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Abstract 

The human central nervous system (CNS) undergoes development from early embryonic stages to well 

beyond birth, with various neurological and neuropsychiatric diseases originating from prenatal events. 

Mathematical models offer a direct avenue for understanding these neurodevelopmental processes, 

particularly during the embryonic period. However, approaching and initiating such modeling presents 

challenges, including the formulation of appropriate equations that capture the dynamics of 

neurodevelopment.Therefore, this study aimed to comprehensively address the mathematical challenges by 

exploring different approaches. The approaches were divided into three embryonical categories: cell division, 

neural tube growth and neural plate growth. We concluded that the neural plate growth approach provides 

a suitable platform for simulation of brain formation/neurodevelopment compared to cell division and neural 

tube growth. We devised a novel equation and designed algorithms that include geometrical and topological 

algorithms that could fit most of the essential elements of the neurodevelopmental process during the 

embryonic period.   

Keywords: Embryonic Period, Mathematical Equations, Neurodevelopment, Natural Transformation, 

Topological Spaces 
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Introduction 

Human brain development is a process in which so-called neurodevelopment occurs according to a 

specific time frame. It starts in the third gestational week with differentiation of the neural progenitor 

cells, lasting until late adolescence. Different types of cascades lead to neurodevelopment, from genetic 

mutation to environmental factors 1,2. However, there is no reliable parameter for early detection or 

prediction of alteration in CNS development. Models that use mathematical concepts offer insight into 

the neurodevelopmental process and attempt to shed light on the underlying mechanisms of 

developmental processes in mathematical equations. In mathematical modelling of the 

neurodevelopmental processes, one of the biggest challenges is how to "approach", meaning where to 

begin, and how to look at this entity for inspiration for computation/neural networks, but more 

importantly, to understand the underlying mechanisms that drive neurodevelopment during embryonic 

development 2,3. Our previous study addressed these questions at a preliminary level 4. Eventually, we 

devised an equation that theoretically showed neuronal clustering in the cortex 5 by using the cellular 

characteristics, since such descriptions are limited 4, this study addresses these fundamental questions 

using more complex equations and algorithms. We explore the possibilities and pitfalls to understand how 

neurodevelopmental processes during embryogenesis can be analyzed mathematically. An embryonic 

neurodevelopmental dynamic modelling of this specific perspective is presented time in this study. Recent 

research 3 provided a mathematical model that frames how the brain network grows over the 

developmental period based on an equation that predicts the wiring between different brain regions. Using 

this framework, they showed diversity in neurodevelopment, a function of the wiring equation in terms 

of connectivity. However, the details of cellular components underlying neurodevelopment remain to be 

discovered and expressed 3.  Accordingly, our study aimed to clarify different types of mathematical 

modelling for neurodevelopmental processes based on 3 different approaches:  Approach-1: Cell Division 

to Neurodevelopment; Approach-2: Neural Tube development; Approach-3: Neural Plate Development. 

Results 

1.Different Types of Approaches to Neurodevelopment: Mathematical Modelling and Their Pitfalls 

To make the data more comprehensible and be able to model neurodevelopement meaningfully according 

to what happens naturally, we divided neurodevelopment into following steps:  1´. Cell division, 2´. 

Neural tube development, 3´. Neural plate development to become comparable in mathematical modelling 

(Figure 1). The bottom line is to indicate how to match these models with biology, where our 

understanding must include the following mathematical entities: the first one would be holomorphic 

functions that indicate continuity and are defined by complex-valued function; and also, to implicate 
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group homomorphism, which is expressed by h: G→H. The group homomorphism implies that it can 

generate a preserved map while transforming from one structure to another one, this process fits well with 

biology, such as tissue growth and development. 

2.A. Approach-1: From Cell Division to Neurodevelopment 

Cell cell division and polarity have been shown as deterministic in cells in relation to orientation and 

organization, so if we consider cell division patterns and polarization as illustrated in Figure 2.A, we must 

be able to provide a mathematical model that fits all neurodevelopment steps. Still, it did not sound 

plausible based on the cell division and cellular polarization. We decided to use the cell membrane that is 

composed of complex filaments (Figure 2.B). which is called the “cellular cortex” 6 for simulating the 

cell division. The “cellular cortex” is an actin network connecting to the cell membrane containing 

myosin-2 motors. The  function of the cellular cortex is to determine the cell shape, polarization, and it is 

actively involved in cell division, migration and tissue morphogenesis 6,7.  

We applied the rational Bézier curves using the weighted Bernstein-form, the W stands for the weight that 

receives the complex values, and the Pi stands for the points and 0 ≤ 𝑡 ≤ 1, which is shown in Equation.1. 

We assumed that the generated convex body (Figure 3) by these sequential Bézier curves around the 

centre in 3D space simulates a cell that is dividing, so for simplicity, we used the curves to continue until 

to generate a brain tissue like the one in Figure 2.A. Equivalently, it is called “Winding Number” which 

is defined by the number of times that a continuous curve travels around the certain point/points 8 (Figure 

3). Alternatively, one could think of the “kissing number” 9 that is packing of spheres in a specific space, 

like in Figure 1. A. 

(1)         or       

However, it implies that we are restricted in modelling the biological structures mathematically since 

approximation to the biological structure by applying mathematical models is rather sophisticated. 

Consequently, the pitfalls and possibilities are remarkable for this approach, “From Cell Division to 

Neurodevelopment”. Therefore, as this approach did not help to continue modelling for the rest of the 

brain development, we used another equation using a different mathematical method instead. It is quite 

complex to generate a simulated tissue and demonstrate the natural process of neurodevelopment.  

