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ABSTRACT 

The absence of a diagnostic for long COVID (LC) or post-acute sequelae of COVID-19 

(PASC) has profound implications for research and potential therapeutics. Further, 

symptom-based identification of patients with long-term COVID-19 lacks the specificity to 

serve as a diagnostic because of the overlap of symptoms with other chronic inflammatory 

conditions like chronic Lyme disease (CLD), myalgic encephalomyelitis-chronic fatigue 

syndrome (ME-CFS), and others. Here, we report a machine-learning approach to long 

COVID diagnosis using cytokine hubs that are also capable of differentiating long COVID 

from chronic Lyme. We constructed three tree-based classifiers: decision tree, random 

forest, and gradient-boosting machine (GBM) and compared their diagnostic capabilities. 

A 223 patient dataset was partitioned into training (178 patients) and evaluation (45 

patients) sets. The GBM model was selected based on performance (89% Sensitivity and 

96% Specificity for LC) with no evidence of overfitting. We tested the GBM on a random 

dataset of 124 individuals (106 PASC and 18 Lyme), resulting in high sensitivity (97%) 

and specificity 90% for LC). A Lyme Index composed of two features ((TNF-alpha +IL-

4)/(IFN-gamma + IL-2) and (TNF-alpha * IL-4)/(IFN-gamma + IL-2 + CCL3) was 

constructed as a confirmatory algorithm to discriminate between LC and CLD.  
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Introduction 

LC or PASC is a clinical unmet need affecting around 20-30 million Americans and 

many more worldwide. A non-subjective diagnosis for LC/PASC has remained elusive 

even after multiple reports of symptoms for LC. Symptom-based classification of 

immunologic diseases including autoimmune diseases and chronic inflammatory 

diseases can be difficult because of non-specific or overlapping symptoms (1). A recent 

report suggested the use of cytokine hubs to more precisely categorize autoimmune 

diseases with the stated oal of using the information as therapeutic targets as the 

expansion of immune-based therapy grows (1). The heterogeneity of immune-mediated 

inflammatory diseases (IMIDS) described in this publication also applies to post-

infectious immune-mediated and inflammatory conditions currently in the discussion of 

LC/PASC. 

The symptoms of LC/PASC have been well described in the literature (2-4) and a recent 

article (2) concluded that fatigue, post-exertional malaise, and brain fog were diagnostic 

of LC. This conclusion, however, identified symptom presentations of LC/PASC that 

overlap significantly with chronic lyme disease (CLD), myalgic 

encephalomyelitis/chronic fatigue syndrome (ME/CFS), and other post-infectious 

chronic inflammatory disorders (5-7). Clear etiological and pathophysiological 

differences exist in these chronic inflammatory conditions that necessitate precision 

medicine-tailored therapies. Here, we present a machine learning/cytokine hub 

approach to diagnose LC/PASC and differentiate LC/PASC from CLD. 
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Materials/Methods 

Patients 

The Chronic Covid Treatment Center Institutional Review Board reviewed and approved 

the protocol. All participants provided written informed consent to participate in the 

research. The date of acute COVID-19 infection was defined as the date of the first 

positive SARS-CoV-2 test result or COVID-19 symptom onset. Healthy control 

participants had no known history of SARS-CoV-2 infection and a negative anti-NP 

assay at the time of participation.  

Mild Acute COVID-19: 

1. Fever, cough, sore throat, malaise, headache, myalgia, nausea, diarrhea, loss 

of taste and smell 

2. No sign of pneumonia on chest imaging (CXR or CT Chest) 

3. No shortness of breath or dyspnea 

 

Moderate Acute COVID-19: 

1. Radiological findings of pneumonia fever and respiratory symptoms 

2. Saturation of oxygen (SpO2) ≥ 94% on room air at sea level 

 

LC/PASC 

Inclusion criteria for individuals in the LC group were previous confirmed or probable 

COVID-19 infection (according to World Health Organization guidelines) age ≥ 18 years; 
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and persistent symptoms >12 weeks after initial COVID-19 infection. Symptoms 

included those previously described and scored (4). 

Inclusion criteria for healthy controls (HC) were age ≥ 18 years, no previous SARS-CoV-

2 infection and a negative history taken as part of registration in the Chronic COVID 

Treatment Center (CCTC).  

Chronic Lyme disease (CLD) 

Patients presented to the CCTC with a history of fatigue, brain fog, and post-exertional 

malaise that pre-dated the SARS-CoV-2 pandemic (pre-2020) and persisted for greater 

than 6 months (as per the ILADS Working Group)(8).  

