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Abstract  

Soil liquefaction is a substantial seismic hazard that endangers both human life and infrastructure. This research 

specifically examines the occurrence of soil liquefaction events in past earthquakes, with a special emphasis on 

the 1964 Niigata, Japan and 1964 Alaska, USA earthquakes. These occurrences were important achievements in 

the comprehension of harm caused by liquefaction. Geotechnical engineers often use in-situ experiments, such as 

the standard penetration test (SPT) to evaluate the likelihood of liquefaction. The attraction for this option arises 

from the difficulties connected in acquiring undisturbed samples of superior quality, as well as the related 

expenses. Geotechnical engineering specialists choose the deterministic framework for liquefaction assessment 

because of its clear mathematical approach and low needs for data, time, and effort. This work emphasises the 

need of integrating probabilistic and reliability methodologies into the design process of crucial life line structures 

to enable well-informed risk-based decision-making. The objective of this project is to create models that use 

deterministic, probabilistic, and reliability-based methods to evaluate the likelihood of soil liquefaction. The work 

presents a new equation that combines Bayes conditional probability with Genetic Programming (GP). and also 

in study is to identify the most suitable method for liquefaction analysis based on factor of safety and Performance 

Fitness Error Metrics (PFEMs), Rank analysis, Gini index, etc. The information provided in study data include 

soil and seismic characteristics, including the corrected blow count (𝑁1)60𝑐𝑠, fines content (FC), mean grain 

size (𝐷50), peak horizontal ground surface acceleration (𝑎𝑚𝑎𝑥), earthquake magnitude (M), and 𝐶𝑆𝑅7.5. The 

parameters are derived from the SPT measurements conducted at many global locations, together with field 

performance observations (LI) and probability of liquefaction has been assessed through the use of Gini Index 

(GI). A comparison was made between the novel methodology and the techniques proposed by Juang et al. (2002), 

Toprak et al. (1999), and Idriss and Boulanger (2006) status of case history data using Performance Fitness Error 

Metrices. The comparison included employing a confusion matrix for binary classification and doing a score 

analysis based on factor ranking. The proposed model exhibited superior performance, as the outputs of the 

constructed model increased for all positive factors and decreased for negative indicators. 
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1. Introduction  

Seismic hazards include many threats such as ground shaking, structural vulnerabilities, liquefaction, landslides, 

failures of retaining structures, dangers to essential infrastructure, and tsunamis. The primary cause of both human 

casualties and infrastructure damage is the liquefaction of soil triggered by seismic activity. Terzhagi and Peck 

(1948) were the first to recognise and describe the occurrence of soil liquefaction, which refers to the abrupt 

decrease in strength of loose sand deposits. This discovery played a crucial role in the early development of soil 

mechanics. The key factor leading to slope collapse in saturated sand deposits was identified. However, it was the 

occurrence of severe earthquakes in various parts of the world, such as Niigata and Alaska (1964), Loma Prieta 

(1989), Kobe (1995), Kocaeli (1999), and Chi-Chi (1999), that drew the attention of engineers, seismologists, and 

the scientific community to this phenomenon (Baziar and Jafarian, 2007).  Subsequent research conducted in both 

field and laboratory settings has demonstrated that soil liquefaction can be better characterised as a disastrous 

failure event. This occurs when saturated soil experiences a loss of strength caused by a rise in pore water pressure 

and a decrease in effective stress due to rapid loading. As a result, the soil becomes mobile enough to move over 

distances ranging from metres to kilometres. Soil liquefaction may cause ground failure, such as the emergence 

of sand boils, large landslides, surface sinking, lateral spreading, movement of bridge supports, settling and 

swaying of buildings, collapse of marine structures, and extensive damage to lifeline systems, among other 

consequences. 

The simplified approach based on the Standard Penetration Test (SPT), first devised by Seed and Idriss in 1971, 

At the same time, Tsuchida and Hayashi (1971) developed a relation between the grain-size distribution and 

liquefaction susceptibility of soils using the Japanese liquefaction sites. In the later stage, based on this “simplified 

procedure” researchers have attempted to build more accurate deterministic and probabilistic triggering 

correlations using the SPT data (Seed and Idriss 1982; Seed et al. 1983; Seed et al. 1985; Youd et al. 2001), It 

remains the most often used method globally. Robertson and Campanella (1985) pioneered the development of a 

CPT-based technique for assessing the likelihood of liquefaction, this method involves converting the SPT-based 

approach by using an empirical correlation between SPT-CPT, it follows a stress-based approach similar to the 

one proposed by Seed and Idriss (1971). Further Several improvements done for on cone penetration testing (CPT) 

by using statistical and regression analysis techniques methods (Seed and de Alba (1986), Olsen (1988), Shibata 

and Teparaksa (1988), Mitchell and Tseng (1990), Stark and Olson (1995), Suzuki et al. (1995), Olsen (1997), 

Robertson and Wride (1998), and Youd et al. (2001).) Multiple simpler procedures using shear wave velocity VS 

have been developed (Stokoe et al. 1988; Tokimatsu and Uchida 1990; Addo and Robertson 1992; Kayen et al. 

1992; Andrus and Stokoe 2000; Juang et al. 2000; Juang et al. 2001; Andrus et al. 2004). There are only a limited 

number of simpler techniques based on the BPT (Becker Penetration Test) technique which was proposed by 

Harder and Seed (1986). These methods, however, are only applicable to soils with a gravelly composition. 

The boundary curve provides the liquefaction resistance of a soil, usually stated as the cyclic resistance ratio 

(CRR), for a certain index of soil resistance, such as the corrected SPT impact count. The evaluation of a soil's 

liquefaction potential under seismic loading involves assessing the factor of safety (𝐹𝑠), which is determined by 

the ratio of the cyclic resistance ratio (CRR) to the cyclic stress ratio (CSR). The seismic loading is commonly 



stated as CSR. The deterministic technique, which involves quantifying the liquefaction potential of soil in terms 

of the factor of safety (𝐹𝑠), is preferred by geotechnical specialists for its simplicity in implementation. Parametric 

and model inaccuracies may lead to situations where 𝐹𝑠>1 does not always indicate the absence of soil 

liquefaction, nor does it guarantee a complete absence of the risk of liquefaction. Furthermore, it should be noted 

that 𝐹𝑠 does not always result in liquefaction and does not guarantee complete liquefaction, as stated by Juang et 

al. (2000). In deterministic methodologies, the interface between liquefaction and non-liquefaction scenarios is 

known as a performance function or "limit state function." This function is often designed to be conservative, 

including the majority of liquefied instances. 

In recent decades, some geotechnical researchers have successfully forecasted the probability of liquefaction by 

using reliability analysis, taking into consideration mistakes in models and parameters (Haldar and Tang 1979; 

Liao et al. 1988; Toprak et al. 1999; Juang et al. 2006; Idriss and Boulanger 2006.) performed a logistic regression 

analysis on the available case histories in order to ascertain the probability of liquefaction (𝑃𝐿). These studies 

propose a simple regression equation that may be used to estimate the nominal probability, which is a measure of 

the model's level of uncertainty. 

Juang et al. (1999) developed a dependable technique for estimating the likelihood of liquefaction (𝑃𝐿) using a 

Bayesian mapping function. Juang et al. (2002) further developed their previously suggested approach for creating 

a mapping function that relates 𝑃𝐿 and 𝐹𝑠. This mapping function was constructed using the methodology 

proposed by Youd and Idriss (2001). Goharzay et al. (2017) built upon the first proposal of the first order 

reliability-based Bayes probability function by Muduli and Das (2015).  The Bayesian network (BN) approach 

has been shown to be a very effective method for engineers to assess the probability of earthquake-induced 

liquefaction. Hu (2021a) introduced an innovative approach for forecasting the liquefaction of soil containing 

gravel this technique relies on the use of two Bayesian network models. Hu et al. (2022) developed a hybrid 

Bayesian network (BN) model to predict liquefaction caused by earthquakes. The model is based on shear wave 

velocity (𝑉𝑠) and builds upon previous studies by Hu and Liu (2019); Hu (2021b); Hu et al. (2022); Pirhadi et al. 