2.B. Approach-2: From Neural Tube Formation to Neurodevelopment 
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In this approach, we defined a neural tube development similar to the Möbius plane 10. Here, we designed 

B: = {C, S, S´} in which C indicates the curve like Equation.2 and S & S´ indicates two spaces (equivalent 

to two brain hemispheres and symmetry in CNS) that cross at crossing points on curve C as shown in 

Figure 4.A. 

(2)   𝐵:= {𝐶, 𝑆, 𝑆´}, 𝐵(𝑡) = (𝐶(𝑡), 𝑆(𝑡), 𝑆′(𝑡)) in 𝑅2 

In fact, equation “B (t)” is helpful in guiding it’s the appropriate parametrization as shown in equation.3 

that is demonstrated in Figure 4.B. Thus, this equation reflects the symmetry that we observe in the CNS.     

 (3) , −20 ≤ 𝑥 ≤ 20, −1 ≤ 𝑦 ≤ 1, i is an imaginary value.  

We further used equation 3 to generate a single-cell neuron model. Furthermore, we developed Equations 

4 and 5 by applying “Lambert W function” and the Riemann–Siegel theta function 11, a gamma function 

that has also been included in both Equations3 and 4. Using  these two equations   we were able to 

demonstrate a neuron schematically (Figure 5.A to C).  A to C looks like a neuron schematically. This 

single neuron can be integrated into the mathematical model of CNS structure similar to the model in 

Equation 3; however it shows limited options when we try mathematically design the model by inserting 

the single neuron as a unit building blocks for model “B(t)” shown in Figure 4. However, it shows limited 

options when we try to mathematically design the model by inserting the single neuron as a unit building 

block for model “B(t)” shown in Figure 4.A. However, despite providing these equations for single 

neuron and CNS models at this step via this specific approach, it seems impossible to give a general 

equation covering all neurodevelopment stages. Accordingly, this is the downside of this model since we 

could not clearly define how cells could be built up through this model and via this approach in light of 

the complexity of the CNS and especially the trajectories. We decided to develop an equation that could 

deal with most of the issues of cell build-up and trajectories, if not. 

(4)   , , If  𝑇 = 𝜃(𝑡), then …

, −20 ≤ 𝑥 ≤ 20,  0.1 ≤ 𝑦 ≤ 1,  If  𝑇 = 𝜃(𝑡) and -2 ≤ 𝑛 ≤ 6.  

(5)  , If  𝑇 = 𝜃(𝑡), then , … 

 −20 ≤ 𝑥 ≤ 20, 0.1 ≤ 𝑦 ≤ 1, and t is imaginary numbers.  

2.C. Approach-3: From Neural Plate Formation to Neurodevelopment 
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This approach requires exploring the factors determining the ultimate 3D structure of a tissue and an organ 

such as the brain, heart, etc. The relevant mathematical theory, called “Representation Theory” (12), 

explores how the linear transformation is applied on vector spaces and geometrical objects and studies 

topological methods. We postulated that to generate a 3D structure of CNS geometrically, there should be 

a 3D map along the z-axis to guide us on how to grow the tissue in a stepwise manner according to a 

certain numerical map (Figure 7.2). Therefore, we need to design the bijective map (Figure 6.D) similar 

with Cayley Groups table 12 such that F: 𝐺1 → 𝐺2, however it differs in our model based on how the 

changes occur on the table. As there is an automorphism in our model such that the tissue in the (x-y) 

plane regenerate themselves, the mapping and changes on the (x-y) plane are transferred in the z-axis 

direction according to Figure 7.2.A & B. This process is equivalent to neuronal tissue growth. To 

determine the amount of cell growth and development, we need a numerical map that is geometrically 

isomorphic 13 in the z-axis from one layer of tissue to another. As a result, we provide some examples of 

a (x-y) plane and a numerical map demonstrated in Figure 7.1.A & B, respectively. Figure 7.1.B shows 

that the numerical map could be a Pascal triangle. Thus, the z-axis must be assigned with a numerical map 

for each tissue/organ individually, which might be considered specific and constant to that tissue/organ. 

Similarly, the analogous numerical map to the Pascal triangle is the well-known Hermite polynomials 14, 𝐻𝑛(𝑥) = (−1)𝑛𝑒𝑥2 𝑑𝑛𝑑𝑥𝑛  𝑒−𝑥2
 that yields the following polynomials of degree n:  H0(x)=1; H1(x)= 2 x; H2(x)= 4 x2 − 2; H3(x)= 8 x3 − 12 x.  

Therefore, before explaining our equation for this approach, we provide some relevant mathematical 

equations that could be equivalent to our equation, summarized in Figure 7.3. They must provide 

information about the curves, surface, or transformation from one shape to another. However, to meet our 

requirements for designing a tissue/organ mathematically which are in form of schematic illustrations and 

are collectively summarized in Figure 6.  The first function of this kind is called “shape operator” 15-17, 

which is defined by: 𝑆𝑝(𝑣)=−∇𝑣𝑁. The p stands for a point on surface M, the normal vector at point p is 

N, and v is a tangent vector on M at p. Then, any change in the surface area around the point p can be 

estimated. It has been demonstrated in Figure 6.A. It provides information about the shape of curves in 

terms of their normal vector on the curves and the direction of change in curvatures. Another definition 

related to the shape operator uses the principal curvatures and principal directions, equivalently called 

“eigenvalues and eigenvectors”. Thus, the parameters define the shape change of a geometrical object 

(Figure 6.A). Moreover, the relevance to shape transformation could be obtained by applying the “linear 

transformation” 18. Generally, the “linear transformation”, which is also called “linear mapping or linear 

operator”, is defined as follows: if XY considered vector space, then there would exist x and y as vectors 
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that belong to X and Y, respectively and y is the image of x by F function, expressed by y=F(x), (Figure 

