
Optimization of Dynamic Task Allocation forMulti-
UAV Systems: Search and Rescue Scenario
Rahim Ali Qamar

Isra University
Mubashar Sarfraz

National University of Modern Languages
Sajjad Ahmed Ghauri

Isra University
Noman Anwar Baig

Robert Gordon University

Tanweer Ahmad Cheema
Isra University

Research Article

Keywords: Multi-UAV Systems, Dynamic Task Allocation, Enhanced Compromised Dynamic Performance
Impact, Search and Rescue.

Posted Date: January 25th, 2024

DOI: https://doi.org/10.21203/rs.3.rs-3879027/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

Additional Declarations: No competing interests reported.

https://doi.org/10.21203/rs.3.rs-3879027/v1
https://doi.org/10.21203/rs.3.rs-3879027/v1
https://creativecommons.org/licenses/by/4.0/

1

Optimization of Dynamic Task Allocation for

Multi-UAV Systems: Search and Rescue Scenario
Rahim Ali Qamar, Mubashar Sarfraz, Sajjad A. Ghauri*, Nauman Anwar Baig*, Tanweer Ahmad Cheema

Abstract—Unmanned aerial vehicles (UAVs) are becoming
increasingly popular due to their versatility and cost-effectiveness
and are used in various scenarios, such as sea exploration and
search and rescue missions. Urban search and rescue requires a
prompt and effective response to unforeseen events like faults
in UAVs, changes in task duration and deadline, new UAV
arrivals, and task deletions. This paper extends the compromised
dynamic performance impact (CDPI) algorithm and introduces
an enhanced CDPI (ECDPI) that can effectively handle dynamic
events during task execution. For dynamic event handling in
the ECDPI algorithm, the communication and conflict resolution
phase uses the time cost vector of each UAV for its assigned
task, as well as improvements in the detect dynamic activity
function. In addition, limitations and cases against dynamic
events are discussed to exploit the proposed scheme effectively.
The simulation results demonstrate that ECDPI is highly effective
at handling dynamic events during the task execution phase.

Index Terms—Multi-UAV Systems, Dynamic Task Allocation,
Enhanced Compromised Dynamic Performance Impact, Search
and Rescue.

I. INTRODUCTION

In urban areas, unpredictable catastrophic events, including

floods, fires, and earthquakes, can occur at random, causing

widespread damage and affecting a large population. The

need for swift and efficient SAR services on a large scale

is of utmost importance to safeguard human life. Unmanned

aerial vehicles (UAVs) are considered to be one of the most

significant advancements of the 21st century due to their cost-

effectiveness, flexibility, and high efficiency [1]–[3]. There-

fore, UAVs can be utilized in disastrous situations to support

disaster survivors, efficiently contributing to reducing injuries,

deaths, and property loss [4]–[6].

Multi-UAV systems have become more popular than single-

UAV systems and have emerged as a promising area of

research due to their ability to handle hazardous missions

in various domains, such as search and rescue operations,

underwater and space exploration, environmental monitoring,

as well as pick-up and delivery [7]–[11].

Rahim Ali Qamar, Sajjad A. Ghauri & Tanweer Ahmad Cheema are with
the School of Engineering & Applied Sciences, ISRA University, Islamabad,
Pakistan; rahim qamar@hotmail.com (R.Q); sajjad.ghauri@iiu.edu.pk(S.A.G)
tanweer313@yahoo.com (T.A.C)

Mubashar Sarfraz is with the Faculty of Engineering and Computing,
NUML, Islamabad, Pakistan; mubashar.sarfraz@numl.edu.pk (M.S)

Nauman Anwar Baig is with the School of Engineering, Robert Gordon
University, Scotland; n.baig@rgu.ac.uk (N.A. B)

* Corresponding Author: Dr. Nauman Anwar Baig & Prof. Dr. Sajjad A.
Ghauri; email: n.baig@rgu.ac.uk & dr.saghauri@gmail.com

The authors in [12] introduced the Performance Impact (PI)

algorithm, a multi-UAV task allocation algorithm designed

for search and rescue scenarios. The PI algorithm uses static

task allocation to assign tasks to UAVs, and the tasks are

predetermined before the allocation process begins. In the PI

algorithm for the SAR scenario, each UAV can handle up to

L tasks. Additionally, each task has a deadline, and failing to

meet the deadline results in task failure, which is known as a

time-limited scenario.

The PI algorithm is extended as a compromised dynamic

PI algorithm (CDPI) to handle the dynamic arrival of new

tasks during task execution [13]. The authors used the VIKOR

algorithm to select a task for allocation, considering parame-

ters such as task cost, priority, deadline, and remaining UAV

battery [14]. The PI algorithm does not take into account task

priority or battery time limitations. The authors presented a

comparison table of task allocation algorithms, including their

constraints, application area, and environment. The compari-

son table serves as a foundation for additional expansion of

the algorithms being compared.

The CDPI algorithm can only handle one dynamic event,

such as task allocation during execution. SAR is a complex

scenario that involves multiple variables that can change

during the execution phase. These variables include the UAV

battery limit, task duration, task deadline, the arrival of new

UAVs, faults in UAVs, changes in task location, and deletion

of a task before execution. This paper discusses the problem of

task allocation in SAR situations that arise in the context of an

urban disaster. The SAR scenario is constantly changing, and

the task allocation algorithm for a multi-UAV system needs to

be adapted to handle dynamic events such as the emergence of

new tasks during execution, changes in battery capacity, and

variations in task duration.

In this paper the challenge of task allocation for multiple

UAVs is addressed, where each UAV is capable of executing

only one task at a time and each task requires the attention

of only one UAV. A UAV can handle multiple tasks within its

assigned limit, which are executed according to their indices

in the task vector. The problem can be described as a single-

task robot instantaneous assignment (ST-SR-IA) problem, and

these problems are NP-hard due to complex and combinatorial

decisions [15].