(2023). In their study, used Cetin et al. (2004) database of case histories to establish a new collection of 

probabilistic and deterministic connections. Their objective was to predict the likelihood of liquefaction start by 

using the maximum likelihood function inside a Bayesian framework. Subsequently, Idriss and Boulanger (2010) 

and Boulanger and Idriss (2014) devised a method that combines deterministic and probabilistic approaches using 

SPT data, therefore enhancing the methodology established by Seed and Idriss (1971). The determination of 

liquefaction potential relies on a set of assumptions and approximations, which form the basis of all suggested 

conventional techniques and empirical linkages. 

Fundamentally, difficulties related to assessing liquefaction are very nonlinear. Some of geotechnical researchers 

developed machine learning methods to overcome the challenges posed by nonlinearity and other complexities in 

forecasting the likelihood of liquefaction. Goh (1994) developed a neural network model to predict and evaluate 

the likelihood of liquefaction in saturated, cohesionless soil. The Artificial Neural Network (ANN) model, which 

is widely recognised as a leading machine learning approach in this field, has shown good use in the prediction of 

liquefaction (Samui and Sitharam 2011; Ramakrishnan et al. 2008). Subsequently, additional scholars in the 

geotechnical domain developed various machine learning techniques, such as neural networks, support vector 

machine (SVM), genetic programming (GP), least square support vector machine (LSSVM), and stochastic 



gradient boosting (SGB), for the purpose of conducting liquefaction analysis (Pal 2006; Samui and Karthikeyan 

2013; Hanna et al. 2007; Samui et al. 2011; Samui and Hariharan 2015; Xue and Liu 2017). Zhang et al. (2016) 

devised a non-parametric, multivariate adaptive regression spline (MARS) method to assess the likelihood of 

liquefaction in sands and granular soils using the energy concept. Zhang et al. (2021a) used CPT data to introduce 

the extreme learning machine (ELM) as a method for assessing the susceptibility of soil deposits to liquefaction. 

These basic models have some significant limitations, such as limited generalisation capacity, slow convergence 

rate, and susceptibility to overfitting. These shortcomings may adversely affect the accuracy of result prediction. 

The existing liquefaction assessment methods based on machine learning are fundamentally opaque since they 

favour accuracy at the expense of explainability. The existing liquefaction datasets are quite small and have a 

higher percentage of liquefaction events compared to non-liquefaction events. As a result, these models exhibit 

distinct performance characteristics when compared to databases from other areas of the world. Subsequently, 

additional scholars have introduced novel machine learning techniques such as random forest (RF) (Kohestani et 

al 2015), Jas and Dodagoudar (2023) proposed an explainable machine learning model for liquefaction potential 

assessment of soils using XGBoost-SHAP to address the issue of interpretability in the machine learning model, 

and gradient boosting machine (GBM) shown better adoptability to the low amount of data (Kumar et al. 2022a; 

Zou et al. 2019). Zhang and Wang (2021) have devised an improved ensembled and hybrid method using genetic 

algorithms and GWO, while Zhang et al. (2021b) have developed a hybrid model by incorporating SVM-GWO. 

Machine learning (ML) models that already exist are better options for handling enormous amounts of data and 

enhancing the accuracy of predictions. Every machine learning approach has its own limitations and constraints 

due to parameters and model ambiguity (Momeni et al., 2015). 

2. Methodology  

2.1 Introduction of prediction model and data base  

A stress-based technique to evaluate the likelihood for liquefaction triggering was first devised by Seed and Idriss 

(1967). This methodology has been employed extensively over the course of the previous 45 years (Seed and 

Idriss 1971; Tokimatsu and Yoshimi 1983; NRC 1985; Seed et al. 1985; Youd et al. 2001; Cetin et al. 2004; Idriss 

and Boulanger 2004, 2008). The correlation between the cyclic resistance ratio (CRR) adjusted to a magnitude of 

7.5 (M = 7.5) and the effective vertical stress (𝜎𝑣
′ = 1) and the corresponding value of the normalised cone 

penetration resistance (𝑁1)60𝐶𝑆 for cohesionless soils, as determined by Idriss and Boulanger (2004, 2008), can 

be expressed as: 
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Where: 

 

𝑎𝑚𝑎𝑥= surface peak acceleration 



     𝜎𝑣= total overburden pressure 

𝜎’𝑦= effective overburden pressure  

     𝑟𝑑= reduction in shear stress in depth z 

     𝐾𝜎 , 𝐾𝑎= correction factors  

     𝑀𝑆𝐹= magnitude scaling factor  

(𝑁1)60𝐶𝑆= corrected SPT no   

 

2.1.1 Deterministic methods (𝑭𝑺) 

In the approach, the 𝐹𝑆 parameter, which signifies the ratio of 𝐶𝑅𝑅 to 𝐶𝑆𝑅, is determined by forecasting individual 

values of load (𝐶𝑆𝑅) and resistance (𝐶𝑅𝑅) without considering the uncertainty related to the prediction of loading 

and resistance. Figure 2.8 illustrates this. The computed CRR and CSR are considered to have a probability of 

occurrence of 100%. Within a deterministic approach, a factor of safety (𝐹𝑆) beyond 1 signifies the absence of 

liquefaction, whereas a 𝐹𝑆 value of 1 or below indicates the occurrence of liquefaction. The "simplified procedure" 

first introduced by Seed and Idriss (1971), and further explained in preceding sections, is the most definitive 

method for assessing the likelihood of liquefaction at a given site. This technique has been modified and improved 

several times to make it suitable for different in-situ testing scenarios (Seed et al., 1983; Seed et al., 1985; 

Robertson and Campanella, 1985; Shibata and Teparaksa, 1988; Olsen, 1997; Robertson and Wride, 1998). The 

1998 workshop conducted by the National Centre for Earthquake Engineering Research (𝑁𝐶𝐸𝐸𝑅) resulted in a 

comprehensive assessment of deterministic methods that use in-situ testing to evaluate the potential occurrence 

of soil liquefaction (Youd et al., 2001). The equation may be used to compute the factor of safety (𝐹𝑠) against 

liquefaction during an earthquake. 

𝐹𝑆 =  (
𝐶𝑅𝑅

𝑀=7.5,𝜎𝑣
′ =1𝑎𝑡𝑚

𝐾𝜎𝐾∝

CSR∗MSF
)                                                            (3) 

 

 



Figure 1. illustrates the deterministic technique used to evaluate liquefaction potential, as described by Becker 

(1997) 

2.1.2 Data collection and processing  

The current analysis used a dataset of measures acquired from the Standard Penetration Test (SPT). The collection 

included post-liquefaction case studies spanning from the Tohnankai earthquake in 1944 to the Chi Chi earthquake 

in 1999 in Taiwan. The dataset for the study included 286 instances of liquefaction and 210 instances of non-

liquefaction.  In addition, to verify the accuracy of the models, a set of 30 Standard Penetration Test (SPT) borehole 

data collected from Faridabad a region in the National Capital District (NCR) of Delhi. In the Figure .2 shown 

collection of sample setup and split spoon sampler. The bore hole data and the model data for the study are shown 

in Table 1 and Table 2, respectively. 

