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Abstract 

Accurate and robust drug response prediction is of utmost importance in precision 

medicine. Although many models have been developed to utilize the representations of 

drugs and cancer cell lines for predicting cancer drug responses (CDR), their 

performances can be improved by addressing issues such as insufficient data modality, 

suboptimal fusion algorithms, and poor generalizability for novel drugs or cell lines. 

We introduce TransCDR, which uses transfer learning to learn drug representations and 

fuses multi-modality features of drugs and cell lines by a self-attention mechanism, to 

predict the IC50 values or sensitive states of drugs on cell lines. We are the first to 

systematically evaluate the generalization of the CDR prediction model to novel (i.e., 

never-before-seen) compound scaffolds and cell line clusters. TransCDR shows better 

generalizability than 8 state-of-the-art models. TransCDR outperforms its 5 variants 

that train drug encoders (i.e., RNN and AttentiveFP) from scratch under various 

scenarios. The most critical contributors among multiple drug notations and omics 

profiles are Extended Connectivity Fingerprint and genetic mutation. Additionally, the 

attention-based fusion module further enhances the predictive performance of 

TransCDR. TransCDR, trained on the GDSC dataset, demonstrates strong predictive 

performance on the external testing set CCLE. It is also utilized to predict missing 

CDRs on GDSC. Moreover, we investigate the biological mechanisms underlying drug 

response by classifying 7,675 patients from TCGA into drug-sensitive or drug-resistant 

groups, followed by a Gene Set Enrichment Analysis. TransCDR emerges as a potent 

tool with significant potential in drug response prediction. The source code and data 

can be accessed at https://github.com/XiaoqiongXia/TransCDR. 

https://github.com/XiaoqiongXia/TransCDR
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1 Introduction 

Tumors exhibit intra- and inter-tumoral heterogeneity [1], contributing to the variable 

efficacy of anticancer drugs among different tumor subtypes and patients. In order to 

enhance clinical outcomes and patient survival rates, precision/personalized medicine 

[2] seeks to individualize treatments based on the specific molecular characteristics of 

each patient [3]. Genomics, epigenomics, and transcriptomics have emerged as 

invaluable tools for providing unprecedented insights into the underlying molecular 

mechanisms of cancer [4]. Precision medicine and drug repurposing can be 

considerably facilitated by performing a systematic analysis of drug properties and 

multi-omics features of cancer cell lines and accurately predicting cancer cell drug 

responses. 

The advent of large-scale drug sensitivity data and the genomic data for over 1,000 

cultured cancer cell lines, such as Drug Sensitivity in Cancer (GDSC) [5], NCI-60 [6] 

and Cancer Cell Line Encyclopedia (CCLE) [7], has enabled the development of 

computational models to predict cancer drug responses (CDR). Several novel models, 

including DeepCDR [8], DeepTTA [9] and GraphDRP [10], have been reported using 

standard datasets extracted from the GDSC. These end-to-end models share a similar 

architecture, with drug and cell line encoders learning representations for drugs and cell 

lines. Stacked fully connected layers then utilize these representations to predict drug 

sensitivities. Consequently, generating an accurate and robust prediction model 

requires appropriate representation learning for drugs and cell lines. The emergence of 

novel deep learning modules, such as convolutional neural networks (CNN), graph 

neural networks (GNN) [11, 12], and Transformer [13], has motivated their application 

to CDR models [14]. For example, GraphDRP [10] and GraOmicDRP [12] utilized 

GNNs (e.g., GIN and GAT) to learn drug features from their graph representation. 

DeepTTA employed a Transformer module for drug representation learning from 

SMILES strings [9]. CNN blocks were utilized to extract features from multi-omics 

data for cell lines [10, 12, 15]. A thorough comparison of the state-of-the-art (SOTA) 

models demonstrated that GraphDRP and DeepCDR outperformed traditional machine 

learning methods (e.g., ENet and random forest) and 3 deep learning methods (i.e., 

CDRscan, tCNN and MOLI) [16]. Additionally, models such as TGSA [17] and 

DRPreter [18] were proposed to make better use of prior domain knowledge (e.g., 

protein–protein interaction). They applied GNN to extract cell line features from gene 

networks. 

Despite the considerable progress achieved in CDR models, several limitations still 

exist. Firstly, labeled drugs for CDR tasks are often scarce, leading to deficient 

representation learning of drugs. Secondly, while these CDR models aim to learn more 

appropriate drug representations from 1D Simplified Molecular Input Line Entry 

System (SMILES) strings [19] or 2D molecular graphs, or extended-connectivity 

fingerprints (ECFPs) and achieve high accuracy, the potential interplay among multiple 

drug representations has yet to be fully explored [20]. Thirdly, the fusion representation 

of CDR is obtained by concatenating representations of drugs and cell lines, thereby 

limiting CDR models’ performance. Finally, the accuracy of prior methods 



significantly drops when predicting the response of an unrepresented drug in the 

training set, and their inability to accurately predict CDRs in cold start scenarios has 

not been thoroughly evaluated and discussed. These substantial limitations will hinder 

the effectiveness of CDR models in precision medicine and drug repurposing. 

Transfer learning is a technique that aims to enhance models’ performance on small-
volume datasets by transferring knowledge extracted from related large-scale datasets 

[21]. Although this technique is wildly applied in natural language processing [22] and 

computer vision, its development in computational chemistry is yet to be effectively 

realized. Recently, several pre-trained drug encoders have been made available. For 

example, ChemBERTa is a BERT-like transformer model pre-trained on a vast corpus 

of SMILES strings through masking language modeling of chemical SMILES strings 

[23]. Gin_supervised_masking is a graph isomorphism network (GIN) model pre-

trained with supervised learning and attribute masking [24]. These pre-trained drug 

encoders can be implemented to learn global and expressive drug representation and 

transferred to various downstream tasks, such as drug response prediction, drug-target 

prediction, drug design, and property prediction. 

We proposed an end-to-end regression/classification model, TransCDR (Figure 1), 

to overcome the abovementioned limitations. TransCDR captured high-dimensional 

features from the drug’s SMILES strings (S), molecular graphs (G), and ECFPs (FP), 
as well as the associations between drug and cell line representations, to predict the IC50 

value when presented with a drug-cell line pair. TransCDR significantly outperformed 

SOTA models for predicting IC50 values or sensitive states under warm and cold start. 