6.B). Another relevant entity is dynamical systems related to differential geometry in which the 

configuration of manifolds is studied. Dynamical systems could be categorized into nonlinear and linear 

19. As an example, the “Koopman operator” 20 has been defined as an infinite-dimensional operator that 

applies in nonlinear dynamic systems. The other example is the orthogonal polynomial indicated by 

orthogonal functions in 3D space. Another related entity applicable in the geometrical application for 

dynamic systems is the “parabolic cylinder coordinate” 21. That can be expressed based on 

hypergeometric function. As the cylinders organize and orient concerning manifolds, this mathematical 

analogy can be applied to organizing tissue/organ geometrically (Figure 6.C). The parabolic cylinder 

function is denoted by 𝐷𝑣(𝑧) = 2(𝑣 2⁄ )𝑒(−𝑧2 4⁄ )𝑈(−1 2⁄ 𝑣, 1 2⁄ , 1 2⁄ 𝑧2))) 22. In the next step, two essential steps of 

our main equation are presented in a simplified form by mathematical equations explained in Figure 7. 

At this step, we provide more information about our equation by defining the “linear/vector subspace”. 

If we assign the “linear/vector subspace” as A in a finite field 23 of B, which is R2, then we can obtain the 

linear equations related to the subspace by setting the points (x, y) in R2. If the fixed vectors are added 

into a vector/linear subspace, it could be d “affine space” 24. Thus, the affine subspace is denoted by 

having a subspace B that belongs to affine space A such that by setting the points b ∈ 𝐵 and containing 

vectors 𝐶 that make the linear subspace B. Hence, for every point such that 𝑏𝑛 ∈ 𝐵, there is a vector called 𝐶 that projects the point 𝑏𝑛 by function F. In general, the subspaces belongs to modular lattice (Dedekind 

lattices) which has been defined elsewhere 25. Further, we generated the linear/vector subspace in relation 

to polynomial expansion through “Pascal's triangle” 26 as a binomial coefficient (Figure 7.2.C). The 

summarized explanation of the equation is demonstrated in Figure 7.2. It requires explaining why we use 

“Pascal's triangle” and the related polynomial expansion. Each 3D tissue/organ formation must be 

assigned a set of magic numbers that guides how much the tissue/organ must develop numerically in the 

z-axis to take the final 3D shape. This set of magic numbers could differ based on the tissue/organ of the 

animal/human. Thus, we proposed the equation in Figure 7.3. It explains the relation between the 

“linear/vector subspace” and “Pascal's triangle”, which is assigned as a set of magic numbers for 

neuronal tissue formation. Nevertheless, another study is required to explore how these individualized 

magic numbers are assigned to different tissues and organs. In the next step, we defined our main equation 

that is obtained accordingly, as shown below in Equation. 6. We first defined the elements and main 

contributors to the Equation. 6, including the formulated cellular properties in conjunction with the 

Riemann–Siegel theta function shown in Equation.5. The similar operations regarding our introduced 

Equation. 6 have been demonstrated by discussing the “Weierstrass Sigma-Functio” and “elliptic 

function” and “partial differential equation” (PDE) 27,28. The following steps demonstrated how the 
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partial differential equation (PDE) is applied to generate the Equation. 6 by using the 𝐆𝒏, 𝜭(𝑮𝒏, 𝒕) and 𝑬(𝑮𝒏, 𝜽𝒏), sequentially. It implies how the cellular properties acts through the fowling mentioned equations 

to affect the cell cycle and growth in the schematic illustration.   

▪ 𝐆𝒏= [G1(X), G2(Y), G3(Z)],   𝐺′= N, 𝑥𝑖 = [𝑋, 𝑌, 𝑍] and 𝑥𝑖 ∈ 𝑅  

▪ N = 𝛻 × 𝐹 = | 𝑖̂ 𝐽 �̂�𝜕𝜕𝑋 𝜕𝜕𝑌 𝜕𝜕𝑍𝐺1(𝑋) 𝐺2(𝑌) 𝐺3(𝑍)| , the cellular properties  

▪ 𝑵 = [(𝜕𝐺𝑍𝜕𝑌 − 𝜕𝐺𝑌𝜕𝑍 ) 𝑖 +  (𝜕𝐺𝑋𝜕𝑍 − 𝜕𝐺𝑍𝜕𝑋 ) 𝑗 + (𝜕𝐺𝑌𝜕𝑋 − 𝜕𝐺𝑋𝜕𝑌 )𝐾]  ≈ [  
  (𝜕𝐺𝑍𝜕𝑌 − 𝜕𝐺𝑌𝜕𝑍 ) 𝑖(𝜕𝐺𝑋𝜕𝑍 − 𝜕𝐺𝑍𝜕𝑋 ) 𝑗(𝜕𝐺𝑌𝜕𝑋 − 𝜕𝐺𝑋𝜕𝑌 )𝐾]  

  
 

▪  𝜭(𝑮𝒏,𝒕) =  −ln (𝜋 𝑡)2 − ln(𝛤(14+𝑡 𝐺𝑛 1𝑖4 )−ln(𝛤(14−𝑡 𝐺𝑛 1𝑖4 )))1𝑖2 ,   𝑛 ∈ {1,2,3} 
▪ 𝑬(𝑮𝒏, 𝜽𝒏) = (𝑒𝐺(𝑋)𝜋 𝜃1)�̂�𝟏 + (𝑒𝐺(𝑌)𝜋𝜃2)�̂�𝟐 + (𝑒𝐺(𝑍) 𝜋 𝜃3)�̂�𝟑  

▪ 𝑨𝒉(𝒙) = 𝐻(𝑥, ℎ(𝑥), … , 𝜕𝑥1…𝑥𝑛𝑚 ℎ(𝑥) ), differentiable function of F, then the 2nd order partial differential 

equation (PDE) is defined as D(𝒙) = ∑ 𝐶𝑗,𝑘(𝑥)𝜕𝑗,𝑘2 ℎ(𝑥) + ∑ 𝐶𝑖(𝑥)𝜕𝑖ℎ(𝑥)𝑁11≤𝑗≤𝑘≤𝑁  29,30.  