A. Motivation

Natural disasters such as floods, wildfires, earthquakes, and

human-made disasters such as industrial accidents are causing

an increasing number of fatalities. Nearly 3 million people

2

lost their lives in the last two decades [16]. Considering

this, modern technology can augment the existing disaster

infrastructure, aiding in SAR operations.

Researchers have demonstrated that multi-UAV systems can

be highly effective in providing support services in disaster

environments. This is due to their efficiency, ability to op-

erate simultaneously, flexibility, and fault tolerance. Disaster

environments, such as SAR missions, are highly dynamic and

unpredictable. New tasks may arise, UAVs may malfunction,

and new UAVs may need to be added to the system. In [13],

the authors presented a task allocation algorithm that can

handle the arrival of new tasks during task execution. However,

this algorithm can be further improved by incorporating more

dynamic parameters, which is the motivation behind this paper.

B. Contribution of the article

This paper discusses the allocation of tasks to a multi-UAV

system in a constrained and dynamic scenario such as Search

and Rescue (SAR). In such a scenario, multiple parameters can

change during the execution of tasks. The main objective is to

handle the variation in such parameters and reassign tasks that

have already been assigned to a UAV if it is unable to perform

the task due to certain constraints. The paper highlights the

following contributions:

1) Fault Detection: In order to enhance the effectiveness

of CDPI algorithms, it is important to develop a method

for detecting faulty UAVs during the task execution

phase. A collaborative strategy is used to overcome this

limitation. Each UAV that is part of the system shares

locally computed time-cost information with other UAVs

during the communication and conflict resolution phase.

This sharing of information creates a robust mechanism

that can identify a malfunctioning UAV based on the

time-cost vector it shares with other UAVs.

2) Enhanced Dynamic Activity Detection: The CDPI

algorithm has undergone significant improvements in

detecting dynamic activity function. This enhancement

allows the algorithm to efficiently reassign tasks that

were initially allocated to a malfunctioning UAV. This

ensures that the overall system remains functional.

3) Adaptability in ECDPI Algorithm: The ECDPI algo-

rithm introduces a novel mechanism to accommodate

variations in task duration and deadline. If a UAV en-

counters difficulties while completing a task due to these

variations, the detect dynamic activity function is crucial

in swiftly reassigning the task, ensuring adaptability in

the presence of dynamic operational conditions.

4) Scalability Feature: A new feature has been added to

the detect dynamic activity function to deal with changes

in the number of tasks and UAVs in the multi-UAV

system. This improvement ensures that the algorithm is

scalable and effective, enabling it to handle changing

operational scenarios with ease.

C. Organization of the Article

This paper is organized as follows: In section II, the

dynamic task allocation problem and existing approaches

are discussed with an emphasis on the types of parameters

considered and their intended applications. In section III, a

detailed mathematical description is presented. In section,

IV, the existing compromised dynamic performance impact

(CDPI) algorithm is described along with its limitations, and

an enhanced CDPI task allocation algorithm is proposed. In

section V, extensive simulations are presented against different

scenarios, along with related discussions. Concluding remarks

and future directions are presented in section VI.

II. RELATED WORK

Dynamic task allocation is a crucial aspect of multi-UAV

systems that operate in dynamic environments. In these sit-

uations, UAVs must adapt their behavior to environmental

changes to enhance the overall performance of the system. The

work in [17] explores multitasking to solve multiple optimiza-

tion problems simultaneously and discusses that exchanging

knowledge among tasks optimizes existing synergies and leads

to optimal solutions.

The authors of [18] addressed the problem of multi-robot

task allocation (MRTA) for the SAR domain. The objective

was to enable a team of robots to collaboratively search for

targets within a designated area and retrieve them back to their

home base. The authors utilized two methods to allocate tasks

to a group of robots: prediction-based and auction-inspired

task allocation. To distribute tasks to each robot, they used an

auction-based approach that relied on a winner-determination

method.

In [19], the authors used a hedonic game theory-based au-

tonomous decision-making framework to solve task allocation

problems for a swarm of multiple agents. The proposed frame-

work employs a self-organizing approach to enable agents

to make decisions based on their individual preferences. In

[12], the authors propose a PI algorithm to allocate tasks to a

multi-UAV system in search and rescue scenarios under time

constraints.

The work in [20] identified two shortcomings in the PI

algorithm, namely the static structure and the possibility of

getting trapped in local minima. To address these issues, the

authors have introduced an online task rescheduling mecha-

nism that involves a task reassignment methodology during

the task execution phase. This mechanism allocates new tasks

to UAVs, ensuring a more efficient operation. Additionally, to

avoid getting trapped in local minima, the authors introduced a

soft-max action selection method. This method enhances the

exploratory properties of the PI algorithm, making it more

adept at dealing with dynamic events like the addition or

removal of tasks, updated task locations, and the removal

or addition of UAVs. The inclusion of the soft-max action

algorithm has made the PI algorithm more flexible and better

equipped to handle real-world scenarios.

The authors of [21] developed a consensus-based bundle

algorithm that allows multiple robots to work together on

a task. This algorithm has been further improved by [22]

to address critical time constraints and prevent issues with

local minima. The proposed method uses dynamic grouping to

allocate tasks based on changing robot states, task information,

and network status.

3

The work in [23] presented a solution to the problem of on-

line dynamic MRTA problem. The authors proposed a method

called the DYMO-Auction algorithm, which takes into account

several parameters, including task quality requirements, travel

distance, and load balancing. The proposed algorithm was

tested in a scenario where tasks appear dynamically along with

their quality requirements. The algorithm assigns tasks based

on a utility function that considers four parameters, namely,

distance, energy, cost, and task type. These parameters are

combined using a weighted sum model to calculate the cost

function.

The authors in [24] proposed a method for efficient dynamic

task allocation for a swarm of robots working on large-scale

tasks. They used the concept of optimal mass transport theory

for this purpose. The authors divided the tasks into smaller

groups, known as regional tasks, to simplify the allocation pro-

cess. The optimal mass transport theory approach is beneficial

in unknown environments because it dynamically clusters the

tasks into regional tasks, reducing the computation load.