 

 

 

 

 

Figure 2. (a) SPT field set up and (b) split spoon sample 

Table 1 Sample bore hole data  

Avg 

Dep

th  

WT  𝜎𝑣  

(kPa) 

𝜎𝑣
′ 

(kPa) 

Nm (N1)

60 

𝐶𝐵  𝐶𝐸 𝐶𝑁 𝐶𝑅 𝐶𝑆 FC (𝑁1)60𝑐𝑠 ∆(𝑁1)60𝑐𝑠 γtotal 

 

γ'total 

 



2.3 1.2 43 32 4 6.1 1 1.1

3 

1.70 0.8 1 69 11.7 5 18.5 19.1 

3.0 1.2 57 39 6 9.2 1 1.1

3 

1.59 0.85 1 33 14.6 2 18.5 19.1 

3.4 1.2 63 42 3 4.6 1 1.1

3 

1.60 0.85 1 33 10.1 1 18.5 19.1 

3.7 1.2 69 45 6 8.6 1 1.1

3 

1.49 0.85 1 33 14.1 2 18.5 19.1 

3.8 1.2 72 46 13 17.4 1 1.1

3 

1.39 0.85 1 20 21.9 5 18.5 19.1 

4.3 1.2 81 51 11 14.4 1 1.1

3 

1.37 0.85 1 20 18.9 2 18.5 19.1 

4.6 1.2 87 54 10 14.3 1 1.1

3 

1.33 0.95 1 20 18.8 5 18.5 19.1 

4.9 1.2 92 56 4 5.8 1 1.1

3 

1.36 0.95 1 33 11.3 2 18.5 19.1 

5.2 1.2 98 59 4 5.7 1 1.1

3 

1.33 0.95 1 33 11.2 1 18.5 19.1 

5.3 1.2 101 61 6 8.3 1 1.1

3 

1.29 0.95 1 33 13.8 5 18.5 19.1 

5.5 1.2 104 62 10 13.4 1 1.1

3 

1.25 0.95 1 33 18.9 2 18.5 19.1 

6.1 1.2 116 68 9 11.7 1 1.1

3 

1.21 0.95 1 33 17.1 1 18.5 19.1 

7.1 1.2 133 76 14 16.9 1 1.1

3 

1.13 0.95 1 33 22.4 2 18.5 19.1 

7.6 1.2 87 54 7.1 10.3 1 1.1

3 

1.36 0.95 1 30 15.7 5.4 18.5 19.1 

 

Table 2. sample trained and test data  

Liquefaction Magnitude 

(M) 

Critical 

Depth 

(d) 

Fine 

Content 

(%) 

D50 

(mm) 

Water 

Table (m) 

PGA 

(g) 

rd (N1)60cs CSR 

Yes 7.300 6.000 61.000 0.075 2.300 0.428 0.942 8.470 0.451 

Yes 7.300 4.200 24.000 0.200 2.700 0.789 0.959 3.580 0.378 

Yes 7.300 9.000 42.000 0.100 2.300 0.789 0.886 6.380 0.714 

Yes 7.300 2.400 41.000 0.095 2.300 0.789 0.972 8.710 0.514 

Yes 7.300 5.000 22.000 0.065 2.200 0.428 0.952 3.670 0.379 



Yes 7.300 4.200 62.000 0.100 1.800 0.211 0.959 4.050 0.417 

Yes 7.300 7.700 16.000 0.220 3.800 0.165 0.915 10.190 0.132 

Yes 7.300 8.100 16.000 0.190 3.100 0.165 0.907 8.480 0.136 

Yes 7.300 5.700 16.000 0.170 2.800 0.165 0.945 8.820 0.139 

Yes 7.300 8.100 19.000 0.170 2.800 0.165 0.907 10.710 0.148 

Yes 7.300 3.700 11.000 0.190 2.300 0.165 0.962 11.570 0.128 

Yes 7.300 10.000 45.000 0.080 3.000 0.165 0.850 7.250 0.145 

Yes 7.300 7.700 18.000 0.170 3.000 0.165 0.915 6.720 0.142 

No 7.300 5.000 14.000 0.200 0.600 0.124 0.952 23.860 0.137 

No 7.300 10.000 15.000 0.220 0.600 0.124 0.850 21.980 0.128 

No 7.300 9.000 12.000 0.200 0.600 0.124 0.886 21.090 0.133 

No 7.300 5.000 14.000 0.200 0.600 0.124 0.952 18.680 0.138 

No 7.300 6.000 19.000 0.190 0.600 0.124 0.942 21.970 0.138 

No 7.300 10.000 16.000 0.170 1.300 0.124 0.850 20.420 0.122 

No 7.300 18.000 22.000 0.104 2.700 0.165 0.730 9.340 0.142 

No 7.300 6.000 8.000 0.200 2.700 0.165 0.942 12.070 0.142 

No 7.300 16.000 18.000 0.140 2.700 0.165 0.760 12.080 0.145 

No 7.300 18.000 32.000 0.100 2.700 0.165 0.730 10.770 0.142 

No 7.300 16.000 18.000 0.140 2.700 0.165 0.760 9.060 0.145 

No 7.300 4.000 43.000 0.090 2.700 0.165 0.960 7.460 0.124 

No 7.300 12.000 8.000 0.201 2.700 0.165 0.820 10.200 0.149 

 

The sample bore hole data depth spans from 2.3 to 7.3 and has a water table depth of 1.2 metre, and SPT has been 

done and registered SPT no at different depths, and all adjustments are computed according to standard protocols 

supplied by previous studies. After calculating all variables, the corrected blow count (𝑁1)60𝑐𝑠, fines content 

(FC), mean grain size (𝐷50), peak horizontal ground surface acceleration (amax), magnitude of earthquake (M), 

shear stress reduction factor (𝑟𝑑), water table depth (WT), critical depth (d), and 𝐶𝑆𝑅7.5 were selected for further 

investigation. 

The information provided in study data include soil and seismic characteristics, including the corrected blow count 

(𝑁1)60𝑐𝑠, fines content (FC), mean grain size (𝐷50), peak horizontal ground surface acceleration (𝑎𝑚𝑎𝑥), 

earthquake magnitude (M), and 𝐶𝑆𝑅7.5. The parameters are derived from the SPT measurements conducted at 

many global locations, together with field performance observations (LI). The soil in these circumstances may 

include sand, silty sand, sandy silt, and clayey silt. In terms of the database, the documented depths of SPT 

measurements range from 1.3 metres to 20.3 metres. The water table depth ranges from 0 to 15.30 metres. The 

range of values among (𝑁1)60𝑐𝑠, is 0.93 to 35.22. The fines content (FC) number range from 0 to 92%. 

Conversely, the PGA value ranges from 0.052 to 1, while the 𝐶𝑆𝑅7.5 value ranges from 0.041 to 0.822. Based on 

the data, a total of 347 instances are randomly selected for training, while the remaining 149 cases are allocated 

for testing the developed model.  



2.1.3 Data cleaning, normalization  

Prior to constructing the model, it is necessary to preprocess the data in order to guarantee the precision of the 

model's predictions. The dataset has a minimal number of null values this time, and the conventional approach to 

address missing data is by using the empty value filling technique. To optimize the use of existing data and 

maintain the quantity and quality of samples, the 496 datasets may be enhanced by replacing the missing 

characteristic values with null values. By using statistical measures such as the average, median, quantile, 

complex, and random values of the whole dataset, one may assess the impact of various filling strategies. 

Ultimately, this article employs the most precise form of filling, which is the mean filling. All 10 parameters in 

the soil liquefaction dataset are numerical and exhibit varying ranges of values, which may fluctuate significantly 

in magnitude. The variability of values in the dataset might impact the rate at which the model converges. The 

features undergo min-max normalization to get precise classification outcomes and guarantee that each feature 

contributes significantly. Hence, data normalization guarantees that features with varying dimensions possess 

equal significance, hence enhancing the accuracy, speed of convergence, and stability of the model. Consequently, 

this leads to an improvement in the performance of machine learning algorithms. Every characteristic of the whole 

dataset is transformed to a range of values between 0 and 1 in order to minimize the influence of feature size and 

magnitude on the model. The min-max normalizing approach reduces the values of the features in a linear manner, 

while preserving the linear properties of the original dataset. The equation is as stated.  