Several innovative aspects of the model’s architecture contributed to the success of 

TransCDR. First, we introduced transfer learning to extract the chemical features of 

drugs automatically. Second, we integrated 3 drug structural representations (i.e., S, G, 

FP). Third, we leveraged a multi-head attention mechanism to fuse the representations 

of drugs and cell lines. Finally, we evaluated the prediction ability of TransCDR on 

external verification sets: CCLE and applied the trained TransCDR to screening drugs 

for clinical patients. Furthermore, we elucidated the biological mechanisms of 

candidate CDRs via Gene Set Enrichment Analysis (GSEA). Thus, TransCDR 

contributed to cancer drug prediction and drug repurposing/discovery. 

2 Methods and materials 

2.1 Data collection and preparation 

This study utilized GDSC, CCLE, and TCGA datasets. Specifically, GDSC was 

employed to assess the effectiveness of TransCDR across various application scenarios, 

including predicting missing CDRs for known cell lines and drugs and unseen cell lines, 

drugs, and both unseen cell-drug combinations. Additionally, all CDRs from the GDSC 

database were utilized for training the final TransCDR model, which was subsequently 

evaluated on external datasets: CCLE. 

GDSC v2 constitutes a vital asset in the endeavor of discovering therapeutic 

biomarker for cancer cells [5]. We have gathered a total of 156,813 CDRs that satisfied 

three specific criteria, including 851 cancer cell lines and 225 drugs. 1) CDRs 



encompassed drug sensitivity profiles ascertained through the measurement of the half 

maximal inhibitory concentration (IC50) or sensitive state, which indicated the capacity 

of a drug to impede the growth of specific cell lines. 2) The selected CDRs exhibited 

the presence of three omics data sets: genetic mutation, gene expression, and DNA 

methylation for the corresponding cell lines. 3) The included drugs possessed SMILES 

strings. 

This study obtained mutation and copy number aberration (MC), gene expression 

(GE), and DNA methylation (DM) profiles from GDSC. Specifically, gene expression 

profiles were downloaded for 1,000 human cancer cell lines using transcriptional 

profiling arrays E-MTAB-3610, and were pre-processed using the R package affy. The 

Affymetrix GeneChip system, along with the robust multiarray average method, was 

employed for measuring gene expression [25], resulting in 18,451 gene expression 

values for each cell line. Subsequently, the gene expression matrix was then normalized 

using z-score. The MC data consisted of a binary matrix with 735 features, where 1 

indicated a mutation or copy number aberration in the gene, and 0 indicated absence of 

such aberrations. The DM matrix was obtained by downloading the processed matrix 

of GSE68379 from GEO, where continuous values represented the methylation score 

of each CpG. The methylation scores of CpG sites were then averaged to obtain 

methylation scores for genes, resulting in 20,617 methylation values for each cell line. 

The DM matrix was also normalized by z-score. Drug SMILES strings were retrieved 

from PubChem [26] and converted to canonical SMILES using open-source 

cheminformatics software RDKit. 

For each combination of cell line and drug 𝐶𝐷𝑃𝑖𝑗 , cell line 𝑖 was characterized 

using 3 types of omics data (i.e., MC, GE, DM); drug 𝑗 was represented by SMILES 
strings, and the label of 𝐶𝐷𝑃𝑖𝑗 was the natural logarithm-transformed IC50. A total of 

156,813 CDPs were utilized in the development of the regression model. In 

classification experiments, IC50 values were binarized based on the provided threshold 

for each drug [27]. Consequently, a total of 154,603 CDPs were obtained, with 𝐶𝐷𝑃𝑖𝑗 ∈ {0,1}, consisting of 18,143 sensitive CDPs and 136,460 resistant samples. 

For the CCLE dataset, this study accessed MC, GE, and DM profiles as well as 

pharmacological profiling files from the Broad DepMap Portal. The processing steps 

for CDPs in GDSC were followed to extract 9,242 CDPs, which consisted of 401 

cancer cell lines and 24 drugs, with IC50 values transformed via natural logarithm. For 

the TCGA dataset, a total of 7,675 patients with multi-omics profiles, including MC 

(MC3 gene-level non-silent mutation), GE (Illumina HiSeq), and DM (Methylation 

450k) were obtained from UCSC Cancer Genome Browser Xena [28] using TCGA 

patient ID. Due to differences in the feature dimensions of MC, GE, and DM between 

CCLE, TCGA and GDSC, the features of CCLE and TCGA were aligned with those of 

GDSC. Standardization of GE and DM profiled across different platforms was ensured 

through z-score normalization. 



2.2 Data segmentation strategies 

We employed 10-fold cross-validation (10-CV) to evaluate TransCDR’s 
generalizability comprehensively. Datasets were divided based on 5 strategies: warm 

start, cold drug, cold scaffold, cold cell, and cold cell & scaffold. 

1. Warm start: A warm start approach was adopted to assign a random selection of 

80%, 10%, and 10% of the CDRs to the training, validation and testing sets, 

respectively. Notably, it was possible for a drug/cell line from the test or validation 

set to also be present in the training set. The models trained using the warm start 

strategy were then employed to predict the missing IC50 values in the GDSC dataset. 

2. Cold drug: Drugs present in the test/validation set were carefully excluded from 

the training set. Among the drug-associated CDRs, a random selection of 80% (180) 

drugs were assigned to the training set, 10% (22) to the validation set, and the 

remaining CDRs with 10% (23) drugs were designated for the test set. This 

experimental design aimed to assess the model’s performance on unforeseen drugs. 

It was important to note that despite these efforts, there may be instances where 

different drugs share similar scaffolds, resulting in scaffold overlap between train, 

validation, and test data. Consequently, this overlap may potentially overestimate 

the generalization ability of the CDR model to novel drugs. 