In a scenario where a team of robots is exploring and

destroying targets, MRTA can present a challenge. The robots

have some knowledge of suspicious locations, which they

explore before being assigned tasks, but they do not have an

exact distribution of targets [25].

In dynamic and time-constrained scenarios, it may become

necessary to reassign some of the tasks that have already been

assigned if new tasks arrive during the execution of existing

tasks. By doing so, empty time slots are created in the task

lists of UAVs, where new tasks can be accommodated. The

authors of [15] introduced the concept of task reassignment in

the PI algorithm for assigning dynamically arrived tasks for

distributed multi-UAV systems. They identified five types of

dynamic events that can occur, including deletion of a task,

addition of new tasks, updates to task deadlines, changes to

task locations, and changes in task durations.

The authors in [26] proposed a dynamic algorithm for

task allocation for unmanned underwater vehicle swarms.

They achieved this by extending the CBBA algorithm and

considering multiple parameters such as time, path, and UUV

tour as marginal utility functions to optimize the baseline

CBBA algorithm further. On the other hand, in [27], a

stochastic conflict-based task allocation algorithm (SCoBA)

was proposed to address the dynamic task allocation problem

of a multi-agent system under task completion uncertainty and

time window constraints. The objective of the algorithm is

to minimize the number of unsuccessful tasks. The authors

achieved this by decoupling sequential decision-making under

multi-agent coordination and task uncertainty for multi-agent

task allocation.

III. MATHEMATICAL DESCRIPTION AND PI ALGORITHM

ARCHITECTURE

Consider a scenario with M survivors (tasks), denoted by

t : [t1, t2, ..., tM], and N UAVs available for rescue operations,

represented by u : [u1, u2, ..., uN], as shown in Figure 1. This

is a SAR operation, where each task has a specific deadline.

The UAVs are required to assist the survivors before their

respective deadlines. If a task is not completed before its

deadline, it will be considered a failure. The deadlines for

all M tasks are represented by d : [d1, d2, ..., dM].
A UAV can only perform one task at a time, and a task

cannot be assigned to more than one UAV. As soon as a new

task arrives, it needs to be assigned immediately. This method

of task allocation is known as the single-task, single-robot

instantaneous-assignment (ST-SR-IA) method [28]. In the case

of using different types of UAVs, a compatibility matrix H is

defined to determine the compatibility between a task and a

UAV. The compatibility matrix has dimensions of N ×M .

The compatibility matrix has entries of either 1 or 0,

depending on whether a particular task can be performed by

a UAV or not. In the case of a homogeneous UAV system,

all entries are 1. Since UAVs have limited carrying capacity

and battery life, there is a cap on the maximum number of

tasks a UAV can perform. Therefore, each UAV is assigned

a specific number of tasks, subject to the battery limit. These

constraints ensure optimal performance and efficiency of the

UAV system.

In a SAR scenario, each task may have a different level of

priority. Therefore, it is assumed that every task has a priority.

The tasks allocated to a UAV are stored in a task list in a

specific order, and they are executed in the same sequence.

The task lists of N UAVs are represented as s : [s1, s2, ..., sN].
The tasks assigned to a UAV are performed in a way that

ensures the deadline requirement is met at the lowest possible

task cost. The cost Ci,q of performing task tq is calculated by

adding the time that a UAV ui takes to reach the task location

and the duration Tdur needed to complete the task.

The main server broadcasts all information related to tasks,

including the deadline, location, and priority, to all UAVs.

The goal of this study is to assign several tasks to a multi-

UAV system in such a way that the sum of priorities of the

assigned tasks is maximized while adhering to the constraints

mentioned in Eq. (1) [13].

J =max

N
∑

i=1

|si|
∑

k=1

pi,k(si)

subject to

∁1 : |si| ≤ L

∁2 : ci,k(si) ≤ dsi,k

∁3 : hi,j =

{

1 if ui is compatible with tj

0 o.w

∁4 :

|si|
∑

k=1

ci,k(si) ≤ Bi

∁5 : si ∩ sj = ∅ ∀ i ̸= j
(1)

Where constraint ∁1 represents each UAV that can perform

at most L number of tasks, constraint ∁2 represents each

assigned task to be performed before its deadline has passed.

For constraint ∁3, each UAV can only perform compatible

tasks in the case of a heterogeneous multi-UAV system. The

constraint ∁4 describes that each UAV can perform a number

4

Fig. 1: Proposed Multi-UAV Task Allocation Architecture.

of tasks within its battery limit, whereas the constraint ∁5
describes that a task tq cannot be assigned to more than one

UAV.

A. Compromised Dynamic Performance Impact Algorithm

In a dynamic environment such as SAR, various parameters

related to the task may change during its execution. For

instance, the arrival of new tasks, changes in task duration

or task deadline, and other factors may affect task allocation.

Therefore, it is crucial to allocate tasks while considering

such changing dynamics. Additionally, the task allocation

algorithm must also accommodate tasks assigned to a faulty

UAV or assign tasks when a new UAV is added to the system.

Similarly, the algorithm must handle new tasks that arrive or

tasks that are deleted during the execution of the tasks.

In [13], the CDPI algorithm is introduced as a method of

allocating tasks during the execution phase. It is an extension

of the compromised PI (CPI) algorithm, which is a static task

allocation method. The CPI algorithm allocates tasks based

on the VIKOR method, considering multiple constraints and

attributes of both UAVs and tasks. The PI algorithm, which is

also a static task allocation algorithm, is the baseline for both

the CPI and CDPI algorithms. The PI algorithm allocates tasks

based on only one parameter, which is the time cost. Each UAV

runs the CDPI task allocation algorithm as its main routine,

and Algorithm 1 outlines the details of this algorithm.

The main algorithm consists of two parts. The first part

is a PI algorithm (lines 4 − 10), which is a static task

allocation algorithm. It assigns tasks before task execution.

After UAVs commence task execution, the second part of the

CDPI algorithm (lines 11−22) allocates dynamically arrived

tasks. The CDPI algorithm terminates when all assigned tasks

are executed.

