1 Idrus, F. A., Basri, M. M., Rahim, K. A. A., Abd Rahim, N. S. & Chong, M. D. Concentrations of Cadmium, Copper, and Zinc in Macrobrachium rosenbergii (giant freshwater prawn) from natural environment. Bull. Environ. Contam. Toxicol. 100, 350-355, doi:10.1007/s00128-018-2270-3 (2018).
2 Borrego, J., Morales, J. A., de la Torre, M. L. & Grande, J. A. Geochemical characteristics of heavy metal pollution in surface sediments of the Tinto and Odiel river estuary (southwestern Spain). Environ. Geol. 41, 785-796, doi:10.1007/s00254-001-0445-3 (2002).
3 Rasmussen, A. D. & Andersen, O. Effects of cadmium exposure on volume regulation in the lugworm, Arenicola marina. Aquat. Toxicol. 48, 151-164, doi:10.1016/s0166-445x(99)00045-4 (2000).
4 Asuquo, F. E., Ewa-Oboho, I., Asuquo, E. F. & Udo, P. J. Fish species used as biomarker for heavy metal and hydrocarbon contamination for cross river, nigeria. Environmentalist 24, 29-37, doi:10.1023/B:ENVR.0000046344.04734.39 (2004).
5 Papagiannis, I., Kagalou, I., Leonardos, J., Petridis, D. & Kalfakakou, V. Copper and zinc in four freshwater fish species from Lake Pamvotis (Greece). Environ. Int. 30, 357-362, doi:10.1016/j.envint.2003.08.002 (2004).
6 Zeeshan, M., Murugadas, A., Ghaskadbi, S., Rajendran, R. B. & Akbarsha, M. A. ROS dependent copper toxicity in Hydra-biochemical and molecular study. Comp. Biochem. Physiol., Part C: Toxicol. Pharmacol. 185, 1-12, doi:10.1016/j.cbpc.2016.02.008 (2016).
7 Schwarz, J. A., Mitchelmore, C. L., Jones, R., O'Dea, A. & Seymour, S. Exposure to copper induces oxidative and stress responses and DNA damage in the coral Montastraea franksi. Comp. Biochem. Physiol., Part C: Toxicol. Pharmacol. 157, 272-279, doi:10.1016/j.cbpc.2012.12.003 (2013).
8 Wu, J. P. & Chen, H. C. Effects of cadmium and zinc on oxygen consumption, ammonium excretion, and osmoregulation of white shrimp (Litopenaeus vannamei). Chemosphere 57, 1591-1598, doi:10.1016/j.chemosphere.2004.07.033 (2005).
9 Barbieri, E. Use of oxygen consumption and ammonium excretion to evaluate the sublethal toxicity of cadmium and zinc on litopenaeus schmitti (burkenroad, 1936, crustacea). Water Environ. Res. 79, 641-646, doi:10.2175/106143006x136775 (2007).
10 Barbieri, E. Effects of zinc and cadmium on oxygen consumption and ammonium excretion in pink shrimp ( Farfantepenaeus paulensis , Pérez-Farfante, 1967, Crustacea). Ecotoxicology 18, 312-318, doi:10.1007/s10646-008-0285-y (2009).
11 Su, H. et al. Transcriptome analysis of the ovary of beet armyworm Spodoptera exigua under different exposures of cadmium stress. Chemosphere 251, 126372, doi:10.1016/j.chemosphere.2020.126372 (2020).
12 Jones MM & C, C. Cadmium, a unique metal. Toxicol. J. 62, 1–25 (1990).
13 Thévenod, F. Cadmium and cellular signaling cascades: To be or not to be? Toxicol. Appl. Pharmacol. 238, 221-239, doi:10.1016/j.taap.2009.01.013 (2009).
14 Revathi, P., Vasanthi, L. A. & Munuswamy, N. Effect of cadmium on the ovarian development in the freshwater prawn Macrobrachium rosenbergii (De Man). Ecotoxicol. Environ. Saf. 74, 623-629, doi:10.1016/j.ecoenv.2010.08.027 (2011).
15 Gaspic, Z. K., Zvonaric, T., Vrgoc, N., Odzak, N. & Baric, A. Cadmium and lead in selected tissues of two commercially important fish species from the Adriatic Sea. Water Res. 36, 5023-5028, doi:10.1016/s0043-1354(02)00111-2 (2002).
16 Sun, M., Li, Y. T., Liu, Y., Lee, S. C. & Wang, L. Transcriptome assembly and expression profiling of molecular responses to cadmium toxicity in hepatopancreas of the freshwater crab Sinopotamon henanense. Sci. Rep. 6, 19405, doi:10.1038/srep19405 (2016).