▪ 𝑛 ∈ {1,2,3}, 𝐴 = 𝐶 = 𝐷 = 𝐸 = 1;                                                                                    
▪ 𝐵𝑖 = (𝜕𝐺𝑍𝜕𝑌 − 𝜕𝐺𝑌𝜕𝑍 ) 𝑖,  𝐵𝑗 = (𝜕𝐺𝑍𝜕𝑌 − 𝜕𝐺𝑌𝜕𝑍 ) 𝑗,  𝐵𝐾 = (𝜕𝐺𝑌𝜕𝑋 − 𝜕𝐺𝑋𝜕𝑌 )𝐾  

(6)    𝑫�̂�𝒏 = 𝐴 𝜕2𝐸�̂�𝒏𝜕𝐺𝑛2 + 𝐵𝑛 𝜕2𝐸�̂�𝒏𝜕𝐺𝑛𝜃𝑛 + 𝐶 𝜕2𝐸�̂�𝒏𝜕𝜃𝑛2 + 𝐷 𝜕𝐸�̂�𝒏𝜕𝐺𝑛 + 𝐸 𝜕𝐸�̂�𝒏𝜕𝜃𝑛  

We showed the black curves that stretch vertically; they are the “Bezier curve” that their vectors of “M” 

generate them, and the curve is controllable by “W”,  so 𝑀𝑡+𝑑𝑡 = 𝑀𝑡 + 𝑀𝑑𝑡, the “t” is obtained by the 

“Runge-Kutta” method 31,32. The “Runge-Kutta” method is “ 𝐾1 =  ℎ𝑓(𝑥𝑛+𝑦𝑛); 𝐾2 =  ℎ𝑓(𝑥𝑛 + (1/2)ℎ, 𝑦𝑛 + (1/2)𝑘1); 𝑦𝑛+1 = 𝑦𝑛 + 𝐾2 + O (ℎ3)”,  which is number solution method to our 

equation. 6 and generates input  𝐷�̂�𝑛={𝐷�̂�1 , 𝐷�̂�2 , 𝐷�̂�3} for W={𝑊�̂�1 ,𝑊�̂�2 ,𝑊�̂�3}  in three axes. Therefore, the 

“Bezier curves” are generated in three axes like a 3D object which is not shown here and only one 

direction is shown in Figure.7.3. In addition, the singular value decomposition (SVD) is denoted by 𝑀 =𝑈 ∑𝑉∗ in which U and V unitary matrices and 𝛴 is diagonal matrix. In the next step, we explained the 

“B(t)” in Figure 7.3 is a so-called binomial formula that generates the Pascals triangle; meanwhile, it 

uses 𝑡𝟏:𝒏 to assign the equation of  𝑡3 and  𝑡5 for the developing cells (linear subspace), as an example, 

is shown in Figure 7.3. When, these curvilinear lines are generated by a binomial formula, they 

determine the whole shape of the developing tissue structure in that section. If we consider  𝑡3 𝑎𝑛𝑑  𝑡5, 

this expression 𝟏𝟎 𝒙𝟑𝒚𝟐 from  𝑡5 could be removed as this third part is equivalent to the singularity point 

in Figure 7.2. B. Regarding the singularity, the Maclaurin series can be applied based on the singularity, 

non-isolated set such as a boundary with no analytic function around it 33, but in case of isolated 
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singularity point can be explored by Laurent expansion, 𝑓(𝑧) = ∑ 𝑎𝑛∞−∞ (𝑧 − 𝑐)𝑛, 𝑎𝑛 is the coefficient 

and also in case of meromorphic function (complex function), can be used and investigated for 

singularities. Next in the below, “c” shows the 𝑡5 transforms to 𝑡5,2 Then, the new plot is generated from 

the new equation to generate a different plot depending on the equations. We think this also happens in 

biology when the type of the cells varies along a certain cell line, so in this case, they can be considered 

as singularity point/points. That point is removed from the equation whenever the singularity 

point/points are not replaceable by Laurent expansion. 

a) 𝐵 =  ∑ (𝑛𝑘) 𝑥𝑛−𝑘 𝑦𝑘𝑛𝑘=0 ,  𝑖𝑓 𝑘 ≤ 𝑛  &  𝑡𝟏:𝒏 

b) 𝑡3 = 𝑥3 + 3𝑥2𝑦 + 3 𝑥𝑦2 + 𝑦3;  

c) 𝑡5 = 𝑥5 + 5 𝑥4𝑦 + 𝟏𝟎 𝒙𝟑𝒚𝟐 + 10 𝑥2𝑦3 +  5𝑥𝑦3 + 𝑦5  → 𝑡5,2 = 𝑥5 + 5 𝑥4𝑦 + 10 𝑥2𝑦3 +  5𝑥𝑦3 + 𝑦5 

d)         〈1        2            𝟑𝒔𝒊𝒏𝒈𝒖𝒍𝒂𝒓𝒊𝒕𝒚  4                5         6 〉    It is the third cell on the orange line that is 

singularity, so we remove the 3rd on the equation.   

 

Briefly, the whole process is summarized in Figure 7.3. 