Algorithm 1: CDPI Task Allocation-Main Routine

1 Define⇒ u, t, ℘i, βi, τ
2 Initialize UAVs:⇒ Type, Location, Battery Limit, Task

Limit
3 Initialize UAVs Tasks:⇒ Type, Location, Deadline,

Priority, Tiv

4 Iteration = 0;
5 while CPI-Consensus is false do
6 Compromised Task Inclusion Phase
7 Communication & Conflict Resolution Phase
8 Iteration ++

9 CPI − Consensus⇐ CheckConsensus
10 end
11 Tiv ⇐ Mask Assigned Tasks
12 while All Tasks not Executed do
13 Detect Dynamic Activity⇒ Algorithm 4
14 while Unassigned Tasks do
15 IPI⇒ Algorithm-7 of [13]
16 Communication & Conflict Resolution Phase
17 Tiv ⇐ Mask Assigned Tasks
18 Iteration ++

19 if Improvement = ∅ then
20 Break
21 end
22 end
23 end

The CDPI algorithm builds a task list on each UAV by

iteratively performing the task inclusion, communication, and

conflict resolution phases to allocate tasks received before task

allocation. The task assignment process runs on all UAVs

until there are no tasks left to assign or the solution cannot

be improved. The dynamic portion of the CDPI algorithm

allocates tasks arrived during task execution. This process is

executed until all assigned tasks have been performed. In the

5

CDPI algorithm, the detect dynamic activity function identifies

any dynamically arrived task, given in Algorithm 4 (lines
1− 14).

In the baseline PI and CDPI algorithms, every UAV keeps

track of two global vectors to monitor its assigned tasks. These

vectors are called the removal PI (RPI) vector and the UAV-

ID vector. To better comprehend the CDPI algorithm, it is

essential to understand the concept of UAV-ID vector, task

list, and the baseline PI task costing mechanism.

• UAV ID-Vector: When a UAV computes the cost of a task

tq less than its globally achieved task cost, it includes tq
in its task list si and updates its UAV-ID vector against

task tq accordingly. The length of the UAV-ID vector is

equal to the total number of tasks.

• Task List: During the task inclusion phase, a number of

tasks are assigned to each UAV, and these tasks are stored

in the task list si of each UAV, where i is the ith UAV

ui. The assigned tasks are ordered in si in such a way

that the overall cost of performing all the tasks by a UAV

is minimized. The task inclusion process is described in

the following example.

Consider that there are three tasks t3, t6, and t1 in the

task list s1 of a UAV u1 in the prescribed order, as shown

in Figure 2. Assume that task t4 can be included at all

positions marked with vertical arrows in the task list and

u1 performs all tasks with the described time cost, which

is the time to reach the task location from the previous

location. Here, time cost is taken as the sum of time to

reach a task position and task duration Tdur to perform

that task.

• Baseline PI Costing Mechanism: The task costing

mechanism of the CDPI algorithm is the same as that of

the PI algorithm. In Figure 2, it is shown that three tasks

t3, t6, t1 are included in the task list of u1 along with their

travel time cost from one point to another point. Task t4
is required to be included in a task list and assume that it

can be placed at all positions in the task list, conforming

to all the constraints. It is clear from Figure 2, that with

the addition of a new task, the overall time cost to perform

all tasks is increased. Assuming that Tdur is equal to 100

sec, the cost to perform task t3 and t6 is 170 and 330

seconds [14].

The overall time cost to perform all the tasks in the task

list after insertion of t4 at 1st position is given as:-

c1(s1 ⊕ 1, t4) = c1,4(s1) + c1,3(s1) + c1,6(s1) + c1,1(s1)
(2)

where c1(s1 ⊕ 1, t4)is the cost when task t4 is added at

1st position in the task list of u1. Since task t4 can be

included at all positions in the task list, the addition of

a task increases the overall time cost to perform tasks.

So, the decision of task position is made based on the

minimum increase in total cost, which is computed as:

lmin = min[c1(s1⊕l, t4)−c1(s1)], l = 1 : |s1|+1 (3)

where l is the task position of task t4 inserted in the task

list and |s1| is the number of tasks in the task list. It

is pertinent to mention that only those positions of l are

considered where all constraints are conformed.

• Inclusion Performance Impact (IPI): CDPI algorithm

uses the costing mechanism of PI algorithm where IPI of

task tq in task list si is defined as the overall increase in

the time cost of tasks with the addition of tqat position

l. The IPI of task tqfor inclusion in the task list si is

mathematically computed as [13]:

v∗q,l(si, tq) =

|si|+1
∑

x=l

ci,x(si ⊕ l, tq)−

|si|
∑

x=l

ci,x(si) (4)

where si ⊕ l, tq gives inclusion of tq in si of UAV ui at

position l. The minimum IPI value of the task tq is

voq(si, tq) =
|si|+1

min
l=1

v∗q,l(si, tq) (5)

By using Eq. (4) and (5), IPI values of all tasks for

inclusion in the task list are computed and stored in vector

form as ℘o
i : vo1, v

o
2, ..., v(q,)

o, .., vom, where voq is the IPI

value of task tq in si of UAV ui.

• Removal Performance Impact (RPI) : Once the task list

of a UAV is full, or no further tasks can be included in

the task list, each UAV computes the RPI value of tasks

included in its task lists for sharing with other UAVs and

is given as [13]:

v⊖q (si, tq) =

|si|
∑

x=b

ci,x(si)−

|si|
∑

x=b+1

ci,x(si ⊖ tq) (6)

B. Compromised Task Inclusion Phase

In the static part of the main CDPI algorithm, the compro-

mised task inclusion phase is first executed for available tasks.

The PI algorithm selects a task for inclusion in si based on

minimum task cost, and similarly, the TRMaxAlloc algorithm

[29] selects for inclusion in the task list based on time cost. In

compromised task inclusion, a task is selected for inclusion in

the task list at position l task based on task and UAV attributes

and constraints. VIKOR method is used, which gives a rating

of tasks based on task and UAV attributes and constraints,

i.e., task priority, task urgency, task cost, and UAV remaining

battery time. The compromised PI task inclusion phase is given

as Algorithm 2.