3. Cold scaffold: Initially, the Murcko scaffold of each SMILES was obtained using 

RDKit. Following this, the SMILES strings were clustered utilizing scaffold 

similarity. It was important to note that the Murcko scaffolds employed in the 

test/validation set were omitted from the training set. Consequently, a random 

allocation of 80% (170) scaffold-associated CDRs was allocated to the training set, 

with 10% (21) assigned to the validation set. The remaining CDRs, comprising 10% 

(19) drugs, were assigned to the test set. The purpose of this experiment was to 

assess the model’s performance on unseen drugs with varying scaffolds. 

4. Cold cell: Firstly, the cell lines were clustered based on 3 omics features using the 

K-means algorithm. The number of clusters used for comparisons in subsequent 

experiments was set at 10, 50, 100, and 200. Within this process, cell clusters 

allocated to the test/validation set were exclusively excluded from the training set. 

The training set consisted of a random selection of 80% cell line cluster-associated 

CDRs, while 10% were allocated to the validation set. The remaining CDRs, 

involving 10% of the cell line clusters, were assigned to the test set. This 

experiment aimed to evaluate the model’s performance on previously unseen cell 

lines. 

5. Cold cell & scaffold: The training set excluded both cell line clusters and drug 

scaffolds assigned to the test/validation set. For the training set, a random selection 

of 80% cell line cluster-associated and 80% drug scaffold-associated CDRs was 

allocated, whereas 10% cell line cluster-associated and 10% drug scaffold-

associated CDRs were assigned to the test/validation set. This experiment assessed 

the model’s performance on unseen cell line clusters and drug scaffolds. 



2.3 Overall architecture of TransCDR 

We proposed TransCDR, an end-to-end deep learning model which employed drugs’ 
chemical structures and cell lines’ multi-omics data to predict drug responses. 

TransCDR consisted of two prediction modes: regression for predicting and 

classification for predicting drug sensitivity or resistance on cell lines. The model was 

composed of four main components (Figure 1): (1) We employed ChemBERTa, a pre-

trained model, to learn drugs’ representations from SMILES strings, 
gin_supervised_masking, another pre-trained model, to learn drugs’ molecular graph 
representations, and a stacked full connected (FC) layers module to acquire high-

dimensional features from ECFPs. (2) We used three FCs to learn numerical 

representations of MC, GE, and DM data. (3) These drug and cell line representations 

were fused in a fusion module, a stacked multi-head attention layer module with 6 

layers and 8 heads. The fusion module integrated multi-modality features of drugs and 

cell lines. (4) A regression/classification network with four FCs used fusion 

representations to predict drug responses. The components above of TransCDR were 

further elaborated in the subsequent paragraphs. 

 
 

Figure 1. The framework of TransCDR includes three drug modules (ChemBERTa, GIN, MLP) for 

extracting drug features from SMILES strings, molecular graphs, and fingerprints, respectively. 

Similarly, there are three cell line modules (MC_module et al.) for extracting cell line features from 

genomic mutation, gene expression, and DNA methylation data, respectively. The drug and cell line 

representations are fused using a self-attention-based fusion module. Finally, the fusion 

representation is fed to a regression/classification network consisting of four fully connected layers 

to predict the ln(𝐼𝐶50) or sensitive state. 



2.3.1 Drug representations 

We employed three drug encoders to acquire numerical representations from the three 

basic molecular notations (S, G, and FP), followed by applying three notation-specific 

networks that extracted 256-dimension features from the numerical representations. 

2.3.1.1 Sequence representation 

We utilized the SMILES format to represent drugs, which involved a series of 

characters indicating atom and bond symbols and a few grammar rules resembling 

natural language. To this end, we proposed employing a pre-trained BERT-like model 

called ChemBERTa to acquire the numerical representations from SMILES strings. 

ChemBERTa [29] is pre-trained on 10M SMILES strings from PubChem using the 

masked language modelling approach. Figure 1 displays the specifications of the 

sequence representation module used in our experiments. Subsequently, the SMILE 

string was tokenized into sub-word token strings using the Byte Pair Encoding 

tokenizer, and then converted into token IDs with a maximum sequence length of 512. 

Next, the token IDs were inputted into the pre-trained ChemBERTa to obtain the 

sequence representation. The numeric representation of a SMILES string is computed 

as follows: 

 𝑇 = tokenizer(SMILES) (1) 

 ℎ𝑠 = ChemBERTa(𝑇) (2) 

Where 𝑇 indicates the token IDs of a SMILES string 𝑇 = {𝑡1, 𝑡2, … , 𝑡512}, and ℎ𝑠 

represents the learned numeric representation of the SMILES, with a dimension of 768. 

The ChemBERTa and tokenizer were downloaded from HuggingFace [30]. 

Furthermore, we extracted features from the numeric representations utilizing a neural 

network, with two hidden layers comprising 1,024 and 256 neural units, respectively. 

Every layer is formulated according to the following equation: 

 ℎ𝑠 = ReLU(𝑊𝑖ℎ𝑠 + 𝑏𝑖) (3) 

Where 𝑊𝑖 and 𝑏𝑖 represent learnable matrices. The output size of the network is set 

to 256 to facilitate fusion operation. 

2.3.1.2 Graph representation 

The recent emergence and success of GNNs have inspired their application to drug 

representations. Specifically, we represented drugs as molecular graphs as 𝐺 = (𝑉, 𝐸), 

where 𝑉 denotes the atoms, and 𝐸 denotes the chemical bonds node. Each node 𝑣 ∈𝑉 is associated with node features ℎ𝑣 and each edge (𝑢, 𝑣) ∈ 𝐸 is associated with 

edge features 𝑒𝑢𝑣 

 ℎ𝑣(𝑙+1) = MLP𝑙+1((1 + 𝜖𝑙+1) ∗ ℎ𝑣𝑙 + ∑ 𝑒𝑢𝑣 ∗ ℎ𝑢𝑙𝑢∈𝑁(𝑣) ) (4) 



 ℎ𝑔 = (1𝑁 ∑ ℎ𝑣′𝑁 )) (5) 

 ℎ𝑣′ = CONCAT(ℎ𝑣0, ℎ𝑣1, … , ℎ𝑣𝑙 ) (6) 

Where 𝑣 represents the target node, 𝑢 represents the neighboring node of 𝑣, and 𝑒𝑢𝑣  denotes the weight assigned to the edge from 𝑢  to 𝑣 . The model includes a 

learnable parameter 𝜖 and employs ℎ𝑣𝑙 , the node representation of layer 𝑙, and ℎ𝐺 , 

the graph representation. The pre-trained GIN model, gin_supervised_masking, 

performed well in learning local and global representations at the individual node and 

whole graph level. To learn the appropriate representations with a dimension of 300 

from molecular graphs, we applied a neural network with 2 hidden layers to extract 

features from these representations. 