Presence of Borrelia Burgdorferi sp were confirmed by 2-tiered immunologic testing 

which includes immunoblot testing. Presence of other tick-borne organisms was noted 

but not required for definition of CLD as previously described (8). 

Multiplex cytokine/chemokine profiling 

Plasma collected in plasma preparation tubes (PPT, BD Biosciences, San Jose CA) as 

used for cytokine quantification using acustomized 14-plex bead based flow cytometric 

assay (IncellKINE, IncellDx, Inc) on a CytoFlex flow cytometer as previously described 

using the following analytes: TNF-a, IL-4, IL-13, IL-2, GM-CSF, sCD40L, CCL5 

(RANTES), CCL3 (MIP-1a), IL-6, IL-10, IFN-g, VEGF, IL-8, and CCL4 (MIP-1b) (2). For 

each patient sample, 25 μL of plasma was used in each well of a 96-well plate. Samples 

were analyzed on a Beckman Coulter CytoFlex LX 3-laser flow cytometer using Kaluza 

Analysis Software (Beckman-Coulter, Miami, FL). All statistical analysis was performed 
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using the Mann-Whitney test and a P value ≤0.05 was considered statistically 

significant. 

Data acquisition and processing for machine learning model construction 

To construct a working dataset we selected cytokine profiles from three disease states: 

Not Perturbed (NP), LC/PASC, and CLD. The Not Perturbed class represented the 

aggregation of unaffected (healthy controls) and mild- moderately affected COVID-19 

individuals. We combined the categories based on the lack of chronic immunologic 

perturbation present in chronic disease states like PASC and CLD, and the absence of 

statistical difference between the two states when comparing the IncellKine cytokine 

profiles (p-value >0.05) using a Mann-Whitney U-test. Severe COVID-19 individuals, 

corresponding to individuals affected by COVID-19 with severe manifestations and 

immunological perturbations, were excluded. Outliers were removed using an isolation 

forest (contamination parameter = 5%), generating a dataset consisting of 67 Not 

Perturbed, 103 PASC, and 53 CLD. Each individual had cytokine profiles derived from 

the incellKINE assay (14-plex cytokine panel), the LHI (long hauler index), and SI 

(severity index) calculated according to equations 1 and 2, as reported in (2): 

 

𝐿𝐿𝐿𝐿𝐿𝐿 =  
𝐼𝐼𝐼𝐼−2+𝐼𝐼𝐼𝐼𝐼𝐼−𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝐶𝐶𝐶𝐶𝐼𝐼4       Eq. 1 

 

𝑆𝑆𝐿𝐿 =  
 �𝐼𝐼𝐼𝐼−6+𝑠𝑠𝑠𝑠𝑠𝑠40𝐿𝐿1000 +𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉10 +(10∗𝐼𝐼𝐼𝐼−10�

(𝐼𝐼𝐼𝐼−2 + 𝐼𝐼𝐼𝐼−8)
     Eq. 2 
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The dataset was then imported into Python using the Pandas library (9-11). Data was 

partitioned with stratification using the train_test_split function from the model_selection 

module sci-kit-learn (9). An 80% of the data was for training and a 20% hold-out 

evaluation split was used to obtain performance metrics and identify overfitting. Table 1 

contains the number of instances in the pre-split dataset, training, and evaluation 

partition. 

 

Table 1. The number of individuals for each disease state (class) in the full dataset, the 

training and evaluation partitions. 

Data partition | Label Not Perturbed PASC CLD 

Full dataset 67 103 53 

80% training 54 82 42 

20% evaluation 13 21 11 

 

 

Construction of tree-based machine learning classifiers: decision tree, random forest, 

and gradient boosting machine 

In our study, we employed three tree-based machine learning classifiers: a decision 

tree, a random forest, and a gradient-boosting machine. The decision tree and random 

forest were implemented using the sci-kit-learn library, whereas the gradient-boosting 

machine utilized the LightGBM library. Hyperparameter optimization for each model 

involved a range of settings. For the decision tree, parameters like criterion, class 
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weight, splitter, maximum depth, minimum samples split, and leaf were adjusted. The 

random forest model's parameters included the number of estimators, criterion, 

maximum depth, minimum samples split and leaf, and bootstrap options. For the 

gradient-boosting machine, we varied the learning rate, number of estimators, minimum 

data in leaf, and depth. Hyperparameter tuning was conducted using 10-fold cross-

validation with three repeats, selecting the best model based on the F1 score. 