In order to include a task in the task list using Algorithm

2, the IPI vector of tasks is first computed using Algorithm 2

of [13], a task is included at all positions in the task list, and

if all constraints are satisfied, then corresponding IPI values

are computed. The task with a minimum increase in computed

cost at any position is included in the IPI vector. Similarly, IPI

values are computed for all tasks. The number of elements in

G can be up to M , i.e., total number of tasks:

G = (℘i,q − ℘o
i,q) ≥ 0 (7)

In order to select a task from G Eq. (7), the VIKOR method is

used, which is used here to rank the tasks based on considered

constraints and attributes. A task with a minimum VIKOR

value is selected for inclusion in the task list. After the

inclusion of a task in the task list, the UAV-ID vector and time

6

Fig. 2: Task Location in S1 of UAV u1.

Algorithm 2: CPI Task Inclusion Phase

1 Input si, L, ℘i, βi, Ci

2 Output βi, ℘i, si, Ci

3 while No. of Tasks in si ≤ L do
4 Compute⇒ IPI using Algorithm-2 of [13]
5 Compute⇒ G
6 if G ̸= ∅ then
7 Select Task using Vikor Method
8 Insert tq at Position l
9 Update βi & Ci

10 else
11 Exit
12 end
13 end
14 Update← ℘i

cost vector are updated, where the time cost vector stores the

cost values to perform a task. This process is repeated again

to include more tasks until the task list is full or no new task

can be included.

In the end, when either the task list is full or further tasks

cannot be included, the RPI values of tasks corresponding

to the tasks in the task list are updated. The communication

and conflict resolution phase is executed once the capacity to

include tasks in the task list of a UAV is either full or the

solution cannot be improved.

C. MCDM VIKOR Method

In the VIKOR algorithm, the Multi-Criteria Decision-

Making (MCDM) problem is defined as [13]:

B =

















b11 b12 b13 b14
b21 b22 b23 b24
. . . .

. . . .

. . . .

bM1 bM2 bM3 bM4

















(8)

where, bij are the set of alternatives that qualify Eq. 7 and

columns of Eq. (8) are P = [P1, P2, P3, P4] and defined

in [13]. The task is rated by the VIKOR method using the

following steps as defined by authors in [30]:

1) In the first step of the VIKOR method, the best and

worst value of each alternative/criterion is determined,

i.e.,

• For beneficial alternative/criteria

b∗j = max
j

bij and b−j = min
j

bij (9)

• For non-beneficial alternative/criteria

b∗j = min
j

bij and b−j = max
j

bij (10)

Beneficial and non-beneficial criteria can be described

using the following example. Let’s say there are two

criteria for task selection: task priority and cost. The

priority of a task is the beneficial criterion; therefore,

a task with higher priority is selected, whereas, for the

non-beneficial criterion, a task is selected with low task

cost.

2) In the second step, utility measure value Yi and regret

measure value Zi of each alternative is calculated as:

Yi =

n
∑

j=1

Wj

(

b∗ − bij

b∗j − b−j

)

(11)

Zi = max
j

[

Wj

(

b∗ − bij

b∗j − b−j

)]

(12)

Where Wj is the weight of each described criterion. In

the described case, with the suitable value of weights

Wj , tasks can be allocated in such a way that the overall

sum of priorities is maximized.

3) In step three, the VIKOR index is computed as follows:

∂i = ∇

[

(Yi − Y ∗)

(Y ∗ − Y −)

]

− (1−∇)

[

(Zi − Z∗)

(Z∗ − Z−)

]

(13)

where ∇ is defined as:

∂i =











∇ > 0.5 Majority rule

∇ ≈ 0.5 Consensus rule

∇ < 0.5 Veto rule

(14)

4) In the fourth step, the alternative is selected with the

smallest value of ∂. After the fourth step, the VIKOR

7

Algorithm 3: Communication & Conflict Resolution

Phase

1 Input & Output si, Ci, ℘i, βi

2 Send ⇒ UAV → ℘i, βi, Ci

3 Recieve ⇐ UAV ← ℘i, βi, Ci

4 Find Task to Remove

5 while all tasks are removed do
6 Remove Task from si
7 Update ℘i, Ci, βi

8 end

method ranks tasks in a compromised way based on the

considered attributes and constraints. Using this method,

a compromised task is selected from a computed IPI

vector that conforms to all constraints and conditions.

As the VIKOR method is a ranking algorithm, more

parameters/constraints can be included without any mod-

ification in the CDPI algorithm.

D. Communication & Conflict Resolution Phase

When all tasks have been executed, or no further task can be

allocated by a UAV, the communication and conflict resolution

phase is executed then. In this phase, each UAV in a multi-

robotic system broadcasts its RPI and UAV − ID vectors to

all other UAVs. Each UAV updates its RPI and UAV − ID

vectors after receiving these vectors from connected UAVs

against the minimum RPI value achieved so far. A task is

removed from the task list of a UAV when the computed RPI

value of that task is higher than its received RPI value. A

UAV ui updates its cost vector Ci, once a task is removed

from its task list. The communication and conflict resolution

phase is given in Algorithm 3.

Each UAV continues its task inclusion, communication, and

conflict removal processes until either all tasks have been

allocated or no further improvement can be made. In the

static part of the task allocation algorithm, when consensus

has been achieved, UAVs start executing the allocated tasks.

The time cost vector is shared with other UAVs in the proposed

ECDPI algorithm. When UAVs start executing tasks, the

dynamic part of the CDPI algorithm runs in parallel until

all tasks have been executed. When a task is executed, the

respective UAV sets its RPI value to zero and communicates

to other UAVs. All UAVs set the value of an executed task

in task inhibit vector Tiv as one, so that these tasks do not

become part of task reassignment, where task reassignment is

necessary to accommodate newly arrived tasks in the task list.

Therefore, task inhibit vector Tiv eliminates tasks from the

task assignment process.