Alternatively, we may model the neuronal cell morphology and development in connection with electrical 

activity and chemical factors and explore how it naturally would change and evolve. Therefore, regarding 

the topology, we can apply the functors and natural transformation 34,35 from category theory. The 

functions are defined by the morphism and objects demonstrated in the Figure 8.A. Each category has its 

own certain structure, and the functions consist of the elements called objects that belong to the certain 

category. The morphisms are canonical maps, for example, 𝒇: M1 ⟶ M2, the M1 and M2 are denoted as 

objects, and f is the morphism that maps from M1 to M2. The functors of our diagram are defined as a 

parallel pair E and C, from categories A and B such that 𝐸, 𝐶: 𝐴 ⇒ 𝐵.  

In Figure 8.A, the first category is called “A” that contains 𝑓: M1 ⟶ M2, which implies that M1 and M2 

are objects, and M2 is mapped by morphism “f”. The M1 and M2 are representative of manifolds of a 

certain type of neuronal cell that, in the next step at category “B”, is transformed into E(M1) and C(M1), 

representing electrical activity which is Functor “E” and chemical factors which is Functor “C”, 

respectively. They are involved in influencing the cell morphology (M: manifolds) and consequent 

functional changes. The effect of natural transformation is defined by Φ(M1) and Φ(M2). Thus, the 

E(M1) and E(M2) are transformed into the C(M1) and C(M2), which is a function of the natural 

transformation, which is defined by changing the functions from E to C. Thus, the relations of natural 

transformation are denoted as Φ= {Φ(M1): E(M2) ⟶C(M2) | M2 ∈ B}. Then it is namely “commutes” 

as follows: Cf o Φ(M1) = Φ(M2) o Ef.  
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We further explained how to define topological spaces, including neuronal cells embedded in a growing 

compact tissue, mathematically. First, this tissue (here we mean the neuronal tissue) is considered a finite 

topological space ‘S’, which consists of two elements (X, 𝜏𝑚) that X is the non-countable part, such as 

the extra-cellular matrix and 𝜏𝑚 is the differentiable manifold that is the countable part like the neuronal 

cells (NC) such that (X ∩ 𝜏𝑚)≠ ∅. Therefore, it satisfies the Lindelöf space and is Hausdorff, where all 

topological manifolds belong 36-38. Thus, there exist subspaces such that U1, Un ⊂ S, (U1∪ Un) ⊂ S and 

(U1∩ Un) 𝜖 S. The 𝜏𝑚 can be defined as differentiable manifolds that are countable and compact. The 

relation between the NC is as follows if 𝑁𝐶1, … , 𝑁𝐶𝑖, 𝑁𝐶𝑛 then  𝑁𝐶1 ∩ 𝑁𝐶𝑖 ∩ 𝑁𝐶𝑛 ≠ ∅. In addition, since 

the tissue grows continuously and changes in shape from the original tissue structure and morphology, it 

can be considered as a quotient space 39 such that G: (X, 𝜏𝑚) → (𝑌, 𝜏𝑛). Further, the quotient space could 

be regarded as a Banach subspace where referred to as vector space which is by definition a Hilbert space 

40. As we defined the neuronal cells as analogous to a differentiable manifold that is indicated by every 

point 𝑝{𝑥,𝑦,𝑧} such that 𝑅𝑛 = {(𝑥1, 𝑥𝑖 , 𝑥𝑛): 𝑥𝑖 ∈ 𝑅 𝑓𝑜𝑟 𝑖 = 1, 𝑛}  and {x, y, z} ∈ 𝑅𝑛 on the differentiable 

manifold “M”, which is denoted by 𝑑 (𝑁𝐶𝒑{𝑥,𝑦,𝑧})= 𝜕𝑓(𝑀) 𝜕𝑥𝑖  equation. Next, it is essential to mention the 

other factors that exist in association with the cells and regulate independently the fate of cellular 

development. They are collectively called thermodynamic laws 41,42. The Gibbs free energy that combines 

the enthalpy and entropy and thus is related to the thermodynamic laws has a deterministic role if a 

chemical reaction process can continue in a certain direction 43. The fundamental equations for Gibbs 

energy are denoted by 𝐺 = 𝑈 + 𝑝𝑉 − 𝑇𝑆, it consists of U the internal energy, P the pressure, V the 

volume, T the temperature and S the entropy. The differential for Gibbs is defined by 𝑑𝐺 = −𝑆𝑑𝑇 +𝑉𝑑𝑝 + ∑ 𝜇𝑖𝑁𝑖=1 𝑑𝑛𝑖 in which 𝑛𝑖 the amount of particles and 𝜇𝑖 the chemical potential of the particle and 

N, the number of particles 41. This chemical factor in the form of differential for Gibbs that is described 

here is assumed to be the contributing factor that leads to the change in the manifolds that are presented 

in Figure 8 as Functor C: Cf(M1)→Cf(M2). Further, the electrical activity (E) of the cells is regarded as 

another independent factor that contributes to the morphological change of the cells (assuming the change 

in the manifolds shown in Figure 8 as Functor E: Ef(M1)→Ef(M2)) and leads to cellular growth. The 

equation is called the Van der Pol equation 4 and is applied to generate the vector field in two-phase, 

which is �̇�2 = −𝑥1 − 𝑚(𝑥12 − 1)𝑥2, m = 0.1 and m = 1, E= �̇�2.   