Performance was assessed on a 20% hold-out evaluation split. A custom classification 

report, which included recall, specificity, precision, negative predictive value, and F1 

score was used to calculate performance metrics and determine if there was model 

overfitting. The model demonstrating the highest performance was assigned to the 

best_model variable. 

Development of a Lyme Index for further differentiation of PASC and Lyme 

To confirm the differentiation of CLD and LC/PASC individuals following screening, and 

reduce classification errors, two new features were generated. These features were part 

of the Lyme Index. To develop these features we implemented an approach based on 

immunological significance and domain expertise. We generated the features through a 

programmatic method that implemented combinations of different operations on the 

features (ratios, powers, multiplication, and sums). This approach focused on placing 

important cytokines for CLD in the numerator and for LC/PASC in the denominator. The 

generated sets of features were filtered to remove potential zero-divisions and curated 

by domain experts to confirm their biological relevance. 

To determine the Lyme Index’s ability to classify CLD patients, we used a dataset 

comprised of 25 randomly-selected CLD individuals. A decision tree was trained using 
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the 2 features and tested on the dataset. Because only one class was present (CLD), 

we only calculated sensitivity, PPV (precision), and accuracy.  

 

Prediction of patient disease state on blinded records using the best-performing model 

To determine the predictive capability of the highest-performing model upon 

deployment, we enrolled125 randomly selected individuals. Individuals were processed 

to identify clinical assessment data, confirming their disease state (NP, LC/PASC, or 

CLD). Individuals from the dataset were confirmed to belong to either LC/PASC or CLD 

disease states. Patients without clinical assessment data and/or a diagnosis different 

from the classes in the model were removed to properly calculate performance metrics. 

These criteria resulted in the removal of only one patient profile. The resulting dataset 

was composed of 124 individuals, 18 CLD, and 106 LC/PASC patients. 
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RESULTS 

 

Incellkine parameters reveal no difference between healthy controls and mild-moderate 

acute COVID individuals, supporting aggregation into the Not Perturbed disease state 

To determine the immunologic distinctions between healthy individuals (Control) and 

those with mild to moderate acute COVID-19 (MM), we evaluated the 14 cytokines, the 

LHI, and SI with a Mann-Whitey U-test. The outcome of our analysis (Table 2) revealed 

that only VEGF showed a statistically significant trend between the HC and MM groups. 

The remaining 15 biomarkers, including the LHI and SI, did not have statistical 

differences. 

 

Table 2. Statistical comparison between HC and MM using a Mann-Whitney U-test. For 

p-values greater than 0.05, ns represent a lack of statistically significant difference.   

Biomarker U-test p-value Significance 

TNF-alpha (p=0.051) ns 

IL-2 (p=0.187) ns 

GM-CSF (p=0.145) ns 

sCD40L (p=0.145) ms 

CCL5 (p=0.252) ns 

CCL3 (p=0.568) ns 

IL-6 (p=0.278) ns 

IL-10 (p=0.215) ns 

IFN-gamma (p=0.165) ns 

VEGF (p=0.096) * 
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IL-8 (p=0.609) ns 

CCL4 (p=0.425) ns 

LHI (p=0.160) ns 

SI (p=0.107) ns 

 

 

To elucidate the broader immune landscape, we aggregated metrics from both groups. 

The resultant p-value of 0.1883 underscores the absence of a statistically significant 

difference between the many chronic inflammatory biomarkers from healthy control (HC) 

and mild-moderate (MM) individuals. We aggregated the HC and MM based on this lack 

of statistically significant differences in these cytokines to demonstrate the diagnostic 

capability of the model in a population with ongoing acute COVID-19 cases. 

 

Tree-based models for diagnosis of PASC and differentiation from Chronic CLD disease 

To evaluate the predictive capability of the tree-based models (decision tree, random 

forest, and GBM), we used a hold-out partition from the dataset. This split was a 

stratified sample of 20% of the complete dataset. The resulting performance metrics 

were compared to those obtained from the training partition. This comparison allowed 

us to determine if the models presented overfitting. The similarity of metrics between the 

training set and hold-out set indicates that the model did not show overfitting and had 

proper predictive capabilities. Table 3 indicated that GBM had the overall best-weighted 

performance and the smallest training time. These two characteristics allowed us to 

select GBM as the best model for validation on a random sample. 
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Table 3. Weighted LC diagnostic performance metrics (in percentages) on the training 