A dynamic activity is detected using Algorithm 6 as pro-

posed in [13] and keeps executing until all tasks have been

executed. Detect dynamic activity algorithm’s primary role is

to detect new tasks and inform other UAVs about the com-

pleted tasks. When a new task is detected, each UAV sets the

RPI value of un-executed tasks to a maximum value. During

the allocation of newly arrived tasks, it may be necessary to

reassign non-executed tasks to other UAVs, which creates a

feasible time slot for the new tasks.

By setting the RPI value of un-executed tasks at maximum,

the task assignment process is re-initiated. In the CDPI algo-

rithm, it is assumed that a task tq is considered executed once

it starts moving towards that task by assuming UAVs never fail.

By continuously communicating RPI values to other UAVs,

each UAV keeps track of all executed tasks in the system.

In detecting dynamic activity function, RPI values of un-

executed tasks are set to maximum, and after that, the task

inclusion phase is executed. In the dynamic part of the CDPI

algorithm, the IPI vector is computed using Algorithm 7 of

[13].

IV. ENHANCED COMPROMISED DYNAMIC PERFORMANCE

IMPACT ALGORITHM

The CDPI algorithm focuses on one specific dynamic pa-

rameter the allocation of newly arrived tasks during task execu-

tion. However, in SAR scenarios, there may be other dynamic

parameters to consider, such as variations in task duration,

task deadlines, and potential faults in UAVs. Therefore, a task

allocation algorithm must take into account these variables

during the task execution phase.

This study enhances the CDPI algorithm by considering

various dynamic events that occur during the task execution

phase, such as variations in task duration and deadlines, faults

in UAVs, deletion of tasks, and inclusion of new UAVs into

the system.

A. Occurrence of fault in UAVs

The CDPI algorithm assumes that UAVs will not encounter

any failure and will accomplish their designated tasks. How-

ever, in reality, UAVs can fail during task execution, and there

should be a mechanism in place that enables the assigned tasks

to be reassigned to other UAVs available in the system.

In CDPI and baseline PI algorithms, UAVs only share the

RPI value of each task along with the assigned UAV, and each

UAV performs its allocated tasks as per the sequence in the

task list. UAVs do not share the sequence of allocated tasks

with each other, so a UAV cannot know about the current state

of task performance for other UAVs. However, if UAVs can

share the cost vector of their assigned tasks, then each UAV

can clearly find the current task being performed by a UAV

along with the expected finish time. The expected finish time

of a task is considered because of the assumed variation in the

task duration due to the dynamic environment.

In the CDPI algorithm, after completion of a task, each UAV

sets its RPI value to zero and sends this updated RPI vector

to all other UAVs. Each UAV then sets the corresponding

value in the task inhibit vector so as to avoid considering

this task in case of any dynamic activity. In the case of mesh

topology, where all UAVs can directly communicate with each

other, any completed task or dynamic event information is

instantaneously available for each UAV in the multi-robotic

system.

On the other hand, when UAVs can only communicate

with neighboring UAVs, some iterations are required for the

communication of information to far-end UAVs. If each UAV

shares the time cost of its assigned tasks, it is exactly known

8

to all UAVs when a task is going to be completed. Further,

in the CDPI algorithm, each UAV shares its task completion

status with all other UAVs.

Let us assume that Tcd is the time required in a multi-UAV

system for communication of dynamic information, i.e., task

completion, to all UAVs. A UAV will be declared faulty if its

assigned task completion status is not received by all UAVs

till Tdi time is given as:

Tdi = ci,q(si) + Tcd (15)

Where ci,q(si) is the completion time of task tq assigned to

UAV ui and Tdi is the time at which dynamic information is

available to all UAVs. With the knowledge of task completion

time for each task assigned to any UAV, along with the sharing

of task completion messages, it becomes possible to determine

any faulty UAV. Detect dynamic activity algorithm is enhanced

to determine any faulty UAV in the system as Algorithm 4

(line 15−19). When a UAV is declared faulty, all UAVs will

set RPI values of tasks assigned to faulty UAV to a maximum,

along with corresponding UAV-ID vector values to zeros.

Figure 3 shows four UAVs along with their assigned tasks.

It is clear from the figure that the time cost to perform each

task is different, and at any instant, say at the blue vertical

arrow, UAV u2 has just completed the task t2 and is heading

towards t5. Whereas UAV u3 is moving towards its first task

location, i.e., t8.

In Figure 3, it is shown that UAV u1 failed while it was

heading towards its first task location, as marked by a red

vertical arrow. But all other UAVs in the system will conclude

UAV failure when they do not receive a task completion

message until Tdi time, as marked by a blue vertical arrow.

Assume that it requires Treas time for reassignment of tasks

assigned to faulty UAV, shown as a green vertical arrow in

Figure 3. It is clear in Figure 3 that UAV u4 was approaching

towards t10 when UAV u1 was declared faulty. Whereas, when

task reassignment and consensus phase finished, it was heading

towards t13. Similarly, at time Tf , UAV u3 is about to reach

the location of task t8. The final time at which all dynamic

changes have been incorporated into the system is:

Tf = Treas + Tdi (16)

Each UAV will set RPI values of un-executed tasks as-

signed to a faulty UAV to maximum and corresponding UAV-

ID values to zero. In order to maximize the assignment of these

tasks, each UAV ui will also set RPI values of its un-executed

tasks in its task list si starting after Tf time to a maximum

value. For tasks currently executing or which are going to start

before Tf time are not part of this reassignment process, and

their values in TIV will be set 1. After setting the RPI values

of tasks at maximum, task inclusion and communication and

conflict resolution phases are executed. Only those tasks that

become part of the task reassignment process whose RPI

values are at maximum.