2.3.1.3 Fingerprint representation 

The topological fingerprints of drugs were captured using ECFP representations [31] 

based on Morgan’s algorithm with RDKit. Specifically, each atom was assigned a 

unique integer identifier and updated to represent larger circular substructures with a 

radius of 2. The final substructures were hashed into a binary vector with a length of 

1,024, defined as 𝐹𝑃 = {𝑓𝑝1, 𝑓𝑝2, … , 𝑓𝑝1024} , where 𝑓𝑝𝑖 ∈ {0,1} . ECFP features 

were also extracted using a neural network with 2 hidden layers. 

2.3.1.4 TransCDR variants without pre-training 

To examine the effectiveness of transfer learning, we replaced the pre-trained drug 

representation modules, namely ChemBERTa and gin_supervised_masking, with non-

pre-trained modules, including CNN, RNN, AttentiveFP, NeuralFP, and ECFP. All 

parameters were initialized randomly and subsequently learned from scratch through a 

back-propagation algorithm. One-hot encoding was used to represent drugs in CNN 

and RNN, whereas AttentiveFP and NeuralFP represented drugs as pre-defined graph 

structures with atomic and bond features. The drug module architecture was identical 

to that of DeepPurpose [32]. 

2.3.2 Cell line representations 

We employed a late fusion strategy to process high-dimensional and heterogeneous 

omics data and capture complex relationships from mutation and copy number 

aberration, gene expression, and DNA methylation profiles. We used omics-specific 

networks to extract features of cell lines from each omics and fuse these 3 types of 

features using multi-head attention. The fully-connected networks had 2 hidden layers 

with 1,024 and 256 neural units. We mapped the 3 types of omics data into a latent 

space with an embedded dimension fixed at 256. 

 ℎMC = NetworkMC(𝑋MC) (7) 



 ℎGE = NetworkGE(𝑋GE) (8) 

 ℎDM = NetworkDM(𝑋DM) (9) 

Where ℎGE, ℎMC, and ℎDM ∈ ℝ𝑛∗𝑑, d=256, and n is the batch size. 

2.3.3 Multi-head attention for feature fusion 

We proposed utilizing the multi-head attention mechanism to model the relationships 

between drug features (i.e., sequences, graphs and ECFPs) and cell line features (i.e., 

MC, GE, and DM). Initially introduced in Transformer [13], the multi-head attention 

method has been widely adopted for multi-modality fusion [33, 34]. Specifically, the 

attention module mapped a query and a set of key-value pairs to an output generated as 

a weighted sum of the values. The attention is formulated as follows: 

 Attention(𝑄, 𝐾, 𝑉) = softmax(𝑄𝐾T√𝑑𝑘)𝑉 (10) 

Where 𝑄, 𝐾, 𝑉 ∈ ℝ𝑛∗6∗𝑑𝑘 , derived from the concatenation of 3 drug and 3 cell line 

features, n is the batch size, 𝑑𝑘  represents the feature dimension, T is a transpose 

operation. To learn the features from distinct representation subspaces, we projected 

the 𝑄, 𝐾, and 𝑉 ℎ times, and calculated the multi-head attention function as follows: 

 𝑄𝑖 = 𝑄𝑊𝑖𝑄 + 𝑏𝑖𝑄 , 𝑖 ∈ {1,2, … , ℎ} (11) 

 𝐾𝑖 = 𝐾𝑊𝑖𝐾 + 𝑏𝑖𝐾, 𝑖 ∈ {1,2, … , ℎ} (12) 

 𝑉𝑖 = 𝑉𝑊𝑖𝑉 + 𝑏𝑖𝑉 , 𝑖 ∈ {1,2, … , ℎ} (13) 

 MultiHeadAtt(𝑄, 𝐾, 𝑉) = CONCAT(ℎ𝑒𝑎𝑑1, ℎ𝑒𝑎𝑑2, … , ℎ𝑒𝑎𝑑𝑛)𝑊𝑂 (14) 

 ℎ𝑒𝑎𝑑𝑖 = Attention(𝑄𝑖, 𝐾𝑖, 𝑉𝑖) (15) 

where 𝑊𝑖𝑄 , 𝑊𝑖𝐾 , 𝑊𝑖𝑉 ∈ ℝ𝑑∗𝑑𝑘, 𝑊𝑂 ∈ ℝℎ∗𝑑𝑘∗𝑑 𝑏𝑖𝑄 , 𝑏𝑖𝐾 and 𝑏𝑖𝑉 are learnable matrices, ℎ is set at 8, 𝑑𝑘 = 𝑑ℎ = 2568 = 32. 

The multi-head attention mechanism was the primary constituent in constructing the 

fusion module of TransCDR. More specifically, the fusion module consisted of 6 

identical multi-head attention layers. The output of this module was then flattened and 

incorporated into a regression module. Our study delved into the inquiry of 3 attention 

modules, namely self-attention, drug-cell line attention (DCA), and cell line-drug 

attention (CDA) (Figure 2). 



 

 

Figure 2. Illustration of the three attention modules employed in this study. (A) Self-attention: a 

module concatenates drug and cell line representations to serve as the Q, K, and V parameters. (B) 

Drug-cell line attention: Q denotes the drug representations, and K and V correspond to the cell line 

representations. (C) Cell line-drug attention: Q denotes the cell line representations, and K and V 

correspond to the drug representations. 

2.3.4 Prediction module 

The prediction module comprised a four-layer neural network incorporating rectified 

linear unit (ReLU) activation functions and dropout layers characterized by a dropout 

rate of 0.1. The output value pertained to a cell line’s predicted drug response/sensitive 

state. To train regression/classification models, we adopted either the mean squared 

error (MSE) or binary cross entropy (BCE) loss function, which we subsequently back-

propagated to the network and then updated all parameters end-to-end. 