𝑋’ = 
𝑋−𝑀𝑖𝑛(𝑋)

𝑀𝑎𝑥(𝑋)−𝑀𝑖𝑛(𝑋)
      (4) 

 

2.1.4 Data Visualization and correlation analysis 

The use of data visualization facilitates the comprehension of data trends, the interrelationships and distinctions 

among several variables employed in the study, and the level of disorder or randomness within the data. This 

understanding aids in determining appropriate methodologies for data analysis.  



 

 

Figure 3. heat map of the Spearman's rank correlation coefficient matrix  

A heat map of the Spearman's rank correlation coefficient matrix for the input variables is shown in Figure 3, with 

the corresponding correlation coefficients and diagonal element shown the target variable. It can be seen that 

parameters (Generally speaking, |R|= 0 implies an uncorrelated relationship; |R|< 0.2 implies a very weak 

correlation; 0.2 <|R|< 0.4 stands for a weak correlation; 0.4 <|R|< 0.6 stands for a moderate correlation; 0.6 

<|R|<0.8 implies a strong correlation; 0.8 <|R|<1 implies a very strong correlation; |R|= 1 implies fully correlated.) 

The formula for spearman’s rank correlation coefficient is follows:  

𝑅 =
𝐶𝑂𝑉(𝑟𝑎𝑛𝑘 (𝑋)𝑟𝑎𝑛𝑘 (𝑌))

𝜎𝑟𝑎𝑛𝑘 (𝑋)𝜎𝑟𝑎𝑛𝑘 (𝑌)
   = 

𝛴𝑖(𝑅𝑋 (𝑖)−𝑅𝑋 ̅̅ ̅̅ ̅)(𝑅𝑌 (𝑖)−𝑅𝑌 ̅̅ ̅̅ ̅)

√𝛴𝑖(𝑅𝑋 (𝑖)−𝑅𝑋 ̅̅ ̅̅ ̅)2 √𝛴𝑖(𝑅𝑌 (𝑖)−𝑅𝑌 ̅̅ ̅̅ ̅)2
    (5) 



Where: 𝑟𝑎𝑛𝑘 (𝑋)𝑟𝑎𝑛𝑘 (𝑌) are the ranks of variables 𝑋, 𝑌, respectively 𝐶𝑂𝑉 denotes covariance and  

𝜎𝑟𝑎𝑛𝑘 (𝑋)𝜎𝑟𝑎𝑛𝑘 (𝑌) are the standard deviations of 𝑟𝑎𝑛𝑘 (𝑋)𝑟𝑎𝑛𝑘 (𝑌), 𝑅𝑋 , 𝑅𝑌  represents the average ranks for 

𝑟𝑎𝑛𝑘 (𝑋)𝑟𝑎𝑛𝑘 (𝑌), respectively.  

Multicollinearity arises when predictor variables exhibit either positive or negative correlation. Positive 

correlation, as observed between variables X and Y, implies that they move in the same direction; when X 

increases, Y tends to increase. In regression, this strong positive relationship can lead to multicollinearity, 

hindering the model's ability to distinguish individual effects. Similarly, negative correlation, such as between 

variables A and B, involves opposite movements; as A increases, B tends to decrease. High negative correlations 

in regression may also result in multicollinearity issues, making it challenging to differentiate the impact of A and 

B on the outcome variable and potentially leading to unreliable estimates. 

The variables Cyclic Stress Ratio (CSR) and Peak Ground Acceleration (PGA) exhibit a substantial positive 

correlation with a value of 0.89. This high correlation raises concerns about multicollinearity, suggesting the need 

to eliminate one of the variables. However, both variables are indispensable in liquefaction studies, necessitating 

their retention despite the correlation issue. Similarly, the Reduction Factor (rd) and Critical Depth (d) display a 

notable negative correlation of -0.97, which may also indicate multicollinearity. Despite this challenge, both 

variables remain crucial in liquefaction studies, and therefore, the decision is to retain both variables while 

acknowledging the potential impact of their high correlation. 

 



 

Figure 4. Pair plot to determine entropy of variables 

Pair plot graphs are often used to assess the entropy of data, a lower entropy number indicates a substantial level 

of segregation or classification within the data, but a lower entropy value signifies a higher degree of information 

transmission. This entropy metric may provide a deeper comprehension of the selection of models, considering 

their categorization complexity and information transmission capabilities. Figure 4 depicts the contrast between 

data that has been liquefied and data that has non-liquefied, with respect to changes in the values of two variables. 

The Figure 4 clearly shows that there is no clear differentiation between the two types of data, suggesting a high 

level of complexity. Therefore, basic models are inadequate for analysing such intricate data. When faced with 

such a high degree of complexity, it is advisable to use more advanced models, such as genetic programming and 

advanced deep learning models, to get beneficial results. 

2.2 GEP model 

The computational approach known as GEP is applied to generate computer programs that contain the capacity to 

tackle difficult issues. Dr. Candida Ferreira first proposed the idea in 1992 as part of her PhD research at the 

University of Coimbra in Portugal. The GEP technique is based on the basic principles of genetics and natural 



selection. The operating method of this system comprises the repeated development of a set of computer programs 

via a sequence of mutation and selection procedures. The GEP technique entails representing each program as a 

sequence of symbols that may undergo different genetic processes, such as combination and modification. By 

selecting programs with higher performance on a specific challenge in each generation and propagating them to 

the next generation, their overall fitness is improved over time. The capacity of GEP to manage numerous 

objectives concurrently renders it a valuable tool in the domain of optimization. The GEP has been extensively 

utilized in various domains, encompassing but not limited to data analysis, classification, and modelling. 

Empirical evidence suggests that GEP exhibits superior performance compared to other evolutionary computation 

techniques, including genetic programming and evolutionary strategies, in specific problem domains (Ferreira 

2002). In addition, the GEP methodology has been expanded to accommodate intricate data structures, including 

trees and graphs, by implementing altered genetic operators (Oliveira et al. 2016).  

The present investigation employs a modelling method that represents the objective value as CRR, while 

considering the five independent components as input variables. The model's structure was developed using 

GeneXproTools 5.0 (2023) in conjunction with the four fundamental arithmetic operators (+, −, ×, and /). The 

modelling process used high-quality datasets that were randomly distributed throughout two distinct periods. 

Table 3 displays many distinct models that were created for the present study. These models were generated by 

using varying ratios of training and testing datasets, employing diverse programme dimensions, and employing 

distinct generations. The root-mean-squared error (RMSE), denoted as Ei, was used as the fitness function in this 

specific experiment. The fitness (fi) was calculated by using an equation derived from the expression tree. This 

equation accounted for the overall number of errors relative to the desired value. The method of addition was used 

to form a link between the genetic components. The expression tree (ET) for the CRR of the GP model 3 may be 

visualised in Figure 6. In this particular case, the input parameters are represented by the letters d0 through d5, 

while the constant value for gene one is represented by the symbol G1c8. To facilitate the interpretation of the 

expression tree, a mathematical equation derived for model 3. This equation establishes a connection between the 

input variables and the output variables. This research analysed five independent factors and one target variable. 

Equation 4 as derived using just two independent variables, namely (N1)60cs and D50. This was conducted to 

ascertain the relationship between CRR and input components, which was derived from the Spearman's rank 

correlation matrix of variables shown in Figure 5. 

During the process of Genetic Programming (𝐺𝑃), a multitude of potential models are created at random. 

Subsequently, every model undergoes training and evaluation utilising the appropriate training and testing data. 

Each model's fitness is evaluated by minimizing the root mean square error (𝑅𝑀𝑆𝐸) between the predicted and 

observed values of the output variable (𝐿𝐼) through the employment of the objective function (𝑓). 