B. Variation in the Task Duration

Due to variations in the environment or unforeseen reasons,

it is possible that a task requires more time to be performed

Algorithm 4: ECPI-Detect Dynamic Activity

1 χ* = 0
2 while χ* = 0 do
3 if New Task then
4 Set ℘i == Max (Task starts after Tf)
5 χ* = 1
6 end
7 if Task Executed then
8 Set ℘i (Task) = 0

9 Tiv (Executed Task) =1
10 Send/Received Executed Task
11 else if Executed Task then
12 Set ℘i (Task) = 0

13 Tiv (Executed Task) =1
14 Send/Received Executed Task
15 else if UAV Failed then
16 Set ℘i == Max (Task Assigned to Failed UAV)
17 βi =0 (Tasks Assigned to Failed UAV)
18 Set ℘i == Max (Task Starts after Tf)
19 χ* = 1
20 else if Variation in Task Duration then
21 if UAV can’t Execute Task
22 Set ℘i == Max (Task with Increase Duration)
23 βi =0 (Task with Increase Duration)
24 Set ℘i == Max (Task Starts after Tf)
25 χ* = 1
26 else if Variation in Task Deadline then
27 if UAV can’t Execute Task
28 Set ℘i == Max (Task with Earlier Deadline)
29 βi =0 (Task with Earlier Deadline)
30 Set ℘i == Max (Task Starts after Tf)
31 χ* = 1
32 else if Deleted Task then
33 if any un-assigned Task
34 Set ℘i == Max (Task Starts after Tf)
35 χ* = 1
36 else if New UAV then
37 if any un-assigned Task
38 Set ℘i == Max (Task Starts after Tf)
39 χ* = 1
40 Send/Receive ℘i

41 Send/Receive βi

42 end

than expected. In variations in the task duration, either a task

can take a longer or less time to perform a task against its

estimated task duration. In the considered scenario, tasks are

subject to their deadlines and are to be performed before their

deadlines expire. UAVs include multiple tasks in their task

list before execution of tasks. The variation in task duration

is communicated to UAVs via the central server.

In case a task tc requires less time than the estimated task

duration, it will not affect the tasks (if any) later in the task

list. In case it takes longer than its task duration, then there

can be multiple situations given as:

• The tc is only one task: In this case, if the extension in

task duration is within the UAV’s battery limit, the UAV

will perform that task. Otherwise, it will set the RPI

value of the task to the maximum so that other UAVs

can include that task in their task list.

• The tc is the last task: In this case, if the extension in task

duration is within the UAV’s battery limit, the UAV will

perform that task. Otherwise, it will set the RPI value of

9

Fig. 3: Detection of Faulty UAV.

the task to the maximum so that other UAVs can include

that task in their task list.

• There is at least one task after the tc: In this case, if the

extension in the task duration is not affecting the deadline

of tasks after tc or the battery limit of UAV is not violated,

the respective UAV will perform all of its assigned tasks.

On the other hand, if this extension in deadline results in

affecting the deadline of other tasks or the UAV battery

limit, then the RPI value of tc will be set to maximum

for reassignment and communicated to all other UAVs.

In case a UAV is unable to perform a task, it will immedi-

ately set its RPI value to the maximum and communicate to

other UAVs as given in Algorithm 4 (lines 20−25). Assuming

there is a negligible time between receiving task duration

information from the server and setting RPI value, then it will

take a maximum Tcd time to communicate this information to

all other UAVs in the system. In order to maximize the chance

to reallocate task tc, all UAVs will set RPI values of their

un-executed tasks starting after Td time to maximum, where

Td is given as:

Td = Treas + Tcd + Tss (17)

In Eq. (17), Tss is the time when the central server broad-

casts dynamic information, and Td is the time when dynamic

information has been incorporated in the system. In case task

tc cannot be reassigned to any UAV, the respective UAV will

perform other tasks assigned to it, excluding tc from the

execution process.

C. Variation in Task Deadline

In this scenario, every task has a specific deadline that must

be met in order for the task to be considered completed. If a

task is not completed by its deadline, it is considered a failed

task. The central server sends updates to all UAVs regarding

any changes to the task deadlines. If a task’s deadline changes

while it is being executed, the execution process continues

without any changes.

If the deadline for a task is earlier than originally set, but

the assigned UAV is still able to perform the task within its

limit, then the task will proceed as planned. However, if the

deadline is moved closer and the assigned UAV is unable to

complete the task within the new deadline, then the task will

need to be reassigned to a different UAV. In this case, the

original UAV will set its RPI value to the maximum to allow

for reassignment. Additionally, all UAVs will set the RPI

values of their tasks starting after time Td to the maximum

value, increasing the likelihood of reassignment for tasks with

closer deadlines, as outlined in Algorithm 4 (lines 26− 31).

D. Deletion of Tasks

The CDPI algorithm has the ability to assign new tasks

to UAVs even after the task execution process has started.

However, if a task is deleted from the system before being

assigned to any UAV, the task execution process will continue

as planned without any changes. On the other hand, if an

assigned task is deleted from the system and there are still

unassigned tasks available, all UAVs will set their RPI values

to the maximum for the purpose of assigning unallocated tasks.

This is described in detail in Algorithm 4 (lines 32 − 35).

Additionally, all dynamic information is broadcast to UAVs

by the central server.

E. Inclusion of New UAVs

If a new UAV is added to the system while there are still

unassigned tasks, all UAVs will adjust the RPI values of their

assigned tasks that come after a certain time Td to the max-

imum value. This will initiate the task reassignment process

10

and increase the likelihood of more tasks being assigned. This

process is described in Algorithm 4 (lines 36− 39).

V. SIMULATION RESULTS

In this section, we will discuss the performance of the

ECDPI algorithm proposed for the SAR scenario against

dynamic events such as task deadline variation, occurrence

of faults, arrival of new UAVs, and deletion of tasks. The

proposed ECDPI algorithm is implemented in MATLAB soft-

ware, utilizing the CPU specifications of Intel core i5 - 8265U

running at 1.8 GHz. The task execution phase involves the

execution of assigned tasks by each UAV in parallel with the

handling of dynamic events. The SAR scenario considered in

this context is described in [13], [29].

The survivors of a disaster incident are located randomly

within a defined area of 10km×10km×1km. These survivors

are in need of food or medical supplies. To address this,

unmanned aerial vehicles (UAVs) will be used to deliver food

and medical supplies to the survivors. The UAVs have a

constant speed of 30 m/s for food delivery and 50 m/s for

medical supplies. Each survivor requires 100 seconds to be

served by a UAV upon reaching the location. Each UAV can

serve a maximum of 8 survivors within its battery limit. The

battery limit of each UAV is randomly set between 1500-2000

seconds.