2.4 Performance metrics 

For the regression experiments predicting ln(𝐼𝐶50) values of drugs and cell lines, we 

assessed TransCDR’s performance using 4 evaluation measures: root mean square error 
(RMSE), Pearson correlation coefficient (PC), Spearman’s rank correlation coefficient 
(SC), and concordance index (C-index). RMSE was used to calculate the difference 

between predicted and ground truth IC50 values: 

 𝑅𝑀𝑆𝐸 = √1𝑁 ∑(𝑦𝑖 − 𝑦�̃�)2 (16) 

Where N denotes the size of the test set. 𝑦𝑖 and 𝑦�̃� represent the ground truth and 

predicted IC50 values, respectively. PC and SC measured the linear and rank-based 

correlations between ground truth and predicted IC50 values. Additionally, we evaluated 

TransCDR’s predictions using the C-index. 

For the classification experiments, we evaluated the performance of each method 

using the Area under the Receiver Operating Characteristics (AUROC) and the Area 



Under the Precision-Recall (AUPR) curves. AUPR was used as the primary metric, 

especially when negative samples were much more extensive than positive ones [35]. 

Lastly, we employed the two-sided Wilcoxon rank sum test with a significance 

threshold 0.05 to demonstrate the significant performance difference between 

TransCDR and other compared models. We reported the mean and standard deviation 

of metrics obtained by executing 10-CV for each method. 

2.5 GSEA 

Performing GSEA on the omics data of patients from TCGA can offer valuable 

biological insight into TransCDR. We employed the trained TransCDR classification 

model to evaluate 225 drugs on 7,675 patients with the available 3 omics profiles from 

TCGA. For each drug, patients were ranked based on their prediction score, and the top 

and bottom 5% (384 of each) were classified as drug-sensitive and drug-resistant, 

respectively (Figure 3). The difference in predicted score between drug-sensitive and 

drug-resistant patients was calculated using the formula: 

 𝐷𝑖𝑓𝑓drug = 𝑆s̅en − 𝑆r̅es (17) 

Furthermore, we sorted 𝐷𝑖𝑓𝑓drug in descending order to further identify the top 10 

drugs to analyze the biological mechanisms underlying drug sensitivity/resistance. We 

calculated the log2 fold change of genes for each drug between drug-sensitive and 

resistant patients: 

 log2 𝐹𝐶 = log2(�̅�sen �̅�res⁄ ) (18) 

We conducted GSEA on the differentially expressed genes with log2 𝐹𝐶 using the 

clusterProfiler R package and Molecular Signature Database v2023, which contains 

33,591 gene sets across 9 major collections. Gene sets were significantly enriched if 

they had both Benjamini-Hochberg corrected p-value and FDR q-value <0.01 and 

|NES|≥1.9. 

 

Figure 3. The workflow of GSEA. The patients are classified into drug-sensitive or 

drug-resistant groups using the TransCDR classification model. The GSEA method is 

employed to identify pathways that are significantly enriched. 



2.6 Implementation details 

All models based on neural networks, including TransCDR, DeepTTA, GraphDRP, 

TGSA, DRPreter, and TransCDR varieties, were developed using Pytorch. The training 

process was limited to 100 epochs for all training sets and models. The Adam optimizer 

with a learning rate of 10-5 was used to update the model parameters during the back-

propagation process. The batch size was 64, MSELoss was employed as the loss 

function for regression models, and BCELoss for classification models. A dropout rate 

of 0.1 was specified, and the validation set was used to fine-tune hyperparameters and 

stop the training process. All experiments were conducted on Tesla A100 GPUs with 

40 GB of memory. GSEA was conducted on RStudio. For further details, please refer 

to the respective GitHub repository: https://github.com/XiaoqiongXia/TransCDR. 

3 Result 

3.1 Performance evaluation of TransCDR under 5 sample 

scenarios 

The evaluation performance of TransCDR exhibited significant variations across 5 

distinct sample scenarios (i.e., warm start, cold cell (10 clusters), cold drug, cold 

scaffold, cold cell & scaffold), underscoring the diverse efficacy of TransCDR and its 

applicability in real-world contexts. For the warm start scenario, TransCDR exhibited 

relatively high prediction performance with an RMSE of 0.9703±0.0102 and PC of 

0.9362±0.0014 in regression tasks, indicating its precise application in predicting 

missing IC50 of drugs on cell lines in GDSC. However, the cold start scenario was more 

challenging due to the inclusion of scaffold/cell lines that were unseen during the 

training process. TransCDR performed worse with more strict data segmentation 

strategies (Figure S1). As demonstrated in Table 1, the regression PC of TransCDR was 

0.8639±0.0103 under the strictest cold cell scenario, highlighting its generalizability in 

predicting drug responses of unseen omics profiles, particularly for patients with known 

anticancer drugs, which can greatly aid precision medicine. The PC values were found 

to be 0.5467±0.1586, 0.4816±0.1433 and 0.4146±0.1825 for cold drug, cold scaffold 

and cold cell & scaffold scenarios, respectively, suggesting its potential in predicting 

massive unseen drug/compound responses on seen/unseen cell lines, hence, offering a 

powerful tool for drug repurposing and discovery. 

 

Table 1. Evaluation performance of TransCDR under the 5 scenarios. 

Sample scenarios RMSE PC SC C-index 

Warm start 0.9703±0.0102 0.9362±0.0014 0.9146±0.0020 0.8797±0.0013 

Cold cell (10 clusters) 1.3949±0.0897 0.8639±0.0103 0.8243±0.0085 0.8213±0.0051 

Cold drug 2.2756±0.3785 0.5467±0.1586 0.4678±0.1367 0.6651±0.0523 

Cold scaffold 2.3722±0.3794 0.4816±0.1433 0.4470±0.1423 0.6571±0.0522 

https://github.com/XiaoqiongXia/TransCDR


Cold cell & scaffold 2.4518±0.4201 0.4146±0.1825 0.3681±0.1918 0.6283±0.0693 

The performance of the TransCDR regression model is assessed using metrics such as RMSE, PC, 

SC, and C-index. All results are obtained by 10-CV. 