(80%) and hold-out (20%) partitions for the three tree-based models: decision tree (DT), 

random forest (RF), and gradient boosting machine (GBM) 

Train/Test Model Sensitivity  Specificity F1 PPV NPV  Accuracy 
Training/Tuning 
Time (seconds) 

Train DT 97 99 0.97 98 97 97 0.06 

Train RF 100 100 1 100 100 100 2.26 

Train GBM 100 100 1 100 100 100 0.86 

Test DT 84 94 0.84 84 94 84 Not measured 

Test RF 89 95 0.89 89 95 89 Not measured 

Test GBM 89 96 0.89 89 96 89  Not measured 

 

To interpret the GBM model, we approximated its decision pathways using a surrogate 

decision model. This allowed us to visualize the more complex GBM into a simplified 

single-tree topology. Figure 1 represents the binary decision path used by the GBM to 

classify between Not Perturbed, LC/PASC, and CLD. The tree shows high levels of IL-2 

lead to LC/PASC, whereas lower levels of the IL-2 are associated with chronic CLD and 

Not Perturbed individuals. We also determined that altered levels of VEGF are 

associated with chronic CLD similar to Antonara et al. 2010.   
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Figure 1. Surrogate tree visualization of the GBM classifier’s decision paths. Nodes 

branching left are indicative of less than or equal (≤) values, while nodes branching right 

represent greater than (>) values. 

 

 

Validation of the LightGBM model on a random set 

To corroborate the robustness of the GBM model, we evaluated its predictive 

capabilities on an independent and randomly selected dataset composed of 124 

patients (18 CLD and 106 LC/PASC) presenting with fatigue. The result (Table 4) 

indicated a weighted Sensitivity of 99% and Specificity of 88% for the detection of 

LC/PASC, and weighted Sensitivity of 89%, and a Specificity of 99% for CLD. The GBM 

model demonstrated its ability to discern between diverse disease states with high-
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performance metrics. The use of an external dataset validates the results in the 20% 

holdout split and supports the potential deployment of this model as a clinical 

diagnostic. 

 

Table 4. Performance metrics of the GBM model on a random set of patients to validate 

deployment potential. 

Class | Metric Sensitivity Specificity PPV NPV 

PASC 99.06% 88.89% 98.13% 94.12% 

CLD 88.89% 99.06% 94.12% 98.13% 

Weighted 97.58% 90.36% 97.55% 94.70% 

 

 

Development of the CLD Index 

To reduce the presence of misclassified instances (especially false negatives) and to 

confirm the GBM model if patients are not in the non-perturbed screening category, we 

developed a heuristic capable of further discriminating between LC and CLD. We used 

a domain expert-based approach to engineer a novel two-feature biomarker (equations 

3 and 4) known as CLD Index. The need for a two-dimensional feature space was due 

to the complexity of separating. Implementation of the CLD Index allowed for improved 

separation as they represented the biological relationships of cytokines and disease 
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states, with CLD-elevated cytokines (TNF-alpha and IL-4) in the numerator and PASC-

elevated cytokines (IFN-gamma, IL-2 and CCL3) in the denominator.  

 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝐿𝐿𝐼𝐼𝐼𝐼𝐿𝐿𝐼𝐼 𝐹𝐹𝐿𝐿𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐿𝐿 1 =  
(𝑇𝑇𝐼𝐼𝐼𝐼−𝑔𝑔𝑎𝑎𝑎𝑎ℎ𝑔𝑔 + 𝐼𝐼𝐼𝐼−4) 

(𝐼𝐼𝐼𝐼𝐼𝐼−𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔+𝐼𝐼𝐼𝐼−2)
    Eq. 1 

 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝐿𝐿𝐼𝐼𝐼𝐼𝐿𝐿𝐼𝐼 𝐹𝐹𝐿𝐿𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐿𝐿 2 =  
(𝑇𝑇𝐼𝐼𝐼𝐼−𝑔𝑔𝑎𝑎𝑎𝑎ℎ𝑔𝑔∗ 𝐼𝐼𝐼𝐼−4) 

(𝐼𝐼𝐼𝐼𝐼𝐼−𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔+𝐼𝐼𝐼𝐼−2+𝐶𝐶𝐶𝐶𝐼𝐼3)
    Eq. 2 

 

The discriminating power of features 1 and 2 was evaluated using a decision tree and a 

holdout partition of 20%. Further evaluation was done on a a 25-CLD patient dataset. The 

results indicated a high discriminating power, with 100% sensitivity and specificity when 

evaluating the holdout set (Table 5). This effectiveness was confirmed when testing 

features 1 (TNF-alpha +IL-4)/(IFN-gamma + IL-2) and 2 (TNF-alpha * IL-4)/(IFN-gamma + IL-2 

+ CCL3) on the 25-CLD dataset, where sensitivity, accuracy, and PPV were 100%. The 

power of the CLD Index can be attributed to engineering a set of features where relevant 

CLD cytokines are in the numerator and relevant LC/PASC cytokines are in the dominant. 

