator of GABAA
receptors (GABAAR), modulating the chloride ion channel of GABAAR to regulate overall inhibitory
activity[10]. As a result, ALLO exhibits anxiolytic and antidepressant effects. ALLO-mediated expression
of GABAAR subunits is one of the pathological mechanisms underlying various emotional disorder in
women, including premenstrual dysphoric disorder and postpartum depression. Sun[11] discovered that
ALLO mediated sensitivity of GABAAR a4 subunit plays a significant role in premenstrual dysphoric
disorder. The biological mechanisms underlying postpartum depression are elucidated by numerous
studies indicating that significant fluctuations in ALLO levels can induce alterations in the expression of
GABAAR subunits[12]. Upon reviewing literature related to PMD, we identified a close correlation between
ALLO levels and the onset of PMD. The serum levels of ALLO were found to decrease in perimenopausal
women[13], and PMD-afflicted women exhibited lower ALLO levels compared to their healthy
perimenopausal counterparts[14]. Simultaneously, a study identified a decrease in mRNA levels of
GABRG2, possibly associated with an increased susceptibility to PMD[15]. Up to the present, there is a
notable absence of research reports investigating the role of ALLO in mediating the expression of
GABAAR subunits within the pathological mechanism of PMD.

Rutin, a flavonoid compound with sedative, anticonvulsant, and antidepressant properties, is found in
various natural plants including Forsythia suspensa, Hypericum monogynum, buckwheat, and sophora
flower buds[16].lbrahim M Ibrahim[17] discovered that rutin can alleviate depressive behavior in mice
subjected to chronic stress. Arun Parashar[18] discovered that rutin exhibits antidepressant effects by

protecting neurons in the hippocampal region of mice with depression. Rutin has been found to exhibit
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antidepressant effects by inhibiting monoamine oxidase expression, attenuating HPA axis hyperactivity,
improving monoaminergic neurotransmitter and brain-derived neurotrophic factor levels, and influencing
cholinergic, glutamatergic, and GABAergic systems, ultimately alleviating cognitive impairments and
promoting neuroprotection[16, 19, 20]. Existing evidence indicates that rutin has demonstrated potential
as a neuroprotector both in vivo and in vitro. However, there is currently no study demonstrating the
therapeutic efficacy of rutin in treating PMD.

2. Methods
2.1 Study design’

The focus of this study is to explore the pathological mechanisms of PMD and investigate the
pharmacological efficacy as well as the intervention mechanisms of rutin. This study is comprised of
three experiments. Experiment one involves the establishment of PMD rat model and the exploration of
the pathological mechanisms of PMD. Experiment two aims to validate the preliminary hypotheses
regarding the pathological mechanisms by administering ALLO to PMD rats. Experiment three focuses on
investigating the therapeutic efficacy and intervention mechanisms of rutin in treating the PMD rats.
Figure 1 illustrates the diagram of the study design.

2.2 Animals and establishment of PMD rats

Specific pathogen free (SPF) grade female SD rats (8 weeks orutin, 200-300g) was used in this study,
animal license number: SCXK(Beijing)2019-0008. All animals were purchased from the BEIJING HFK
BIOSCIENCE CO.,LTD (Beijing, China), and housed at 21 + 2°C and 45 + 10% relative humidity under a
12:12 h light/dark cycle with food and water available ad libitum. The animals were habituated to
maintenance conditions for 1 week and handled daily to eliminate the human factor.

The PMD rat model was established by ovariometry (OVX) followed by chronic unpredictable mirutin
stress (CUMS) processes[21]. After 1 week of adaptive feeding, rats were anesthetized using a 3% sodium
pentobarbital intraperitoneal injection. Subsequently, the rats were depilated, and an incision was made in
the lower third of the abdomen to locate the uterus, which was Y-shaped. We then removed both ovaries
and sutured the incision[22]. For the sham control group, the operation was the same as the bilateral
ovarian ablation, but only fat around the bilateral ovaries was removed.

1-2 weeks after OVX, CUMS treatment was administered. Briefy, the rats were exposed to stress stimuli,
including water deprivation (24 h), food deprivation (24 h), white noise (15 min), wet cage (24 h), odor
(mothball, 12 h), restricted food (1 h), empty bottle (1 h), strange items (12h), crowded living (12 h), tail
nipping (1 min), restricted activity (2 h), continuous light (24 h), which lasted for 5 weeks. During the
intervention, the operators need to ensure that stress is unpredictable. One or two stress stimulation was
randomly given every day, and the same stress did not appear again within 3 days.
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2.3 Drug treatment regimen

PMD rats were injected (intraperitoneally) with either ALLO (10 mg/kg in sesame oil, once each morning
(between 9:00 AM and 10:00 AM) over a 48-h period for a total of three injections during this period.
Control group rats were given the same number of injections of vehicle (sesame oil), rats were behavioral
tested 0.5 h after the final hormone injection[11].