 

3.2 Performance comparison of TransCDR and other models 

To verify the effectiveness of our proposed TransCDR, we compared TransCDR with 

DeepCDR [8], GraphDRP [10], DeepTTA [9], TGSA [17], and DRPreter [18] on the 

GDSC dataset. TransCDR achieved the best performance with the highest PC, SC, and 

C-index compared to DeepCDR, GraphDRP_GAT_GCN, GraphDRP_GINConvNet, 

GraphDRP_GATNet, and GraphDRP_GCNNet under all scenarios (Figure 4, Figure 

S2). DRPreter and TGSA achieved comparable performance with TransCDR on a 

warm start but performed poorly under the cold scaffold and drug. The results indicated 

that DRPreter and TGSA were overfitting to training sets and thus cannot generalize to 

the novel drugs and scaffolds. TransCDR displayed superior generalization capabilities, 

particularly in the challenging cold scaffold task. TransCDR had comparable 

performance with DRPreter, TGSA, and DeepTTA under cold cell cluster, even though 

TransCDR was trained without prior knowledge: protein-protein interactions (Figure 

S2 G-I). These findings suggested that the transfer learning strategy could effectively 

transfer the knowledge learned from a large-scale chemical dataset, thereby improving 

the prediction performance of TransCDR on novel drugs and scaffolds. From the 

perspective of real application scenarios, TransCDR was the best model to efficiently 

integrate information and extract features from the structures of drugs and multi-omics 

data of cell lines for drug response predictions. 



 

Figure 4. Performance comparisons are conducted between TransCDR and 8 other approaches, 

namely, DRPreter, TGSA, GraphDRP_GAT_GCN, GraphDRP_GINConvNet, 

GraphDRP_GATNet, GraphDRP_GCNNet, DeepCDR, and DeepTTA on warm start and the 

strictest scenario: cold cell & scaffold. 

 

3.3 Transfer learning exhibits superior performance in 

comparison to training a model from scratch 

We investigated the effectiveness of transfer learning by converting the pre-trained drug 

representation modules into drug encoders trained from scratch (Section 2.3.1.4). As 

depicted in Figure 5, TransCDR with pre-trained drug encoders demonstrated superior 

performance compared to its variants, including sequence-based (i.e., TransCDR_CNN 

and TransCDR_RNN), graph-based (i.e., TransCDR_AttentiveFP, and 

TransCDR_NeuralFP), and FP-based (i.e., TransCDR_ECFP) models. Specifically, the 

RMSE of TransCDR variants increased to over 0.9845, while the PC, SC, and C-index 

of TransCDR variants dropped below 0.9342, 0.9124, and 0.8780, respectively 

(Wilcoxon test, p<0.05). In addition, we examined the transfer learning performance of 



TransCDR under cell line, cold drug, cold scaffold, and cold cell & scaffold scenarios, 

as demonstrated in Figure S3. TransCDR achieved satisfactory results as expected, 

outperforming TransCDR_RNN, TransCDR_CNN, TransCDR_AttentiveFP, and 

TransCDR_NeuralFP. Specifically, TransCDR showed a PC of 0.5467, superior to the 

second-best model TransCDR_ECFP, with a PC of 0.4624 under the cold drug scenario. 

The results suggested that transfer learning was reliable for learning drug 

representations by leveraging the chemical knowledge extracted from large-scale 

datasets like ZINC and PubChem. Notably, TransCDR variants inherently learned drug 

representations by training an end-to-end model on the training set. However, their 

performance on the test set with unseen drugs could be better. TransCDR_ECFP 

attained better performance than other variants thanks to the generation of informative 

FP representations through Morgan’s algorithm. 

 
Figure 5. The performances of TransCDR and its variants with various drug representation modules 

are evaluated in a warm start scenario. 

3.4 Impact of each modality in TransCDR 

The present study provided insights into the effectiveness of the proposed framework 

for drug response prediction. Ablation studies were conducted by removing each 

feature (i.e., S, G, and FP of drugs, and MC, GE, and DM of cell lines) from TransCDR, 

and the resulting decrease in predictive performance was analyzed. Figure 6 

demonstrated that removing these features affected the performance of TransCDR. MC 

was found to be the most critical among cell line features, followed by GE and DM. FP 

was identified as the most significant for drug features, followed by G and S. These 

findings corroborated the comparison results presented in Figure 6 and highlighted how 

multi-modality fusion could enhance model performance by complementing the 

limitations of individual modalities. In summary, MC and FP contributed the most 

among different omics profiles for cell lines and drug notations for drugs, respectively. 



 
Figure 6. Model ablation experiments results. The x-axis denotes the removal of a specific modality. 

MC is the most critical characteristic of cell lines, as the exclusion of this feature significantly 

(p<0.05) increases the RMSE values of TransCDR compared to models without GE or DM. 

Similarly, FP is the most significant feature for drugs. TransCDR model without FP demonstrates 

significantly (p<0.05) increased RMSE values compared to that without G or S. 

3.5 The effectiveness of self-attention 

Two variants of cross-attention, DCA and CDA, were implemented along with 

concatenation operation to assess the efficacy of self-attention in the fusion module. 

Notably, self-attention outperformed other fusion methods in all regression evaluation 

metrics, including RMSE, PC, SC and C-index (Table 2). For instance, the RMSE 

achieved by self-attention was recorded as 0.9703±0.0102, surpassing the second-best 

option of concatenation, 0.9845±0.0147. On the other hand, the performance of DCA 

and CDA was inferior as they only focused on the cross-effect between drugs and cell 

lines while disregarding the internal feature interaction of either. Thus, the self-

attention-based fusion module was employed to fuse multi-modal features.  

 

Table 2. The performance of TransCDR with distinct fusion methods. 