This leads to higher CLD Index values for CLD patients and lower values for PASC 

individuals. 

 

 

Jose Guevara Coto
CLD Index Feature formulas
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Table 5. Performance metrics for the CLD Index (features 1 and 2) on the evaluation 

partition and the 25-CLD dataset. 

Metric | Features 
(TNF-alpha +IL-4)/(IFN-gamma + IL-2) and (TNF-

alpha * IL-4)/(IFN-gamma + IL-2 + CCL3) 

Sensitivity 80/20 Evaluation split 100% 

Specificity 80/20 Evaluation split 100% 

Precision 25-CLD 100% 

Recall 25-CLD 100% 

Accuracy 25-CLD 100% 

F1-Score 25-CLD 100% 

 

Discussion 

Acute COVID causes a constellation of immunologic abnormalities characterized as a 

“Cytokine Storm”. Frequently lost in this pathology is significant immunosuppression 

due to low T-cell count, especially CD8+ T-cells, immune exhaustion, and decreased 

expression of Granzyme A (12-15). Immunosuppression can lead to the reactivation of 

chronic herpes family viruses such as Epstein-Barr virus (EBV), cytomegalovirus 

(CMV), Human Herpesvirus-6 (HHV-6), and Herpes Simplex (HSV) among others. In 

addition, undiagnosed or inadequately treated tick-borne illnesses such as CLD may 

also recrudesce because of a diminution of immune control. Diagnosis and 

differentiation of all of these “sequelae” of acute COVID are difficult when SARS-CoV-2 

itself can produce a post-infectious condition (LC/PASC) and the symptoms significantly 

overlap. 
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 Cytokine profiling provides valuable information for the understanding of the complex 

immunological interactions regulating the mechanisms and outcomes of different 

pathologies. Combining the obtained data with machine learning approaches has been 

successfully used for the prediction of severity, chronicity, and mortality rate of diseases 

such as COVID-19 (2,16). The translation of these integrated analyses into diagnostic 

tools represents a promising strategy to facilitate the differential diagnosis of 

pathologies with unspecific and similar clinical manifestations driven by distinct 

immunopathological mechanisms.  

Immune-mediated inflammatory diseases such as LC/PASC and CLD share a common 

spectrum of symptoms including pain, fatigue, depression, and cognitive deficits (2,17). 

Therefore, it is important to identify specific immunological features among these 

diseases to improve the current diagnostic tools available and provide adequate 

treatment to the patients.  

To address the need for accurate diagnosis for proper treatment, we developed the 

Lyme Index, a diagnostic score, to improve the stratification of LC/PASC and CLD 

patients. The Lyme Index uses two engineered features, derived from biologically 

relevant cytokines, where CLD cytokines are in the numerator and LC/PASC cytokines 

are in the denominator creating a ratio where higher scores were associated with CLD, 

the lower scores were LC/PASC. As we previously described, LC/PASC patients are 

characterized by increased levels of IFN-γ and IL-2, which in the context of a viral 

infection would induce the activation of effector T cells with pro-inflammatory properties. 

However, the chemotactic milieu in these patients, characterized by lower CCL4 and 

higher CCL3, induces the attraction mainly of myeloid cells promoting the inflammatory 
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response associated with the long-lasting symptoms observed in LC/PASC. Additionally, 

increased IFN-γ promotes myeloid cell activation which, as we have previously 

characterized, is associated with the increased frequency of inflammatory CD14+, 

CD16+, and CCR5+ monocytes in the PASC group compared to healthy donors (2,18), 

supporting lymphopenia and virus persistence.  Our diagnostic index integrates the 

increased levels of IFN-γ, IL-2, and CCL3 in LC/PASC patients to separate them from 

clinically similar chronic CLD patients.  

In the case of CLD patients, we observed an increased concentration of TNF-α and IL-4 

and therefore include these parameters in our index to further stratify these patients. 