𝑅𝑀𝑆𝐸 = √
∑ (𝐿𝐼−𝐿𝐼𝑃𝑟𝑒)2𝑛

𝑖=1

𝑛
                                                                                               (6) 

Let 𝑛 be the total amount of incidences within the fitness group. If the errors calculated using Equation (3.1) for 

all models in the present population don't satisfy the termination criteria, the cycle of generating a new population 

continues until the desired optimal model is attained, as previously detailed. 



The current study's 𝐺𝑃-based model is presented in the following general manner:  

𝐿𝐼𝑃 = ∑ 𝐹[𝑋, 𝑓(𝑋), 𝐶𝑖] +𝑛
𝑖=1 𝐶𝑜                                                                                   (7) 

where 𝐿𝐼𝑃  represents the predicted value of the liquefaction performance index, 𝐹 is the liquefaction index function 

created by the 𝐺𝑃, 𝑋 is the vector of input variables, 𝐶𝑖 is a constant, 𝑓 represents the user-defined functions, n is 

the number of terms in the target expression, and 𝐶0 is the bias term. The 𝐺𝑃, as described by Searson et al. 

(2010), is used in the development and implementation of the current models utilising gene expo 5.0.  

 

 

After simplifying, the following algebraic equation has been obtained for CRR: 

𝐶𝑅𝑅 = tanh (𝑡𝑎𝑛ℎ (
1

7.19+6.02(𝑁1)60𝑐𝑠−𝑚𝑖𝑛(3.471,(𝑁1)60𝑐𝑠
)) +

((𝑁1)60𝑐𝑠)
1
3

2
+ 𝑡𝑎𝑛−1 (

max (𝐷50,6.364)×3.89(𝑁1)60𝑐𝑠

4
) −

1.8221                                                                       (8) 

Table 3 genetic programming (GP) models 

Mode

l 

Trainin

g data 

(in 

percent) 

Testing 

data 

(in 

percent

) 

No. of 

chromosome

s 

Hea

d 

size 

No. 

of 

gene

s 

Gen

e 

size 

Progra

m 

size 

Literal

s 

No. of 

generation

s 

M1 60 40 30 12 6 38 106 41 356684 

M2 50 50 30 12 6 38 96 37 270413 

M3 70 30 30 12 6 38 104 38 163511 

M4 80 20 30 12 6 38 104 40 260010 

M5 90 10 30 12 6 38 100 39 275015 

 

 

 

 

 



 

Figure 5. the Spearman's rank corelation matrix of variables used for GP 

 



 

Figure 6. Expression tree for cyclic resistance ratio (CRR)  



 

2.3 Probabilistic methods  

Uncertainties in parameters and models make it clear that having a factor of safety (Fs) greater than 1 in 

liquefaction potential assessment does not provide total protection against liquefaction. Similarly, a Fs value less 

than or equal to 1 does not necessarily imply that liquefaction would occur. The ambiguity is resolved by taking 

into account the fluctuation of CRR and CSR, as seen in Figure 7. If Fs is calculated using the average values of 

CRR and CSR, it might exceed 1.0. Nevertheless, considering the distributions of CSR and CRR shown in Figure 

7, there exists a likelihood that CRR may be lower than CSR, as indicated by the shaded area in the Figure 7, 

leading to Fs values below 1. This contradicts prior forecasts, in which a case originally deemed non-liquefied 

may ultimately be determined to be liquefied. Therefore, recent study has concentrated on evaluating the 

likelihood of liquefaction by estimating its probability (PL). 

 

 

 

 

 

 

 

 

Figure 7. illustrates the prospective distribution of CRR (Cyclic Resistance Ratio) and CSR (Cyclic Stress Ratio) 

in the assessment of liquefaction potential  

 



2.3.1 Implementation of Bayesian mapping function 

Based on the research conducted by Juang et al. (1999), the probability of a case in the database undergoing 

liquefaction may be estimated using Bayes' theorem of conditional probability, given that the Fs has been 

calculated. 

𝑃 (𝐿
𝐹𝑠

⁄ ) =  (
𝑃(

𝐹𝑠
𝐿⁄ )𝑃(𝐿)

𝑃(
𝐹𝑠

𝐿⁄ )𝑃(𝐿)+𝑃(
𝐹𝑠

𝑁𝐿⁄ )𝑃(𝑁𝐿)
)     (9) 

The equation 𝑃 (𝐿
𝐹𝑠

⁄ ) represents the probability of liquefaction given a certain value of Fs. 𝑃 (
𝐹𝑠

𝐿⁄ ) represents 

the probability of Fs assuming that liquefaction did occur. 𝑃 (
𝐹𝑠

𝑁𝐿⁄ ) represents the probability of Fs assuming 

that liquefaction did not occur. 𝑃(𝐿) represents the prior probability of liquefaction, and 𝑃(𝑁𝐿)represents the 

prior probability of non-liquefaction. 𝑃 (
𝐹𝑠

𝐿⁄ )and 𝑃 (
𝐹𝑠

𝑁𝐿⁄ )may be derived using equations (10) and (11) 

correspondingly. 

𝑃 (
𝐹𝑠

𝐿⁄ ) =  ∫ 𝑓𝐿(𝑥)𝑑𝑥
𝐹𝑠+∆𝐹𝑠

𝐹𝑠
   (10) 

𝑃 (
𝐹𝑠

𝑁𝐿⁄ ) =  ∫ 𝑓𝑁𝐿(𝑥)𝑑𝑥
𝐹𝑠+∆𝐹𝑠

𝐹𝑠
 (11) 

𝑓𝐿(𝑥) and 𝑓𝑁𝐿(𝑥)represent the probability density functions of Fs for examples in the database where liquefaction 

occurred and where liquefaction did not occur, respectively. As the change in Fs approaches zero, Equation (9) 

may be rewritten as Equation (12). 

(𝐿
𝐹𝑠

⁄ ) =  (
𝑓𝐿(𝐹𝑠)𝑃(𝐿)

𝑓𝐿(𝐹𝑠)𝑃(𝐿)+𝑓𝑁𝐿(𝐹𝑠)𝑃(𝑁𝐿)
)   (12) 

Given the established prior probabilities 𝑃(𝐿) and 𝑃(𝑁𝐿), one may use Equation (5.3) to compute the probability 

of liquefaction for a certain value of Fs. Without knowing the values of P(L) and P(NL), may deduce that 𝑃(𝐿) is 

likely to be equal to 𝑃(𝑁𝐿) based on the principle of maximum entropy (Juang et al. 1999). Thus, if we assume 

that the likelihood of L is equivalent to the probability of NL, we may express Equation (12) as Equation (13). 

𝑃𝐿 =
𝑓𝐿(𝐹𝑠)

𝑓𝐿(𝐹𝑠)+𝑓𝑁𝐿(𝐹𝑠)
  (13) 

The Fs values, calculated using the SPT-based deterministic approach, are computed for different cases in the 

collected database in this research. The examples are classified according to their observed field performance as 

either liquefaction (L) or non-liquefaction (NL).  

Various distributions are performed for the factor of safety, and Weibull probability density function is determined 

to provide the most optimal fitting curves for both the L and NL groups. Figures 10 and 11 depict this. And Figure 

8 and 9 shows the different percentage of each factor of safety values.  The factor of safety of both groups is best 

described by the Weibull distribution, with scale parameter (λ) and shape parameter (k) values of 0.580 and 2.437, 

respectively. The probability density functions (PDF) of these Weibull distributions are seen in Figures 5.1 to 5.4 

and may be expressed using Equation (14). 