17 Tang, D., Guo, H., Shi, X. & Wang, Z. Comparative transcriptome analysis of the gills from the chinese mitten crab (Eriocheir japonica sinensis) exposed to the heavy metal cadmium. Turk. J. Fish. Aquat. Sci. 20, 467-479, doi:10.4194/1303-2712-v20_6_05 (2020).
18 P., W. et al. The organization and control of metabolism in the crustacean gill. Comp. Biochem. Physiol. 33, 529-548, doi:10.1016/0010-406X(70)90369-5 (1970).
19 Henry, R. P., Lucu, C., Onken, H. & Weihrauch, D. Multiple functions of the crustacean gill: osmotic/ionic regulation, acid-base balance, ammonia excretion, and bioaccumulation of toxic metals. Front, Physiol. 3, 431, doi:10.3389/fphys.2012.00431 (2012).
20 Agoes et al. Impact of copper on the structure of gills and epipodites of the shrimp Penaeus japonicus (Decapoda). J. Crustacean Biol. 2, 209-223, doi:10.2307/1549227 (1999).
21 Li, N., Zhao, Y. & Yang, J. Impact of waterborne copper on the structure of gills and hepatopancreas and its impact on the content of metallothionein in juvenile giant freshwater prawn Macrobrachium rosenbergii (Crustacea: Decapoda) (vol 52, pg 73, 2009). Arch. Environ. Contam. Toxicol 56, 811-812, doi:10.1007/s00244-009-9306-y (2009).
22 Vogt, G. Monitoring of environmental pollutants such as pesticides in prawn aquaculture by histological diagnosis. Aquaculture 67, 157-164, doi:10.1016/0044-8486(87)90021-4 (1987).
23 Baticados, M. C. L. & Tendencia, E. A. Effects of gusathion a on the survival and shell quality of juvenile penaeus monodon. Aquaculture 93, 9-19, doi:10.1016/0044-8486(91)90201-H (1991).
24 Sung, H. H., Kao, W. Y. & Su, Y. J. Effects and toxicity of phthalate esters to hemocytes of giant freshwater prawn, Macrobrachium rosenbergii. Aquat. Toxicol. 64, 25-37, doi:10.1016/s0166-445x(03)00011-0 (2003).
25 Guo, H., Deng, M., Liang, J., Lu, W. & Shen, Y. Gill transcriptome alterations in Macrobrachium rosenbergii under copper exposure. Chemosphere 233, 796-808, doi:10.1016/j.chemosphere.2019.06.025 (2019).
26 Kaoud, H. A. & Rezk, A. Effect of exposure to cadmium on the tropical freshwater prawn Macrobrachium rosenbergii. Afr. J. Aquat. Sci 36, 253-260, doi:10.2989/16085914.2011.636899 (2011).
27 Burnett, L. E. & McMahon, B. R. Facilitation of CO2 excretion by carbonic anhydrase located on the surface of the basal membrane of crab gill epithelium. Respir. Physiol. 62, 341-348, doi:10.1016/0034-5687(85)90089-1 (1985).
28 Agoes, S., Mireille, C. D., Paul, T. J. & Guy, C. Impact of Copper on the Structure of Gills and Epipodites of the Shrimp Penaeus japonicus (Decapoda). Journal of Crustacean Biology, 209-223.
29 White, S. L. & Rainbow, P. S. Accumulation of cadmium by Palaemon elegans (Crustacea: Decapoda). Mar. Ecol. Prog. Ser. 32, 17-25, doi:10.3354/meps032017 (1986).
30 Xuan, R. et al. Oxygen consumption and metabolic responses of freshwater crab Sinopotamon henanense to acute and sub-chronic cadmium exposure. Ecotoxicol. Environ. Saf. 89, 29-35, doi:10.1016/j.ecoenv.2012.10.022 (2013).
31 Gao, M., Lv, M., Liu, Y. & Song, Z. Transcriptome analysis of the effects of Cd and nanomaterial-loaded Cd on the liver in zebrafish. Ecotoxicol. Environ. Saf. 164, 530-539, doi:10.1016/j.ecoenv.2018.08.068 (2018).
32 Bjerregaard, P. Influence of physiological condition on cadmium transport from haemolymph to hepatopancreas in Carcinus maenas. Mar. Biol. 106, 199-209, doi:10.1007/BF01314801 (1990).
33 Mouneyrac, C. et al. Trace-metal detoxification and tolerance of the estuarine worm Hediste diversicolor chronically exposed in their environment. Mar. Biol. 143, 731-744, doi:10.1007/s00227-003-1124-6 (2003).