Drug treatment (i.g.) was administered 0.5h earlier than stresses every morning.The rats (experiment 3)
were randomly into allocated six groups: Sham (distilled water), model (PMD + distilled water), positive
control (PMD + Fluoxetine, 1.8mg/kg/day), low-dose rutin (HPLC = 98%) (PMD + rutin, 8.65mg/kg/day),
medium-dose rutin (PMD + rutin, 39.325mg/kg/day), and high-dose rutin (PMD + rutin, 70mg/kg/day).

2.4 Behavioral Assessments
2.4.1 Open fierutin test,OFT

The Open-Fierutin Test (OFT) protocol was performed as previously described[11]. An opaque laboratory
box was divided into 9 squares of equal size. Each rat was gently placed in the center of the test area,
observed for 6 min, and recorded the total distance and rest time of rats by camera. After each test, the
test box was cleaned with 75% ethanol.

2.4.2 Sucrose preference test,SPT

The hallmark symptom of depression is pleasure deficiency, quantified by measuring the reward sweet
taste solution (saccharin or sucrose) in rodents[23]. Before the formal experiment, rats were subjected to
3-day adaptive training. On the first day, two bottles of 1% sucrose water were placed in each cage. On the
second day, one bottle of 1% sucrose water and one bottle of water were placed in each cage. On the third
day, all rats were fasted and water deprived for 24 hours. After 24 h, a formal experiment was conducted,
giving each rat one bottle of 1% sucrose water and one bottle of water. Each bottle was filled with 100ml,
and one hour later, the water bottle was removed and the amount of sugar and water consumed by the
rats was read. The sucrose preference rate was calculated, which was sugar consumption/(sugar
consumption + pure water intake) x 100%.

2.4.3 Force swimming test, FST

The Force swimming test (FST) protocol was performed as previously described[24]. Each rat was
individually placed into a transparent glass container with a depth of 50 cm, ensuring that the limbs and
tail of the rat courutin not touch the bottom of the container. The water temperature was maintained at
25°C. The total duration of the experiment was 6 minutes, the first 2 minutes served as an adaptation
period for the rat, while the subsequent 4 minutes constituted the formal experiment. The cumulative
immobility time of each rat was observed. After the completion of each rat's test, the water was replaced,
and the glass container was thoroughly cleaned to avoid any impact on subsequent experiments.

2.5 Serum of ELISA
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Determination of 5-HT, NE, E2, ALLO, and GABA in rat serum using enzyme-linked immunosorbent assay
(ELISA) content. Rat whole blood samples were collected using sterile tubes, placed at room temperature
for 0.5 h, and centrifuged at (3500 rpm) for 20 min. The supernatant was extracted, or the samples were
stored at - 80°C, but repeated freeze—thaw shourutin be avoided. Using a SpectraMax iD5, absorbance at
450 nm was used to determine the levels of 5-HT, NE, E2, ALLO, and GABA expression in serum.

2.6 Quantitative PCR

Total RNA was extracted from the prefrontal lobe, hypothalamus, amygdala, and hippocampus using the
RNA Isolation Kit V2 (RC112-01 50 rns, Vazyme, China) and transcribed into cDNA using HiScript RT
SuperMix for gPCR (R323, Vazyme, China). RT-qPCR was performed using an Quantstudio 3 and ChamQ
SYBR aPCR Master Mi (Q311, Vazyme, China). The relative mRNA expression level of each target gene
was calculated using the 2 - AACT method. The primers for the gene fragment were designed as follows:

GapdhF: 5GAAGGTOGOTGTGAACGCAT3'
GapdhR: 5'CCCATTTGATGTTAGCGGGAT3'
Gabra4F: 5GACCGTGTACTTTCACCTCAGA3'
Gabra4R: SATGCTTAGGGTGGTCATCGT3'
Gabrb2F: 5TGGACCTAAGGCGGTATCCA3'
Gabrb2R: 5GACTGCATTGTCATCGCCACS'
GabrdF: 5'CCAAGTCTGCCTGGTTCCAT3'

GabrdR: 5TAGCTCTCCAGGTCCAGCAT3'

2.7 Statistical Analyses

Data are shown as mean * standard deviation (SD). All analyses were carried out using the Graph pad
prism 9.0.0 software. One-way ANOVA and t tests were used where necessary to analyze differences
between mean values. The significance levels were set at: *p < 0.05, **p < 0.01,***p < 0.001.