Fusion module RMSE PC SC C-index 

Self-attention 0.9703±0.0102 0.9362±0.0014 0.9146±0.0020 0.8797±0.0013 

DCA 0.9962±0.0208 0.9326±0.0029 0.9099±0.0025 0.8761±0.0021 

CDA 1.0303±0.0104 0.9275±0.0015 0.9048±0.0024 0.8720±0.0017 

Concatenate 0.9845±0.0147 0.9339±0.0020 0.9117±0.0022 0.8773±0.0017 

The best results are emphasized using bold font, and the second-best results is underlined. 

3.6 TransCDR predicts binary drug response 

We subsequently assessed the predictive power of TransCDR in cell line responses to 

drugs. TransCDR demonstrated high performance across varying ratios of positive and 

negative samples in the warm start scenario. Specifically, when the dataset was 

balanced, TransCDR yielded superior performance with an AUROC of 0.8213±0.0067 

and an AUPR of 0.8138±0.0085. When the dataset was unbalanced of 1:2, 1:5, and 1:8, 



TransCDR displayed a slight increase in AUROC and a decline in AUPR, with 

reductions over 8.76%, 20.99% and 26.93% for AUPR, respectively. These findings 

highlighted the impact of dataset imbalance on the predictive power of TransCDR, with 

AUPR exhibiting sensitivity to sample ratio variations. Therefore, we utilized AUPR as 

the primary evaluation metric. In the cold test setting, the AUPR of TransCDR reduced 

more compared with a warm start when the dataset was imbalanced. Specifically, when 

the sample ratio was 1:1, TransCDR in cold cell achieved an AUPR of 0.7492±0.0227, 

which was 39.52% higher than that of the 1:8 sample ratio of (AUPR=0.3540±0.0381). 

Similarly, in the cold drug setting, a sample ratio 1:1 yielded optimal performances 

(Figure 7). Consequently, subsequent experiments were conducted using the sample 

ratio of 1:1. 

 

 

Figure 7. TransCDR’s performance evaluation is assessed across 4 sampling scenarios utilizing 4 

sampling ratios between positive and negative samples (1:1, 1:2, 1:5, and 1:8). 

3.7 Application of TransCDR on GDCS 

The pre-trained TransCDR exhibited excellent performance across a diverse range of 

cancer types (Figure 8A-C), cell lines (Figure 8D-F), and drugs (Figure 8G-I). In all 

tested cancer types, the PC and SC values ranged from 0.9624 to 0.9763 and 0.9345 to 

0.9591, respectively (Table S1). The PC and SC values for cell lines ranged from 

0.9192 to 0.9886 and 0.8723 to 0.9676, respectively (Table S2). The performance of 

TransCDR on drugs varied considerably, with the PC and SC ranging from 0.3949 to 

0.9838 and 0.3983 to 0.9814, respectively (Table S3). 

Employing the trained TransCDR, we predicted 34,662 missing IC50 values for drug-

cell line pairs in the GDSC database, corresponding to approximately 18.10% of all 

191,475 pairs involving 851 cancer cell lines and 225 drugs. We ranked the IC50 values 

predicted by the regression model in ascending order and selected the top 10% (3,466) 

drug-cell line pairs inclusive of 610 cancer cell lines and 75 drugs (Table S4). Our work 

confirmed previous research findings on the top 15 (the lowest IC50) drug-cell line pairs 

that were molecularly effective in cancer treatment, involving 15 cell types, 4 drugs, 10 

tissues, and 8 cancers (Table S5). Notably, Bortezomib, one of the approved 

proteasome inhibitors for treating various malignancies (e.g., SKCM, OV and BRCA) 

[36], was predicted to be sensitive to different cell lines and cancer types. The top 10 

‘sensitive’ and the last 10 ‘resistant’ drugs were depicted in Figure 8J. As anticipated, 

several sensitive/resistant drugs were also identified by DeepCDR [8]. For instance, 



Bortezomib, docetaxel, epothilone B, vinblastine, vinorelbine, and SN-38 [37] were 

predicted as sensitive drugs, and FR-180204, NSC-87877, GW-2580, DMOG, 

phenformin, and AICAR were predicted as resistant drugs by DeepCDR. Additionally, 

the effectiveness of the most potent drugs, Bortezomib [38], docetaxel [39], and 

vinblastine [40], has been established in multiple cancer types. 

 

 



Figure 8. (A-C) The scatter plots of CDRs of specific cancer types, specifically adrenocortical 

carcinoma (ACC), cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC), 

and multiple myeloma (MM), with the top 3 prediction performances. (D-F) The scatter plots of 

CDRs of specific cell line types, specifically T-lymphoid cell line (CML-T1), NCI-H1105, and 

BALL-1, with the top 3 prediction performances. (G-I) The scatter plots of CDRs of specific drugs, 

including FK866, Gemcitabine, and GSK1070916, with the top 3 prediction performances. (J) The 

study categorizes drugs based on their average predicted IC50 values in ascending order, with the 

top 10 drugs being sensitive and the bottom 10 being resistant. 

3.8 External validation results 

The present study assessed the efficacy of TransCDR trained on the GDSC dataset by 

evaluating the external in vitro dataset CCLE. The results demonstrated TransCDR’s 
outstanding performance with a PC range varying from 0.6279 to 0.8926 when tested 

across diverse cancer types. Bile duct cancers exhibited the highest performance (PC 

of 0.8926), while kidney cancer demonstrated the lowest (PC of 0.6279) (Table S6). 

These findings suggested that TransCDR could effectively predict drug response in new 

cell lines specific to certain cancer types. 