34 Sterenborg, I. & Roelofs, D. Field-selected cadmium tolerance in the springtail Orchesella cincta is correlated with increased metallothionein mRNA expression. Insect Biochem. Mol. Biol. 33, 741-747, doi:10.1016/s0965-1748(03)00070-5 (2003).
35 Brouwer, M., Winge, D. R. & Gray, W. R. Structural and functional diversity of copper-metallothioneins from the American lobster Homarus americanus. J. Inorg. Biochem. 35, 289-303, doi:10.1016/0162-0134(89)84018-8 (1989).
36 Viarengo, A. & Nott, J. A. Mechanisms of heavy metal cation homeostasis in marine invertebrates. Comp. Biochem. Physiol., Part C: Toxicol. Pharmacol. 104, 355-372, doi:10.1016/0742-8413(93)90001-2 (1993).
37 Sappal, R. et al. Copper and hypoxia modulate transcriptional and mitochondrial functional-biochemical responses in warm acclimated rainbow trout (Oncorhynchus mykiss). Environ. Pollut. 211, 291-306, doi:10.1016/j.envpol.2015.11.050 (2016).
38 Liu, G.-D. et al. Molecular cloning, characterization and expression analysis of metallothionein in the liver of the teleost Acrossocheilus fasciatus exposed to cadmium chloride. Environ. Toxicol. Pharmacol. 53, 1-9, doi:10.1016/j.etap.2017.03.020 (2017).
39 Gomes, T., Chora, S., Pereira, C. G., Cardoso, C. & Bebianno, M. J. Proteomic response of mussels Mytilus galloprovincialis exposed to CuO NPs and Cu2+: An exploratory biomarker discovery. Aquat. Toxicol. 155, 327-336, doi:10.1016/j.aquatox.2014.07.015 (2014).
40 Yan, F. et al. Identification and agglutination properties of hemocyanin from the mud crab (Scylla serrata). Fish Shellfish Immunol. 30, 354-360, doi:10.1016/j.fsi.2010.11.004 (2011).
41 Decker, H. et al. Minireview: Recent progress in hemocyanin research. Integr. Comp. Biol. 47, 631-644, doi:10.1093/icb/icm063 (2007).
42 Decker, H. & Jaenicke, E. Recent findings on phenoloxidase activity and antimicrobial activity of hemocyanins. Dev. Comp. Immunol. 28, 673-687, doi:10.1016/j.dci.2003.11.007 (2004).
43 Pedrini-Martha, V. et al. Responsiveness of metallothionein and hemocyanin genes to cadmium and copper exposure in the garden snail Cornu aspersum. J. Exp. Zool., Part A, 1-11, doi:10.1002/jez.2425 (2020).
44 Singh, M. P., Reddy, M. M. K., Mathur, N., Saxena, D. K. & Chowdhuri, D. K. Induction of hsp70, hsp60, hsp83 and hsp26 and oxidative stress markers in benzene, toluene and xylene exposed Drosophila melanogaster: role of ROS generation. Toxicol. Appl. Pharmacol. 235, 226-243, doi:10.1016/j.taap.2008.12.002 (2009).
45 Gupta, S. C., Sharma, A., Mishra, M., Mishra, R. K. & Chowdhuri, D. K. Heat shock proteins in toxicology: How close and how far? Life Sci. 86, 377-384, doi:10.1016/j.lfs.2009.12.015 (2010).
46 Singh, M. P. et al. Effects of co-exposure of benzene, toluene and xylene to Drosophila melanogaster: Alteration in hsp70, hsp60, hsp83, hsp26, ROS generation and oxidative stress markers. Chemosphere 79, 577-587, doi:10.1016/j.chemosphere.2010.01.054 (2010).
47 Arockiaraj, J. et al. First report on interferon related developmental regulator-1 from Macrobrachium rosenbergii: Bioinformatic analysis and gene expression. Fish Shellfish Immunol. 32, 929-933, doi:10.1016/j.fsi.2012.02.011 (2012).
48 Micheli, L. et al. Pc4/tis7/ifrd1 stimulates skeletal muscle regeneration and is involved in myoblast differentiation as a regulator of myod and nf-κb. J. Biol. Chem. 286, 5691-5707, doi:10.1074/jbc.M110.162842 (2010).
49 Kaoud, H. A. & Rezk, A. Effect of exposure to cadmium on the tropical freshwater prawn Macrobrachium rosenbergii. African Journal of Aquatic Science 36, 253-260, doi:10.2989/16085914.2011.636899 (2011).
50 Livak, K. J. & Schmittgen, T. D. Analysis of Relative Gene Expression Data using Real-Time Quantitative PCR. Methods 25, 402-408 (2002).