Augmented levels of these cytokines were previously reported in the cerebrospinal fluid 

of patients with neuroborreliosis compared with control subjects (19). Additionally, in a 

different study, an increase in IL-4 concentration in cerebrospinal fluid of patients with 

neuroborreliosis was observed during the first months after the onset of neurological 

symptoms, followed by an increased IL-4 in blood at later time points (20), indicating 

that higher blood levels of IL-4 reflect an immunological alteration initiated in the central 

nervous system. As it was mentioned above. CLD patients are affected with persistent 

symptoms such as musculoskeletal pain, fatigue, and neurocognitive difficulties (17).  

The mechanisms underlying the pathogenesis of the CLD syndrome are still not fully 

elucidated. There is evidence supporting the hypothesis of an association with 

autoimmune events resulting in a dysregulated proinflammatory reaction, as well as a 

chronic inflammation caused due to a slow clearance of the bacterial peptidoglycan (21, 

22). Considering the type of symptoms observed during CLD, and that similar to other 

chronic pain states share the common features of exacerbated central nervous system 
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pain and sensory-processing mechanisms, CLD has been included within the group of 

pathologies associated with central sensitivity syndrome (CSS) (17). Proinflammatory 

cytokines such as TNF-α promote CSS inducing central sensitization and hyperalgesia 

via distinct and overlapping synaptic mechanisms in neurons either by increasing 

excitatory synaptic transmission or by decreasing inhibitory synaptic transmission (23). 

Furthermore, TNF-α promotes CSS-associated neuroinflammation generating several 

adverse effects, such as chronic pain, neurodegeneration, and cognitive impairment 

(24) common features of CLD. Additionally, immune cells promote peripheral or central 

nervous system sensitization through proinflammatory molecules such as TNF-α. Mast 

cells and astrocytes release TNF-α affecting neuronal function and promoting the 

development of chronic pain (24, 25). The effects of chronic inflammation and TNF-α, in 

particular, have been shown to lower levels of serotonin leading to depression (26). 

Interestingly, a recent paper has suggested that low serotonin in LC could be alleviated 

by the use of Prozac (27). One can also speculate that effective treatment of chronic 

inflammation in LC and CLD might also be effective in addressing depression in these 

conditions.  

 

Interestingly, CLD patients show elevated levels of IL-4, a cytokine associated with type 

2 responses. Exacerbation of type 2 inflammation could be detrimental in different 

organs including the central nervous system. In an experimental model of neuromyelitis 

optica, a strong type 2 response in the central nervous system is observed promoting 

tissue damage in this pathology (28). However, there is not a direct association between 

type 2 responses and CLD or CSS. Considering the above-mentioned effects of 
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proinflammatory cytokines such as TNF-α, the increased IL-4 production might be 

related to a compensatory mechanism to ameliorate the immune-mediated effects 

observed in CLD.  Proinflammatory cytokines associated with neuroinflammation can 

feedback control their expression and regulate the production of other mediators such 

as IL-4 (29). Furthermore, TNF-α signaling induces the expression of GATA-3 (30), 

which is the transcription factor associated with Th2 polarization and IL-4 production, 

indicating that TNF-α is responsible not only for the inflammatory effects promoting CSS 

and the symptoms associated with chronic CLD disease but also for the observed 

increased in IL-4 production as a compensatory mechanism. IL-4 polarized M2 

macrophages induce a sustained production of opioid peptides ameliorating pain and 

promoting pain resolution (31). Furthermore, T cells in the meninges secrete IL-4 to 

trigger the production of brain-derived neurotrophic factors to support neurogenesis in 

response to inflammatory-associated damage (32). Thus, the high levels of TNF-α and 

IL-4 detected in CLD are closely associated with the clinical manifestations of this 

disease in the induction of the immune-mediated damage and as a result of a failed 

compensatory response.  

Even though increased TNF-α and IL-4 are very characteristic of CLD, a study 

comparing neuroborreliosis patients with control subjects showed a significant 

difference in the concentration of these cytokines. However, there was no difference in 

neuroborreliosis patients when they were compared with tick-borne encephalitis or 

multiple sclerosis patients (19). This highlights the importance of considering the 

LC/PASC-associated cytokines in our index to generate a more solid platform for patient 

stratification.  
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Targeting individual cytokines underlying the immunopathogenesis of these conditions 

may provide a powerful new tool in the treatment of these immunologically mediated 

disorders using precision medicine. Further study may elucidate how pathogen or 

antigen persistence or reactivation could contribute to these classifications. 
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