Finally, we have to define the calculation of Figure 8.D, which is, in summary, the flow of the vector 

field that affects and interacts with every point. 𝑝{𝑥,𝑦,𝑧} of the differentiable manifold, 𝑑 (𝑁𝐶𝒑{𝑥,𝑦,𝑧})= 𝜕𝑓(𝑀) 𝜕𝑥𝑖 . It is reminded that there is a unified approach that deals with manifolds with higher 

dimensions in the field of geometry and topology called differential forms, explained by Cartan 44. It is 
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applicable when we express the effect of the vector field on the differentiable manifolds. In our model, 

there are two vector fields E and C, which are denoted by 𝛼(𝐸)𝑘 and 𝛽(𝐶)𝑙 on point 𝑝 such that 𝑝 ∈𝑑 (𝑁𝐶𝒑{𝑥,𝑦,𝑧}). There exists (𝑋𝑆(1), 𝑋𝑆(𝑖)… ,𝑋𝑆(𝑘)) ∈ 𝑓(𝑀)𝑝. Thus, their wedge product is denoted by the 

following equation (𝛼 ∧  𝛽)(𝑋𝑆(1), 𝑋𝑆(𝑖)… ,𝑋𝑆(𝑘))= 1𝐾!𝑙! ∑ sign(S)𝑆∈𝑆(𝑘+1) 𝛼(𝑋𝑆(1), 𝑋𝑆(𝑖)… ,𝑋𝑆(𝑘))… 𝛽(𝑋𝑆(𝑘+1), 𝑋𝑆(𝑖)… ,𝑋𝑆(𝑘+1)). The differential k-form can be defined in general form with 𝛼𝑖1 …𝛼𝑖𝑘= 𝛼 ( 𝜕𝜕𝑥𝑖1 , … , 𝜕𝜕𝑥𝑖𝑘 ) denoted as a vector field and 𝑓𝑖1 is assigned as coordinate function near point  𝑝 ∈𝑑 (𝑁𝐶𝒑{𝑥,𝑦,𝑧}) and then it yields ∑ 𝛼𝑖1 …𝛼𝑖𝑘𝑖1<⋯<𝑖𝑘 𝑑𝑓𝑖1 ∧ …∧ 𝑑𝑓𝑖𝑘) 45. Further, since statistical 

equations do not regulate the cellular processes, it requires defining how these interactions between the 

vector fields and every point on manifolds could be ruled by logical equations such as Boolean algebra at 

the time ‘dt’ 46. Hence, each of the mentioned contributing factors to cellular development {𝑋1 = 𝛼(𝐸)𝑘, 𝑋2 = 𝛽(𝐶)𝑙, 𝑋3 = 𝑑 (𝑁𝐶𝒑{𝑥,𝑦,𝑧})} should be included in the Boolean function before implementing the 

above-mentioned equations (see Figure 8.B). Thus, the differential of a Boolean function is defined 

by 𝑓(𝑋𝑖 ⊕ 𝑑𝑋𝑖)= (𝑋1 ⊕ 𝑑𝑋1, … 𝑋𝑖 ⊕ 𝑑𝑋𝑖), so the expression of (𝑋𝑖 ⊕ 𝑑𝑋𝑖) implies {if 𝑋𝑖 𝑣𝑎𝑙𝑢𝑒 𝑐ℎ𝑛𝑎𝑔𝑒𝑠 𝑡ℎ𝑒𝑛 𝑑𝑋𝑖 = 1, otherwise the 𝑑𝑋𝑖 = 0}. Therefore, the total differential function is 

defined by 𝑑𝑋𝑖𝑓(𝑋𝑖)= 𝑓(𝑋𝑖) ⊕  𝑓(𝑋𝑖 ⊕ 𝑑𝑋𝑖), and the total differential minimum is denoted by minXi𝑓(𝑋𝑖)= 𝑓(𝑋𝑖) ⋀ 𝑓(𝑋𝑖 ⊕ 𝑑𝑋𝑖) and total differential maximum by maxXi𝑓(𝑋𝑖)= 𝑓(𝑋𝑖) ⋁ 𝑓(𝑋𝑖 ⊕𝑑𝑋𝑖).   

Discussion 

In this study, we tried to model the neurodevelopmental processes mathematically but, more importantly 

stressing the possibilities and the pitfalls while categorizing the neurodevelopment for simplicity into 

various approaches. We devised three approaches to understand from which aspect it should be addressed 

for testing the possibility of neurodevelopmental mathematical modelling. However, it is essential to first 

try to approximate the real dynamics underlying that specific process. It does not sound easy because, as 

we discussed in the Figure 1, it can be viewed and modelled in all the steps of neurodevelopment instead 

of just focusing on neuronal clustering during corticogenesis 5. Comparatively, several theories do not 

provide a relevant computational formulation for neurodevelopmental processes. Most of the studies 

provide a mathematical framework for brain growth in the form of networks and wired nodes between 

different brain regions. They do not offer a specific parametrization for cellular characteristics or how the 

neurodevelopment process occurs based on mathematical and geometrical parameters similar to what we 
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proposed in this study. Instead, their findings are limited to the nodes and wiring changes, not the 

underlying mathematical/ geometrical mechanism contributing to neurodevelopment 3. 

Further, the complexity of biology requires us to be cautious when we intend to do modelling. Therefore, 

to tackle this issue, we proposed at least two criteria that must be followed before thinking about 

mathematical modelling. It helps to consider them as they are two main elements, so-called naturally built-

in, that mathematically should be regarded. They are briefly considered holomorphic, indicating 

continuity, complex-valued function, and group homomorphism that can transform into different 

structures. In the next step, we were interested in cell division to neurodevelopment, defined as the 

orientation and organization of cells as a function of cell division and polarity. As mentioned, this pattern 

and approach naturally occur in cells during division. The actin filaments under the cell membrane are the 

so-called “cell cortex” responsible for cell division and tissue morphogenesis 6,7. So, we assumed that the 

actin filaments could be used to mathematically explore how to model the cell division and development. 

Still, it became complicated to generate the tissue model further based on this approach. However, this is 

a distinguishable finding when we model biological phenomena mathematically. We should not simply 

try to push fitting the mathematical equations into the underlying mechanisms existing in biological 

systems; instead, the critical point is discovering the appropriate approach and approximate mathematical 

modelling that includes the proper topological definition and providing proper, relevant algorithms for the 

underlying dynamics or mechanism.  