3.9 TransCDR recognizes biological mechanisms under drug 

response 

To recognize biological mechanisms under drug response, we utilized the pre-trained 

TransCDR to screen 225 drugs for 7,675 patients from TCGA. The predicted drug 

sensitivities of these patients were presented in Table S7. We selected the top 10 drugs, 

namely CX-5461, Lapatinib, Dasatinib, Erlotinib, Afatinib, Trametinib, Nutlin-3a, A-

770041, CHIR-99021, and AZD-0530 for GSEA. By performing GSEA, we were able 

to elucidate the biological mechanisms underlying the predicted drug sensitivities of 

patients and explore possible underlying mechanisms (Table S8). Our observation 

showed that differential expression genes caused by Afatinib medication demonstrated 

a significant enrichment within gene sets associated with breast and lung cancer. This 

observation aligned with evidence supporting Afatinib’s efficacy in treating breast and 
lung cancer [41, 42]. Furthermore, the enriched gene sets offered insight into Afatinib’s 
therapeutic mechanisms. For instance, up-regulated genes observed in Afatinib-

sensitive patients exhibited a significant enrichment in 

COLDREN_GEFITINIB_RESISTANCE_DN (NES=1.983, p=0.0005), which 

pertained to genes that down-regulated in non-small cell lung carcinoma cell lines 

resistant to Gefitinib in comparison to those that were sensitive [43]. This finding 

indicated that Gefitinib and Afatinib operated through similar mechanisms [44]. In 

contrast, the up-regulated genes observed in Afatinib-sensitive patients showcased a 

significant enrichment in HOLLERN_EMT_BREAST_TUMOR_DN (NES=2.211, 

p=4.53E-06), which consisted of genes with low expression levels in mammary tumors 



marked by epithelial-mesenchymal transition histology and could result in resistance to 

Afatinib [45]. 

 

4 Discussion 

In comparison with existing SOTA models, TransCDR exhibited several improvements. 

Firstly, it outperformed other models across diverse prediction tasks under different 

sample scenarios (warm and cold start). Secondly, TransCDR fused the most extensive 

data modalities, incorporating 3 drug representations and 3 omics profiles, whereas 

DeepTTA only considered SMILE strings and gene expression profiles. Thirdly, 

TransCDR learned the fusion representations by a self-attention-based module which 

was more effective than a simple concatenation operation. Thirdly, we 

comprehensively assessed the generalizability of TransCDR across diverse scenarios. 

Our proposed model enhanced the performance in cold drug/scaffold and cold cell & 

scaffold scenarios, essential for predicting cancer drug response and screening novel 

candidates from a vast drug/compound space. 

We demonstrated that generalizing TransCDR to novel scaffolds posed a greater 

challenge than cell line clusters. Several factors contributed to this phenomenon. Cell 

lines were characterized by gene expression profiles obtained via omics measurements, 

providing a comprehensive representation of cellular biology features. Conversely, 

compounds were encoded using SMILES strings, which may lead to loss of structural 

information. Furthermore, TransCDR learned drug embedding from SMILES strings 

or molecular graphs using end-to-end training, requiring substantial drug structures. 

Lastly, minor structural differences between similar compounds may result in 

significant disparities in SMILES strings, yielding distinct embeddings. TransCDR can 

serve as an effective tool for the cancer-drug response prediction. Additionally, 

TransCDR have promising applications in drug discovery. Specifically, we can initially 

assess the scaffold similarity of a new compound/drug against known drugs; if a 

similarity scaffold is identified, our predicted CDRs will hold greater credibility. If not, 

TransCDR stands as the optimal model to predict CDRs in cold scaffold and cold cell 

& scaffold scenarios. 

However, several limitations and potential directions for further improving 

TransCDR have been identified. The study requires large-scale, highly qualified 

datasets, including multiple drugs and cell lines. Although drug response data have 

increased dramatically over the past decades, cell lines with multi-omics profiles are 

limited. The performance of TransCDR on the cold scaffold is significantly better than 

other SOTA models through transfer learning but still has much room for improvement. 

The current TransCDR cannot capture the drugs’ three-dimensional structural 

information, which inevitably affects drug representation learning. A better drug 

representation model that can extract discriminating features from drug notations will 

be designed, such as GeoGNN, which encodes molecules’ topology and geometry 

information by a geometry-based GNN architecture [54]. Therefore, to further improve 

the prediction performance and interpretability of TransCDR, we will propose the next 

version of TransCDR, trained on the larger and more reliable CDR dataset, considering 



the multimodal features of drugs and cell lines and making full use of prior domain 

knowledge. 

5 Conclusion 

In this study, we presented an end-to-end CDR prediction model called TransCDR, 

which fused multi-modality representations of drugs, including SMILES string, 

molecular graph, ECFP, and omics profiles, including genetic mutation, gene 

expression, and DNA methylation to learn the ln(𝐼𝐶50) values or sensitive states of 

drugs on cell lines. TransCDR outperformed the 8 SOTA models and showed high 

performance under different sample scenarios. In addition, TransCDR outperformed 

multiple variants with drug encoders that were trained from scratch. We confirmed that 

FP and genetic mutation contributed the most among multiple drug notations and omics 

profiles, respectively. Furthermore, TransCDR showed high prediction performance on 

the external test sets CCLE. Finally, we predicted ln(𝐼𝐶50) values of missing CDRs 

in GDCS and screened the drug response of cancer patients to drugs. These candidate 

CDRs were verified by existing literature and GSEA. In summary, our deep learning 

model, TransCDR, offers a powerful tool for drug response prediction. 
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TCGA: The Cancer Genome Atlas Program 

GSEA: Gene Set Enrichment Analysis 

CNN: Convolutional neural networks 

GNN: Graph neural networks 

GIN: Graph Isomorphism Network 

GAT: Graph attention network 

SMILES: Simplified molecular input line entry system 

ECFP: Extended-connectivity fingerprints 

S: SMILES strings 

G: Molecular graphs 

FP: ECFPs 

MC: Copy number aberration 

GE: Gene expression 

DM: DNA methylation 

GEO: Gene Expression Omnibus 

10-CV: 10-fold cross-validation 

DNA: Deoxyribonucleic acid 

ReLU: Rectified Linear Unit 

MLP: Multilayer Perceptron network 

DCA: Drug-cell line attention 

CDA: Cell line-drug attention 

MSE: Mean squared error 

BCE: Binary cross-entropy 

RMSE: Root mean square error 

PC: Pearson correlation coefficient 

SC: Spearman’s rank correlation coefficient 
C-index: Concordance index 

AUROC: Area under the Receiver Operating Characteristics curves 

AUPR: Area Under the Precision-Recall curves 

FC: Fold change 

FDR: False discovery rate 

GPU: Graphics Processing Unit 

SKCM: Skin Cutaneous Melanoma 

OV: Ovarian Cancer 

BRCA: Breast invasive carcinoma 
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