3. Results

3.1 Pathological mechanism and establishment of PMD
rats

3.1.1 Behavioral Assessments and ELISA

Behavioral assessments revealed that compared to the sham group, the OVX + CUMS group exhibited a
significant decrease in total distance of the OFT and sucrose preference rate (p < 0.05, p<0.01; Fig. 2A,
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2C). Moreover, total rest time in the OFT and the immobility time in the FST significantly increased (p <
0.07; Fig. 2B, 2D). ELISA results demonstrated that compared to the sham group, the OVX + CUMS group
exhibited a significant decrease in serum levels of E2, 5-HT, NE, ALLO, and GABA (p<0.01, p<0.05,p<
0.05,p<0.01, p<0.05; Fig. 2E-2).

3.1.2 Quantitative PCR

Quantitative PCR results indicated that compared to the sham group, the OVX + CUMS group exhibited a
significant increase in mMRNA expression of Gabra4 in the prefrontal cortex, hippocampus, and
hypothalamus (P<0.01, P<0.001, P<0.01; Fig. 3A-3C); mRNA expression of Gabrb2 in the prefrontal
cortex, hippocampus, and hypothalamus showed a significant increase (P<0.01, P<0.001, P<0.01; Fig.
3E-3G), as did the mRNA expression of Gabrd in the hypothalamus and amygdala (P <0.05, P < 0.01; Fig.
3K, 3M).

3.2 The effect of ALLO on PMD rats
3.2.1 Behavioral Assessments and ELISA

Following ALLO intervention, the vehicle - ALLO group exhibited a significant reduction in immobility time
of FST (P <0.05, Fig. 4A) and a significant increase the levels of E2, 5-HT, NE, and ALLO in serum
compared to the vehicle group (P < 0.05, Fig. 4B-4E).

3.2.2 Quantitative PCR

Quantitative PCR results revealed that compared to the vehicle group, the vehicle - ALLO group exhibited a
significant decrease in Gabra4 mRNA expression in the prefrontal cortex (P < 0.05, Fig. 5A). There was a
significant increase in Gabra4 mRNA expression in the hippocampus (P < 0.05, Fig. 5B). Moreover, there
was a significant decrease in Gabrb2 mRNA expression in the prefrontal cortex and hypothalamus (P <
0.05; Fig. 5E, 5G), while there was a significant increase in Gabrd mRNA expression in the prefrontal
cortex and hippocampus (P <0.01, P < 0.05; Fig. 5I, 5J).

3.3 The treatment effect and mechanism of rutin on PMD
rats

3.3.1 Behavioral Assessments

Behavioral assessments revealed that compared to the model group, the fluoxetine, rutin (Low), rutin
(Medium), and rutin (High) groups showed a significant increase in total distance of the OFT (P<0.01, P
<0.01,P<0.05 P<0.07; Fig. 6A) and a significant decrease in total rest time of the OFT (P < 0.05; Fig.
6B); the rutin (Low) group exhibited a significant increase in sucrose preference rate (P < 0.01; Fig. 6C); the
rutin (Low) and rutin (Medium) groups showed a significant decrease in immobility time of the FST (P <
0.05, P <0.01; Fig. 6D).

3.3.2 ELISA
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ELISA results indicated that compared to the model group, the fluoxetine group exhibited a significant
increase in serum E2 levels (P < 0.05; Fig. 7A); both the fluoxetine and rutin (Low) groups showed a
significant increasethe levels of 5-HT in serum (P < 0.05; Fig. 7B), and the rutin (Low) group exhibited a
significant increase the levels of ALLO in serum (P <0.01; Fig. 7D).

3.3.3 Quantitative PCR

Quantitative PCR results showed that compared to the model group, the rutin (Low) group exhibited a
significant decrease in mMRNA expression of Gabra4 and Gabrb2 in the prefrontal cortex (P < 0.01; Fig. 8A,
8B); the rutin (Medium) and rutin (High) groups showed a significant increase in Gabrb2 mRNA
expression in the hypothalamus (P <0.01, P<0.001; Fig. 8C).