𝑓(𝑥; 𝜆, 𝑘) =
𝑘

𝜆
(

𝑥

𝜆
)

𝑘−1

𝑒−(
𝑥

𝜆
)

𝑘

,        𝑥 ≥ 0     (14) 

 

 

Figure 8 Percentage of probability of factor of safety liquefied data 

 

 

Figure 9 Percentage of probability of factor of safety non-liquefied data 

 



 

Figure 10. Weibull distribution of probability density function of liquefied data  

 

Figure 11. Weibull distribution of probability density function of non-liquefied data  

3. Results and discussion  

3.1 Formulation of equation by Bayesian mapping function 

The probability of liquefaction (𝑃𝐿) and probability of non-liquefaction (𝑃𝑁𝐿) for each case in the database is 

calculated using Equation (13), which depends on the probability density functions. The values of the factor of 



safety (𝐹𝑠) and probability of liquefaction (𝑃𝐿) and probability of non-liquefaction (𝑃𝑁𝐿) for each of the 496 

samples in the database are shown in Figure 12. A mapping function is obtained by the use of curve-fitting 

methodologies. The equation was formulated using the logistic curve fitting methodology. The derived equation 

has a coefficient of determination (𝑅2) value of 0.93. The equation (15) formulation presents the coefficients and 

variables, as seen in Figure 13. The derived equation is compared to the equations proposed by Toprak et al. 

(1999), Juang et al. (2002), and Idriss and Boulanger (2006). 

 

 

Figure 12.  Curve fitting of probability of factor of safety 

 

 

Figure 13 Curve fitting equation with constants and variables 

𝑃 =  
0.45113

1+(
𝐹𝑂𝑆

0.91049
)

11.5632 + 0.27609                                                                                   (15) 



 

3.2 Comparison with existing methods using independent database 

Regularly assessing the efficacy of a recently developed method in relation to existing methods is crucial. The 

present study examines the efficacy of the 𝐺𝑃 −based probabilistic approach in forecasting liquefied and non-

liquefied scenarios, in comparison to the equations proposed by Toprak et al. (1999), Juang et al. (2002), and Idriss 

& Boulanger (2006), with respect to their success rate. There are 30 databases gathered in the 𝑁𝐶𝑅 area utilizing 

𝑆𝑃𝑇 tests, and these databases are used to assess the efficacy of the model.  

Liquefaction probability (𝑃𝐿) is determined by calculating its value, where a 𝑃𝐿 more than 0.5 indicates liquefied 

soil, while a 𝑃𝐿 less than 0.5 indicates non-liquefied soil. 

Table 4 Classification criteria for liquefied and non-liquefied (Kumar et al. 2022b) 

Criteria  Probability of 

Liquefaction  

Liquefaction 

Classification  

Non-Liquefaction 

Classification 

A 𝑃𝐿> 0.85 High Chances of 

Liquefaction 

 

B 𝑃𝐿 > 0.65 Intermediate Chances of 

Liquefaction 

 

C 𝑃𝐿> 0.5 Low Chances of 

Liquefaction 

 

D 𝑃𝐿 < 0.15  High Chances of Non-

Liquefaction 

E 𝑃𝐿 < 0.35  Intermediate Chances of 

Non-Liquefaction  

F 𝑃𝐿 < 0.5  Non-Low Chances of 

Liquefaction 

 

The effectiveness of the suggested techniques, based on real-world data, is assessed by calculating the probability 

of liquefaction using the three endorsed approaches. The present research assesses the accuracy of the suggested 

methods based on three criteria (A-C): High probability of liquefaction 0.85-1.0), Intermediate probability of 

liquefaction (0.65-1.0), and Low probability of liquefaction (0.65-1.0). The range is between 0.5 and 1.0. Criteria 

(D) is defined as having a high probability of non-liquefaction with a range of 0.15 to 0. Criteria (E) is defined as 

having an intermediate probability of non-liquefaction with a range of 0.35 to 0. Criteria (F) is defined as having 

a low probability of non-liquefaction with a range of 0.5 to 0. These criteria are applicable to cases when 

liquefaction does not occur. The categorization criteria are shown in Table 4. 

 

 

 



5.5.1 Probability categorization 

Table 5 Classification results of different models  

Criteria Models 

Proposed Model Toprak et al. (1999) Juang et al. (2002) Idriss and Boulanger 

(2006) 

Count of 

successful 

prediction  

Rate 

(%) 

Count of 

successful 

prediction  

Rate 

(%) 

Count of 

successful 

prediction  

Rate 

(%) 

Count of 

successful 

prediction  

Rate 

(%) 

Total observed liquefied (285) 

A (𝑃𝐿 > 0.85) 214 75 199 70 208 73 210 74 

B (𝑃𝐿 > 0.65) 242 85 208 73 230 81 239 84 

C (𝑃𝐿 > 0.5) 254 89 228 80 239 84 242 85 

Total observed non-liquefied (211) 

D (𝑃𝐿 < 0.15) 127 60 65 31 105 50 91 43 

E (𝑃𝐿 < 0.35) 137 65 89 42 120 57 108 51 

F (𝑃𝐿 < 0.5) 154 73 120 57 139 66 129 61 

 

The results are shown in Table 5 , which classifies the soil that has the potential to liquefy (Criteria A-C) and the 

soil that does not have the potential to liquefy (Criteria D-F) based on the predictive accuracy of each 

recommended approach. 

The findings from Table 5 show that the Proposed Model, which is based on certain criteria, has a higher success 

rate in predicting liquefaction cases compared to the models developed by Idriss & Boulanger (2006), Juang et al. 

(2002), and Toprak et al. (1999). Specifically, the Proposed Model achieved success rates of 75% for A, 85% for 

B, and 89% for C, whereas the other models achieved lower success rates ranging from 70% to 84%. Furthermore, 

compared to Idriss & Boulanger (2006) (A = 74%, B = 84% and C= 85%), Juang et al. (2002) (A = 73%, B = 81% 

and C= 84%) And Toprak et al. (1999) (A = 70%, B = 73% and C= 80%) proposed model has a greater success 

rate of non-liquefiable case prediction. 

5.5.2 Performance fitness and error metrics (PFEMs) 

Table 6 Comparative analysis of the proposed approach with existing techniques for binary classification 

Matrices Models 

Proposed 

Model 

Toprak et al. 

(1999) 

Juang et al. 

(2002) 

Idriss and 

Boulanger 

(2006) 

Range 

TPR 0.89 0.762 0.84 0.85 1.0 

FNR 0.108 0.237 0.161 0.15 0.0 

PPV/Precision  0.817 0.714 0.768 0.746 1.0 



NPV 0.832 0.628 0.751 0.75 1.0 

FPR 0.270 0.431 0.341 0.388 0.0 

FDR 0.183 0.285 0.231 0.253 0.0 

FOR 0.168 0.372 0.249 0.25 0.0 

F1 Score 0.852 0.737 0.802 0.794 1.0 

MCC 0.634 0.3851 0.508 0.478 -1.0 to + 1.0 

Accuracy 0.822 0.682 0.762 0.747 1.0 

Sensitivity/Recall 0.891 0.762 0.838 0.849 1.0 

Specificity 0.729 0.568 0.658 0.611 --------- 

G mean error 0.193 0.342 0.257 0.279 0.0 

BA 0.81 0.665 0.748 0.730 1.0 

 

Utilising Performance Fitness and Error Metrics (𝑃𝐹𝐸𝑀𝑠) for binary classification. In order to fully evaluate the 

efficacy of the proposed approaches for classifying liquefaction problems, several Performance Fitness and Error 

Metrics (𝑃𝐹𝐸𝑀𝑠) are used in this section. Within the binary classification scenario, including both liquefied and 

non-liquefied instances, there are four distinct possible outcomes for a single prediction. The terms "true negative" 

(𝑇𝑁) and "true positive" (𝑇𝑃) refer to accurate classifications. A false positive (𝐹𝑃) occurs when the output is 

erroneously predicted to be negative, whereas a false negative (𝐹𝑁) arises when the outcome is mistakenly 

classified as negative. The 2 × 2 confusion matrix seen in Figure 5.7 may be used to assess these matrices. 𝑃𝐹𝐸𝑀𝑠 

are used to elucidate the correspondence between probabilistic forecasts of suggested methodologies and the 

actual outcome. These measures often pertain to the discrepancy in variance between the predicted and actual 

data. In this study, we used specific Performance Fitness and Error Metrics (𝑃𝐹𝐸𝑀𝑠) to evaluate categorization 

issues (Naser and Alavi 2021). The mathematical representation of these 𝑃𝐹𝐸𝑀𝑠 is provided below:  