Next, we tried the neural tube formation to neurodevelopment approach. It looks fascinating as the neuronal 

trajectory is projected all along the CNS longitudinally, so the neurons can be modelled accordingly, as we 

showed in this section and provided a simplified equation that geometrically tries to fit both the structural 

complexity and space formation.     

Finally, we approached neural plate formation and neurodevelopment. We could provide a model that fits 

most of the elements of the neurodevelopment, such as cellular characteristics, tissue growing in z axis 

according to a numerical map and a proposed equation that involves geometrical functions that behave like 

a fitting model to converge into two components by using a numerical solution, namely Runge-Kutta 

method 31. The polynomial equation generated by the binominal formula connects to the numerical map 

(Pascal’s triangles) and ‘M’ from Figure 7.3, which determines the individual cell growth and development 

in three axes that regulate whole tissue development. 

This model meets many of the suggested requirements. However, as we don’t know the exact numerical 

map, our understanding must be individualized for different tissue types, so we need to adjust the equations 

further. Further study is required to discover all components and complete this model that can generate the 
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whole brain. However, it was essential to develop a model that can be a platform for mathematical 

modelling of neurodevelopment. In the last part, we discuss and compare our proposed equation with the 

closest equivalent to our equation, the Weierstrass Elliptic Function.  This equation uses lattice and p-

function to generate the 3D objects in periodicity. This model has difficulty providing the proper parameters 

that can be adjusted for, e.g., the cell characteristics, controlling the continuous tissue growth (brain 

development) in z axis, or even mapping the growth. Therefore, in our experience, it would be almost 

impossible to provide a model with this equation without considering these issues. The last section of the 

result describes the mathematical concepts that reflect the process of neurodevelopment in terms of 

topological definition and change in the manifolds in interaction with the vector fields in the form of 

electrical and cellular Gibbs energy that all contribute to cell growth and tissue formation. The well-known 

diagram of Functors, Exterior Algebra, and Boolean functions was expressed and applied to present the 

process in mathematical terms and topological spaces. This information is helpful to clarify the details of 

neurodevelopment more topologically and better understand neurodevelopment in terms of mathematical 

terminology. It sheds light on the underlying mechanisms of biological and molecular processes regulated 

by sophisticated mathematical equations.  

Conclusion 

For the first time, we defined how to mathematically approach neurodevelopment regarding the underlying 

dynamics of neurodevelopment from different main aspects. We provided a unique model with details and 

a novel equation expected to fully model the whole brain tissue if the numerical map is discovered. Finally, 

we could define the process of neurodevelopment through a topological definition that includes the 

interaction of the manifolds with the vector fields in the form of electrical and cellular Gibbs energy. 

Finally, this approach is entirely novel based on how the natural contributing factors in terms of 

mathematical definition could explain the cellular growth and neurodevelopmental process.    

Experimental procedures  

In this study, different mathematical equations and algorithms were generated. In case needed, the written 

equations in the form of functions were implemented in MATLAB (R2021B) to generate the plots. The 

Latex of MATLAB was used for the shown formula. The Biorender (https://app.biorender.com/) was used 

to create the schematic illustrations.   
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Figure Legend: 

Figure 1. The schematic illustration of three Steps of neurodevelopment. A. Cell division where the 

pack of cells resemble “kissing number” B. Neural plate formation, C. Neural tube formation. 

Figure 2. A. Cell division polarization and the simple 3D cell organization. B. The assumed cell-shell 

complex fibres called “cellular cortex” correspond to the mathematical model for simplicity of 

generating the following structures. 

Figure 3. A. The shapes of cells during division and polarization when using the complex fibres are 

called the complex values of “Wi. B. The radiated lines highlight how the curves are distributed in the 

space around the centre of the dividing cell.    

Figure 4. A. Three curves C, S, S´. The S and S´ cross, the midline curve C, symmetrically looks like 

the CNS trajectories crossing all along, designed similar to “Möbius plane” B. The plot is the 

mathematical equivalence of the speculation in A, as it shows here, it is a symmetrical distribution of 

two curves around the midline curve. C. Two schematic illustrations are representative of CNS. 

Figure 5. A. It shows a neuron with its long axon. B, C. They demonstrate two different equations 

with similar shapes that can reflect single-unit neurons. It is assumed that theoretically, using this unit 

would help the mathematical neurodevelopment model like figure 4. C. 

Figure 6.A. The left object shows a shape change in a spheroid cell, while the right shows two blue 

spheres reflecting the shape operator (𝑆𝑝(𝑣)=−∇𝑣𝑁) with unit normal vectors (N) on the brown curves 

that show how the curves are moving in every direction during the cellular shape change. B. The 

mapping and transformation are illustrated clearly by an example of how transformation might occur 

using (f: x → x´). C. An example of a so-called parabolic cylinder coordinate shows the spatial 

orientation and organization of cylinders in relation to manifolds. D. It shows how the cells migrate 
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and organize through the layers from bottom to top, like in a neural plate. The last item shows the 

bijective function (f: X → Y), an isomorphism, and its map is an example of mathematical modelling 

of tissue growth. 

Figure 7.1. A. Schematic illustration shows how the neuronal progenitors change shape and direction 

during neurodevelopment. This illustration is related to our previous study 4, in which we designed 

how cell shape, direction, and electrical activity are defined as independent elements for 

neurodevelopment. The 3D position of cells in beginning= {𝑖̂, 𝐽, �̂�}, the G function and its parameters 

as The change in position of cells = {d𝑝1, d𝑝2, d𝑝3}, Shapes= Sphere, ellipsoid, pyramidal 

approximation, other convex bodies, Electrical activity= Excitatory {+}, Inhibitory {−}, 

Excitatory/Inhibitory {±}, X (𝑑𝑝1, s, 𝑒1), Y (𝑑𝑝2, s, 𝑒2), Z (𝑑𝑝3, s, 𝑒3). B. It represents the “Linear 

subspace” in a finite field indicated by circles and connecting linear. The Pascal's triangle is located 

above it. The schematic illustration of coloured cells in the x-y plane is analogous to Linear subspace” 

in a finite field. The neuronal growth and organization in the z-axis are shown.  