4. Discussion

Depression stands out as a leading cause of heightened self-harm and suicide rates, significantly
compromising the well-being and overall health of women in the perimenopausal stage[25]. The
exploration of the pathogenesis and therapeutic drugs of PMD are urgently needed. While there are
various hypotheses concerning the pathogenesis of PMD, there is a medical consensus that ovarian
dysfunction is a crucial factor contributing to the development of PMD[26]. Hence, while estrogen has
emerged as a primary research direction for PMD, the controversy surrounding its impact on female
depression and the significant side effects of estrogen replacement therapy have impeded the progress
of estrogen-focused investigations into the pathogenesis of PMD[27]. ALLO, as a metabolite of
progesterone and a positive allosteric modulator of GABAAR, plays a crucial role in female neurocognitive
disorders such as postpartum depression and premenstrual dysphoric disorder. Scholars in the field of
PMD research have gradually recognized the significance of ALLO in the context of PMD[28].

Compared to the Sham group, the OVX + CUMS group exhibited a significant decrease in serum levels of
E2, 5-HT, and NE, accompanied by depressive-like behavior. The observed changes are consistent with the
clinical presentation of PMD patients, indicating the successful establishment of PMD rats in this study.
The significant decrease in ALLO and GABA levels in the serum of OVX + CUMS group aligns with
previous clinical research findings[14, 29-31]. As a positive allosteric modulator of GABAAR, ALLO is
likely to be involved in the pathogenesis of PMD by regulating the expression of GABAAR subunits.
Therefore, we employed Q-PCR to assess the mRNA expression of Gabra4, Gabrb2, and Gabrd in brain
regions. The study revealed a significant upregulation of Gabra4 and Gabrb2 mRNA expression in the
prefrontal cortex, hippocampus, and hypothalamus of the OVX + CUMS group, along with a significant
increase in Gabrd mRNA expression in the hypothalamus and amygdala. Many laboratories have
demonstrated that ALLO withdrawal leads to a transient increase in the expression of GABAAR a4 subunit
in various brain regions of the hippocampus in female mice, as well as in an in vitro neuronal system[32,
33]. The above evidence supports the findings of this study. GABAR B2 subunit is associated with
neuropsychiatric disorders including bipolar disorder, epilepsy, autism spectrum disorder, Alzheimer's
disease, depression, and premenstrual dysphoric disorder[34]. Compared to wild-type mice, Gabrb2 knock-
out mice exhibit lower levels of depression[35, 36]. In comparison to normal young mice, perimenopausal
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mice exhibit a reduced mMRNA expression of GABAAR B2 in the prefrontal cortex[37]. Furthermore, there is
no significant difference in prefrontal cortex GABAAR 32 mRNA expression between perimenopausal
mice and those subjected to chronic unpredictable stress[37]. Clinical investigations have observed a
notable reduction in mMRNA transcription levels of the GABAAR B2 subunit in the prefrontal cortex among
individuals suffering from depression and mood disorders[38]. Due to GABAARPB2 expression being
subject to epigenetic regulation, and given that epigenetic regulation varies with development, genotype,
and disease states, the expression of GABAARB?2 in different mood disorders is not consistent[39, 40].
Many studies identifie a close association between the GABAAR & subunit and depressive emotions. In
comparison to the Sham group, the OVX + CUMS group showed no significant difference in Gabrd mRNA
expression in the prefrontal cortex and hippocampus, while there was a significant increase in the
hypothalamus and amygdala brain regions. Zhang[24] found that the expression of the & subunit showed
no significant difference between liver-qgi stagnation syndrome rats with premenstrual dysphoric disorder
and normal rats, moreover, overexpression of the & subunit in normal rats did not induce depressive
behavior. Currently, there is no research reporting the relationship between Gabrd and PMD, and most
literature suggests that the decrease in 6 subunit expression is associated with depressive emotions[37].
Therefore, we speculate that the GABAAR & subunit may not be involved in the occurrence and
development of PMD.The significant increase in mRNA expression of the & subunit in the hypothalamus
and amygdala in this study may be related to the decrease in ALLO. A study found that compared to the
pregnancy period, postpartum mice showed an increasing trend in the expression of GABAAR &
subunit[41].