 

Figure 14 Illustration of confusion matrix (2 × 2) for classification problem 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                 (5.7) 

𝐹𝑁𝑅 =
𝐹𝑁

𝐹𝑁+𝑇𝑃
                                                                 (5.8) 



𝑃𝑃𝑉 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                                (5.9) 

𝑁𝑃𝑉 =
𝑇𝑁

𝑇𝑁+𝐹𝑁
                                                              (5.10) 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
                                                              (5.11) 

𝐹𝐷𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑃
                                                              (5.12) 

𝐹𝑂𝑅 =
𝐹𝑁

𝐹𝑁+𝑇𝑃
= 1 − 𝑁𝑃𝑉                                                            (5.13) 

𝐹1 𝑆𝐶𝑂𝑅𝐸 =
2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
                                                            (5.14) 

𝑀𝐶𝐶 =
𝑇𝑃×𝑇𝑁−𝐹𝑃×𝐹𝑁

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝑃𝑁)
                                                          (5.15) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝐹𝑁+𝑇𝑃+𝐹𝑃+𝑇𝑁
                                                            (5.16) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝐹𝑁+𝑇𝑃
                                                             (5.17) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝐹𝑃+𝑇𝑁
                                                             (5.18) 

𝐺(𝑚𝑒𝑎𝑛)𝑒𝑟𝑟𝑜𝑟 = 1 − √𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 × 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦                                                         (5.19) 

𝐵𝐴 = 0.5 × (
𝑇𝑃

𝑇𝑃+𝐹𝑁
+

𝑇𝑁

𝑇𝑁+𝐹𝑃
)                                                           (5.20) 

Table 7 Score analysis of the proposed method and existing methods 

Matrices Proposed 

Model 

Toprak et al. 

(1999) 

Juang et al. 

(2002) 

Idriss and 

Boulanger 

(2006) 

TPR 4 1 2 3 

FNR 4 1 2 3 

PPV 4 1 3 2 

NPV 4 1 3 2 

FPR 4 1 3 2 

FDR 4 1 3 2 

FOR 4 1 3 2 

F1 Score 4 1 3 2 

MCC 4 1 3 2 

Accuracy 4 1 3 2 

Sensitivity 4 1 2 3 

Specificity 4 1 3 2 

G mean error 4 1 3 2 



BA 4 1 3 2 

Total Score 56 14 39 31 

Rank 1 4 2 3 

 

Within this particular framework, 𝑇𝑃 denotes the count of positive examples that were accurately assigned to their 

respective categories, 𝑇𝑁 denotes the count of negative instances that were correctly classified, 𝐹𝑁 denotes the 

count of positive instances that were erroneously classified, and 𝐹𝑃 denotes the count of negative instances that 

were inaccurately classified. The binary classification predictions and actual observations were compared by 

analysing the 𝑃𝐹𝐸𝑀𝑠 data shown in Table 6.  

The true positive rate (𝑇𝑃𝑅) measures the ratio of accurately detected positive cases to the total number of actual 

positive cases. This exercise does not consider indeterminate outcomes. The 𝑇𝑃𝑅 values of the suggested model 

(0.89) were found to be higher than those of the Idriss and Boulanger (2006) (0.85), Toprak et al. (1999) (0.762), 

and Juang et al. (2002) (0.84) approaches. The positive predictive value (PPV) is a measure that represents the 

percentage of positive observations that actually result in true positive values. The PPV value obtained for the 

proposed model (0.817) is higher than the values obtained by Juang et al. (2002) (0.764), Idriss and Boulanger 

(2006) (0.746), and Toprak et al. (1999) (0.714) techniques. The optimal and suboptimal values for the Negative 

Predictive Value (𝑁𝑃𝑉) are 1 and 0, correspondingly. It computes the ratio of incorrect positive results among 

observations that seem to be negative. The suggested model (0.832) outperforms the Juang et al. (2002) (0.751), 

Idriss and Boulanger (2006) (0.75), and Toprak et al. (1999) (0.628) approaches. A perfect prediction accuracy 

would include a False Positive Rate (𝐹𝑃𝑅) of zero, indicating that no negative instances are incorrectly categorised 

as positive ones. Although the FPR score of the suggested model (0.270) is lower than that of Juang et al. (2002) 

(0.341), Idriss and Boulanger (2006) (0.388), and Toprak et al. (1999) (0.431) approaches. The False Discovery 

Rate (𝐹𝐷𝑅) refers to the proportion of individuals who have a positive test result while not having the real ailment. 

The false discovery rate (FDR) obtained in this study for the proposed model (0.183) is lower than that reported 

by Juang et al. (2002) (0.231), Idriss and Boulanger (2006) (0.253), and Toprak et al. (1999) (0.285). This indicates 

that the proposed method outperformed the methods employed by Idriss and Boulanger (2006), Toprak et al. 

(1999), and Juang et al. 

The False Omission Rate (𝐹𝑂𝑅) quantifies the proportion of individuals whose test results indicated a negative 

outcome, although really having a positive condition. The suggested technique (0.168) has a lower value compared 

to the procedures used by Toprak et al. (1999) (0.372), Juang et al. (2002) (0.249), and Idriss and Boulanger (2006) 

(0.25). The suggested approaches' accuracy is evaluated using the F1 score. The 𝐹1-score obtained for the 

suggested approach (0.852) is greater than that for the Idriss and Boulanger (0.794), Toprak et al. (1999) (0.737), 

and Juang et al. (2002) methodologies. This indicates that the proposed method is more accurate in forecasting 

the possibility of liquefaction. Furthermore, the assessment of a binary classifier's effectiveness involves the use 

of Balanced Accuracy (𝐵𝐴), miss or false negative rate (FNR), 𝐺𝑚𝑒𝑎𝑛 error, and the Matthews correlation 

coefficient (MCC). The definitions of balanced accuracy and G(mean) error may be found in Equation (5.17) and 

Equation (5.19) accordingly. The miss rate indicates the quantity of liquefied or non-liquefied substances that 

could have been incorrectly classified as not having the potential to cause tsunamis.  𝐺𝑚𝑒𝑎𝑛 is often used when 

each class's performance is both remarkable and anticipated to be excellent simultaneously (Kubat and Matwin 



1997; Yuan and Liu 2011). The given value is the geometric mean of the correctness of each instance inside each 

class. To assess the efficacy of the classifier model, some studies have used 𝐺𝑚𝑒𝑎𝑛 as a measure of error rate, in 

addition to the 𝐹1-score. Matthews (1975) established the Matthews Correlation Coefficient (𝑀𝐶𝐶) to measure 

the effectiveness of a model when there is a significant difference between the percentage of positive and negative 

data. The 𝑀𝐶𝐶 is particularly valuable in such scenarios. The MCC value must fall between the range of -1.0 and 

+1.0. Conversely, a preference for the greater number indicates a more accurate forecast. 

When compared to the criteria established by Toprak et al. (1999) (0.385), Juang et al. (2002) (0.508), and Idriss 

and Boulanger (2006) (0.478), the suggested method's MCC value (0.634) indicates that it outperforms these 

criteria in predicting liquefaction likelihood. The False Negative Rate (FNR) accurately predicts cases of 

liquefaction turning into non-liquefaction. 𝐹𝑁𝑅 provides a clearer understanding of where sudden failure occurs. 