 

Figure 7.2. A. The schematic illustration shows the steps that cells grow vertically using a “linear 

subspace”, as explained in the Figure.7.1, then we have shown the vertical “black curves”, which are 

indeed ‘Bezier curve’ generated by using equation.1 and grows vertically/obliquely according to the 

Pascal triangle, for example, the 𝑡3 = 𝑥3 + 3𝑥2𝑦 + 3 𝑥𝑦2 + 𝑦3 is generated by the 3rd line of the 

Pascal triangle and is along the orange circles while connecting the “3” points; they are curvilinear 

lines that determine the whole shape of tissue in that certain section. However, the height and growth 

direction of each cell are more sophisticated and determined by curves that are a function of “W” 

calculated from equation.1 and “M” (see text), respectively. The circles represent different cell types 

with their specific properties, summarized in “M”. B. It shows the next steps of the growing that there 

is a “yellow line.” 𝑡5 = 𝑥5 + 5 𝑥4𝑦 + 𝟏𝟎 𝒙𝟑𝒚𝟐 + 10 𝑥2𝑦3 +  5𝑥𝑦3 + 𝑦5 through the yellow circles 

generated based on the “specific row” in the “Pascals triangle”. As shown, the black circle could be a 

“singularity”, so it differs from other circles therefore that one can be removed 𝟏𝟎 𝒙𝟑𝒚𝟐 (see text) and 

the rest of the equation will appear differently when plotted. This singularity can be equivalent to a 

specific cell type or extracellular matrix. C. It shows two consecutive limited ‘Pascals triangle’; the 

binominal coefficient yields it and generates the equations (t1:tn) accordingly. D. It depicts a circle and 

an ellipsoid; they have two curves generated by two vectors using equation.1, ‘Bezier Curve’.  
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  Figure 7.3. The schematic illustration of the steps of the whole mathematical process of our proposed 

model. It starts with the equation, ends in developing cells and repeats continuously until complete 

implementing according to, as an example, the Pascals triangle.   

 

Figure 8. The summary of the equation involved in NC growth and development. A. It demonstrates 

the diagram of the Functors and the natural transformation denoted by Φ and how commutes: Cf o 

Φ(M1) = Φ(M2) o Ef. B. It demonstrates an example of a differential Boolean function in the form 

of graph G (Xi, dXi) and shows how dXi changes are dependent on Xi changes. The Xi represents 

the factors 𝑋1 = 𝛼(𝐸)𝑘, 𝑋2 = 𝛽(𝐶)𝑙, 𝑋3 = 𝑑 (𝑁𝐶𝒑{𝑥,𝑦,𝑧}) that determine how the dXi changes,  for 

example, (𝑋1̅̅̅̅ , 𝑋2̅̅̅̅ , 𝑋3̅̅̅̅  )=[0,0,0] can change in value as follows (X1, 𝑋2̅̅̅̅ , 𝑋3̅̅̅̅  )=[1,0,0]. The G1, G2, 

and G3 are shown in red with distinguished pathways accordingly. C. It shows the relation between 

the factors involved in cell growth and development for every point of p of manifold, NC(M1). It 

needs to implement the interaction of vector fields on NC(M1) such that ∮(𝛼 ∧ 𝛽)(𝑋𝑆(1), 𝑋𝑆(𝑖)… ,𝑋𝑆(𝑘)) 𝑑𝑡, it integrates each time (dt) that receives the G=1 in which the G is a 

function of Xi changes in the form of inputs. D. The whole process of NC(M1)→NC(M2) is shown 

here. The vector fields of VC and VE at point P{x, y, z} are shown. The Cf o Φ(M1) = Φ(M2) o Ef 

represents the interaction of functors and vector fields, and natural transformation is reflected as the 

schematic illustration in the form of interaction between NC and vector fields. 

 

 

  

 

 

 

 

 



Figures

Figure 1

The schematic illustration of three Steps of neurodevelopment. A. Cell division where the pack of cells
resemble “kissing number” B. Neural plate formation, C. Neural tube formation.



Figure 2

A. Cell division polarization and the simple 3D cell organization. B. The assumed cell-shell complex �bres
called “cellular cortex” correspond to the mathematical model for simplicity of generating the following
structures.



Figure 3

A. The shapes of cells during division and polarization when using the complex �bres are called the
complex values of “Wi. B. The radiated lines highlight how the curves are distributed in the space around
the centre of the dividing cell.



Figure 4

A. Three curves C, S, S´. The S and S´ cross, the midline curve C, symmetrically looks like the CNS
trajectories crossing all along, designed similar to “Möbius plane” B. The plot is the mathematical
equivalence of the speculation in A, as it shows here, it is a symmetrical distribution of two curves around
the midline curve. C. Two schematic illustrations are representative of CNS.



Figure 5

A. It shows a neuron with its long axon. B, C. They demonstrate two different equations with similar
shapes that can re�ect single-unit neurons. It is assumed that theoretically, using this unit would help the
mathematical neurodevelopment model like �gure 4. C.



Figure 6

See image above for �gure legend



Figure 7

See image above for �gure legend



Figure 8

See image above for �gure legend



Figure 9

See image above for �gure legend



Figure 10

See image above for �gure legend
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