The existing evidence preliminarily indicates that ALLO and the GABAergic system are associated with
the pathogenesis of PMD. To further validate the hypothesis that the decrease in ALLO levels mediates
changes in the mRNA expression of GABAAR subunits, leading to the onset of PMD, this study
administered ALLO through intraperitoneal injection to increase ALLO levels in PMD rats. And than we
observed depressive-related indicators, ALLO levels in serum, and changes in GABAAR subunit mRNA
expression in the brain regions of PMD rats. The study findings indicate that intraperitoneal injection of
ALLO increased the serum ALLO levels in PMD rats. This improvement in ALLO levels was associated
with amelioration of depressive-like behavior in rats and an increase in serum levels of E2, 5-HT, and NE,
suggesting that ALLO has a therapeutic effect on PMD. Following ALLO intervention, a significant
decrease in Gabra4 mRNA expression was observed in the prefrontal cortex, and a significant increase in
Gabra4 mRNA expression was noted in the hippocampus of PMD rats. Furthermore, there were significant
reductions in Gabrb2 mRNA expression in the prefrontal cortex and the hypothalamus, while significant
increases in Gabrd mRNA expression were observed in the prefrontal cortex and hippocampus. Many
studies have also found that ALLO can enhance the expression of a4 and & subunits in the hippocampus
of female rats[42-44].Based on relevant literature and the results of previous studies, we believe that
ALLO-mediated expression of Gabra4, Gabrb2 in the prefrontal cortex, and Gabrb2 in the hypothalamus is
one of the pathological mechanisms of PMD. At the same time, the a4 and & subunits in the prefrontal
cortex and hippocampus may be potential targets for the therapeutic effects of ALLO on PMD.
Interestingly, we found a significant increase in hippocampal Gabra4 mRNA expression in PMD rats, and
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even after ALLO intervention, Gabra4 mRNA expression remained significantly elevated. Therefore, further
research is needed to explore the underlying reasons for this observation.

Rutin, a monomer derived from traditional Chinese herbal medicine, exhibits antidepressant effects with
minimal toxic side effects[45]. This study revealed that rutin treatment significantly ameliorated
depressive-like behavior in PMD rats, elevated serum levels of 5-HT and ALLO, and concurrently reduced
the mRNA expression of Gabra4 and Gabrb2 in the prefrontal cortex. The optimal therapeutic effect for
PMD was observed in the low-dose group of rutin (8.65 mg/kg). Based on preliminary research, we
propose that rutin exerts its therapeutic effects on PMD by upregulating ALLO levels in the serum,
subsequently mediating the downregulation the mRNA expression of Gabra4 and Gabrb2 in the prefrontal
cortex.

This study, for the first time, investigated the mRNA expression of ALLO-mediated GABAAR a4, 32, and
subunits in multiple brain regions of PMD rats. By pinpointing the brain regions and subunits regulated
by ALLO, it has provided nhumerous clues and insights for subsequent research into the pathogenesis of
PMD.Simultaneously, it was discovered that rutin possesses therapeutic effects on PMD, offering a novel
option for clinical treatment of PMD. However, this study has several limitations. For instance, it only
investigated the mRNA expression of ALLO-mediated GABAAR a4, 32, and 6 subunits in emotion-related
brain regions. Subsequent research should continue to explore the protein expression of these subunits
mediated by ALLO. The overall functional expression of GABAARs is crucial in the pathogenesis of PMD.
Various GABAARs contain a4, 2, and 6 subunits, with the a4B3286GABAR receptor having the closest
association with depression and ALLO. Therefore, future studies should emphasize the impact of ALLO
on the function of a4B26GABAR.

Conclusion

ALLO-mediated mRNA expression of Gabra4, Gabrb2 in the prefrontal cortex, and Gabrb2 in the
hypothalamus is one of the pathological mechanisms in PMD. ALLO can improve depressive symptoms
in PMD rats. Rutin (8.65 mg/kg) exerts a therapeutic effect on PMD by upregulating serum ALLO levels,
subsequently downregulating mRNA expression of prefrontal cortex Gabra4 and Gabrb2.
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Behavioral Assessments and ELISA results of PMD rats. (A, B) The total distance and total rest time of

the OFT; (C) Sucrose preference in the SPT; (D) Immobility time for the FST; (E-) Levels of E2, 5-HT, NE,
ALLO, and GABA in the serum, respectively. *p < 0.05, **p < 0.01.
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Effect of ALLO on behavioral assessments and ELISA in PMD rats. (A) Results of FST before and after
ALLO intervention; (B-F) Levels of E2, 5-HT, NE, ALLO, and GABA in the serum, respectively. *p < 0.05.
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Figure 6

Effect of Rutin on behavioral assessments in PMD rats. (A,B) The total distance and total rest time of the
OFT; (C) Sucrose preference in SPT; (D) Immobility time for FST; *p < 0.05, **p < 0.01,***p < 0.001.
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Figure 7

Effect of Rutin on ELISA in PMD rats.(A-E) Levels of E2, 5-HT, NE, ALLO, and GABA in the serum,

respectively.*p < 0.05, **p < 0.01.
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Figure 8

Effects of rutin on GABAAR subunits mRNA expressions in the brains of PMD rats. (A) the mRNA
expression of a4 in the prefrontal cortex of rats; (B, C) the mRNA expression of B2 in the prefrontal cortex,
and hypothalamus of rats;*p < 0.05, **p < 0.01,***p < 0.001.
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