In this study, the proposed method (0.108) demonstrates lower FNR values compared to Toprak et al. (1999) 

(0.237), Juang et al. (2002) (0.161), and Idriss and Boulanger (2006) (0.15). Score analysis is performed to assess 

the effectiveness of the suggested methods. The score is calculated for each strategy by considering their 

performance fitness and error matrices. The score value range is defined by the total number of approaches used 

in this study, which is 1-4 (with a total of 4 procedures applied). The score value in this study is calculated based 

on the obtained value of PFEMs. The procedures that possess the most worth for any particular 𝑃𝐹𝐸𝑀𝑠, with an 

optimal value of 1.0, are assigned a maximum score of 4.0. On the other hand, the methods that have the greatest 

significance for any particular PFEMs with an optimal value of 0.0 are assigned a minimum score of 0. The 

proposed methodology in this research has received the highest score of 56, as shown in Table 7. Thus, the 

suggested approach has obtained the highest ranking, with Juang et al. (2002), Idriss and Boulanger (2006), and 

Toprak et al. (1999) methods following in subsequent positions. Scatter plots are shown for both liquefied and 

non-liquefied samples, demonstrating all the recommended methods for the parameters (𝑁1),60𝑐𝑠, and 𝐶𝑆𝑅. The 

scatter plots in Figures 15, 16, 17, and 18 illustrate the correlation between the total number of liquefied and non-

liquefied instances for the Proposed Model, Toprak et al. (1999), Idriss and Boulanger (2006), and Juang et al. 

(2002) techniques. These charts illustrate the comparison between the observed and forecasted values. The scatter 

plot of the Proposed Model exhibits distinct and improved segregation, aligning closely with the projected value 

ranges in contrast to the other models. Conversely, the scatter plot for Toprak et al. (1999) demonstrates a 

substantial degree of inaccuracy in forecasting both liquefied and non-liquefied instances. 

 



 

Figure 15 Visualisation of observed and forecasted instances using the suggested methodology 

 

 

 

 

Figure 16 Visualisation of observed and forecasted instances of Juang et al. (2002) method 

 



 

Figure 17 Visualisation of observed and forecasted instances of Idriss and Boulanger (2006) method 

 

 

 

Figure 18 Visualisation of observed and forecasted instances of Toprak et al. (1999) method 

3.3 Evaluating the proportional impact of various criteria on the computation of PL using the Gini Index 

(GI) 



The Gini index (𝐺𝐼) is used to evaluate the relative significance of independent variables in predicting the 

likelihood of soil deposit liquefaction. The Gini index has been computed for each independent variable, and their 

relative significance has been evaluated. A higher Gini index value signifies a stronger influence of individual 

independent elements in forecasting the likelihood of soil liquefaction in a deposit. The Gini index is calculated 

using the following mathematical equation: 

𝐺𝐼 =  |∑ 𝐶𝑢𝑚 𝑋𝑖−1𝐶𝑢𝑚 𝑃𝐿𝑖 −𝑛
𝑖=2 ∑ 𝐶𝑢𝑚 𝑋𝑖𝐶𝑢𝑚 𝑃𝐿𝑖−1

𝑛
𝑖=2 |     (5.21) 

Here, 𝐶𝑢𝑚𝑋 denotes the cumulative value of independent variables, whereas CumPL represents the cumulative 

value of liquefaction probability for a set of 𝑛 observed data points. The Gini index values for all three approaches, 

considering various input variables such as Critical depth, 𝐹𝐶, 𝐷50, 𝑃𝐺𝐴, 𝑟𝑑, Water Table (𝑊. 𝑇), 𝐶𝑆𝑅, and 

(𝑁1)60𝐶𝑆, are shown in Table 5.5.  

The results shown in Table 8 demonstrate that the Gini index value for each independent variable in the proposed 

technique is lower than the values obtained in the methods used by Juang et al. (2002), Toprak et al. (1999), and 

Idriss and Boulanger (2006). These findings indicate that each component has a substantial impact on the capacity 

to estimate the likelihood of liquefaction using the suggested approach.  

Table 8 Gini index value for all proposed and existing methods  

Variables Proposed 

Model 

Toprak et al. 

(1999) 

Juang et al. (2002) Idriss and Boulanger 

(2006) 

Critical depth 150.763 208.26 593.07 553.543 

FC 336.26 314.6 979.8 811.6 

D50 3.1259 4.7289 18.6078 17.0856 

Water Table  140.165 177.05 296.85 288.44 

PGA 2.56265 4.3765 22.9305 20.828 

rd 34.0271 37.116 18.033 10.0435 

CSR 1.85031 1.0921 7.4296 13.1889 

(N1)60CS 1849.761 2180.662 1523.244 1678.829 

 

4. conclusions  

The study attempts to develop a probabilistic liquefaction method using updated cyclic resistance ratio (CRR) and 

cyclic stress ratio (CSR) by the application of Bayes' conditional probability theorem. The study used a dataset 

that included several instances of post-liquefaction occurrences, including the time period from the 1944 

Tohnankai earthquake to the 1999 Chi Chi earthquake in Taiwan. The dataset included 286 occurrences of 

liquefaction and 210 occurrences of non-liquefaction. Furthermore, a set of 30 borehole data obtained from the 

Standard Penetration Test (SPT) were collected in the Faridabad area, which is situated in the National Capital 

area (NCR) of Delhi, India. These acquired 30 borehole data were used to verify the accuracy of both the proposed 

and current models. 



(1) Data visualization is essential for improving comprehension of data patterns, the relationships and distinctions 

among several variables used in research, and the level of disorder or unpredictability inherent in the data. The 

correlation coefficient between (PGA) and (CSR) is 0.89, indicating a strong positive link. Similarly, there is a 

strong negative correlation of -0.97 between the overburden correction factor (rd) and critical depth. Based on 

theoretical research, it is essential to eliminate one of these aspects from each combination.  However, this study 

acknowledges the importance of both variables and acknowledges their distinct contributions to the analysis of 

liquefaction studies.  

(2) The analysis of entropy reveals, via the use of pair plots, a significant lack of clear separation between the two 

data groups, hence indicating a substantial level of complexity. Thus, the analysis of complex datasets may require 

more sophisticated models to address this complex problem, it is recommended to use advanced techniques like 

Genetic Programming (GP) and advanced deep learning models to get improved results.   

(3) Through the use of variables, the present work used genetic programming (GP) to produce several models, 

each characterized by unique combinations of training and testing datasets, program dimensions, and generations. 

The current investigation used the root-mean-squared error (RMSE) as the fitness function, and the measure of 

fitness was obtained by using an equation formed from the expression tree.  The expression tree generated by the 

GP model 3 resulted in a mathematical equation that demonstrated improved performance for the input and output 

variables. 

(4) After formulating the new equation for cyclic resistance ratio (CRR), the factor of safety (Fs) has been 

determined by using the new CRR equation and cyclic stress ratio (CSR). Subsequently, several probability 

density functions are applied to the calculated factor of safety. It has been observed that the Weibull probability 

density functions provide the most accurate fitting curves for both liquefied (L) and non-liquefied (NL) conditions. 

(5) The probability of the liquefied equation was determined by using probability density curves and the Bayes' 

conditional probability theorem. The values derived from the Bayes' conditional probability theorem were further 

used in logistic curve fitting to formulate an equation, which was further compared to pre-existing probabilistic 

models. A comparison was made between the novel methodology and the techniques proposed by Juang et al. 

(2002), Toprak et al. (1999), and Idriss and Boulanger (2006). The comparison included employing a confusion 

matrix for binary classification and doing a score analysis based on factor ranking. The proposed model exhibited 

superior performance, as the outputs of the constructed model increased for all positive factors and decreased for 

negative indicators. 

(6) The Gini index was finally calculated for the proposed method and the existing methods by Juang et al. (2002), 

Toprak et al. (1999), and Idriss and Boulanger (2006). It was observed that all the existing methods were biased 

towards a limited number of variables. However, the proposed method demonstrated the significance of all 

variables in predicting the probability of liquefaction. 
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