Each task has its deadline, and the deadline for each task is

randomly defined between 0 and 2000 seconds. Additionally,

each task is assigned a priority value between 0 and 1. At the

start of the simulation, UAVs are assumed to be located on the

ground, specifically at a position of 10km× 10km× 0km.

The communication topologies considered for the multi-

robotic system are the same as those described in the baseline

CDPI algorithm [13]. These include mesh, row, circular, and

hybrid. During the static phase of the CDPI algorithm, UAVs

communicate with each other using these communication

topologies for task allocation. During the task execution phase,

UAVs are distributed randomly based on their task list, so their

communication is determined by the current configuration

at that time. The VIKOR parameters used in all simulation

scenarios are the same as those given in [13].

A. Simulation Scenario 1: Determination of Communication

Time for Dynamic Information

In the CDPI algorithm, UAVs share their RPI and UAV-

ID vectors to track the tasks they are assigned and the ones

they have completed. However, in the proposed study, each

UAV also shares cost vectors with all other UAVs to track

any faulty UAVs during the task execution phase. In the CDPI

algorithm, UAVs communicate with other UAVs only when a

task is completed or when any other dynamic event occurs.

If any dynamic event occurs, each UAV waits for Tcd time to

ensure that all the required dynamic information is available

to all UAVs in the system. After that, the task inclusion,

communication and conflict resolution phases are executed.

It is necessary to determine the communication time be-

tween two distant UAVs (Tcd), since UAVs are in random

configuration during task execution. To find Tcd, 10 UAVs

TABLE I: No. of Iterations for Communication

Topology Mesh Row Circular Hybrid

No. of Iteration 1 9 5 5

were selected for 4 different topologies. A task was assigned to

UAV −10 and the number of iterations required was recorded

until all UAVs received the task completion update. The

number of iterations required for each topology is presented

in Table I.

The maximum number of iterations required to update the

task completion information is for row topology, which is 9
iterations for 10 UAVs. It is because, in row topology, one

UAV can only communicate with its immediate UAVs. If ∆t

is the time taken for one communication iteration between two

UAVs, then a maximum communication time is taken against

the dynamic configuration of the multi-UAV system, which is

given as:

Tcd = ∆t×N − 1 (18)

Let ∆t be equal to 2s then Tcd is 18s for 10 UAVs. For

all simulations in the paper, ∆t is taken as 2 seconds, and a

number of iterations of row topology are taken to calculate

Tcd, respectively.

B. Simulation Scenario 2: Occurrence of Fault in UAV

In this scenario, a simulation is performed for the allocation

of 16 tasks to 6 UAVs. Priority and deadline of each task

are randomly set between 0 − 1 and 0 − 2000s, respec-

tively, whereas the battery limit of each UAV is set between

1500−2000s. UAVs and tasks are randomly placed in an urban

disaster environment within the bounds as given in Table II.

The static part of the proposed ECDPI algorithm allocates

15 tasks to 6 UAVs in 11 iterations, and task t3 is not assigned

due to an earlier deadline, as shown in Figure 4. Table II gives

tasks assigned to UAV u6 and u5 along with related data, i.e.,

task priority, deadline, time to reach the task location, etc.

The value of Tcd in this case is 10 seconds. Tasks t15
and t13 are assigned to UAV u6, and at the start of the task

execution phase, UAV u6 is set to fail after the allocation of

tasks during the start of the task execution phase. Since task

t15 is not performed by UAV u6 and all other UAVs get the

knowledge after 123s (setting c6,15(s6) = 113s, Tcd = 10s)

in Eq. 18 that UAV u6 has failed In order to find which tasks

are to be excluded from the task reassignment process, the

parameter Treas is the product of the number of iterations for

task reassignment and the time for one iteration.

Due to the random task locations and different constraints,

the number of iterations required for consensus on the reas-

signment of tasks during the task execution phase cannot be

predicted. However, each UAV knows the number of iterations

performed for consensus during static task allocation, and it

is higher than consensus for task reassignment during task

execution. Therefore, a number of iterations for static case

task allocation is considered for the computation of Treas,

whereas the time for one iteration is taken the same as that

of ∇t, and hence Treas = 22s. Thus, Tf is 145s, and at this

time, UAV u5 is performing task t16 with t12 as re-assignable

11

TABLE II: Failure of UAV at the start of Task Execution

UAV # 5 14462 s Static Task Allocation Dynamic Task Allocation
No. of Iterations 11 No. of Iterations 6

UAV Battery Time Task T16 T12 T16 T12 T13

Arrival Time 71.60 226.1 53 210 414
Priority 0.7252 1 0.7252 1 0.5106
Deadline 748 851 748 851 574

UAV # 6 9509 s Task T15 T13 UAV Failed
Arrival Time 113 241

UAV Battery Time Priority 0.3637 .5106
Deadline 175 574

Fig. 4: Static Allocation for Simulation Scenario 1

tasks. Therefore, t13 is assigned to UAV u5 at the position

after task t12, but t15 cannot be reallocated to any UAV due

to an earlier deadline as shown in Figure 5.

C. Simulation Scenario 3: Variation in task duration

In this scenario, 16 tasks are considered for assignment to 6
UAVs, as shown in Figure 6. A total of 15 tasks are allocated

to 6 UAVs using the static part of the ECDPI algorithm in 7
iterations. Therefore, the value of Tcd is 10s and Treas is 14s
respectively. Task t14 cannot be allocated to any UAV due to

task deadline issues. At the start, the duration of all tasks is

100 seconds.

At the start of task execution, the task duration of task t2 is

increased to 130s. Therefore, Tss is zero, and Td is equal to

24s respectively. With this task duration, UAV u5 is not able

to reach the location of task t8 as given in Table III. Hence,

t8 is either required to be reassigned to any other UAV or

be deleted from the task list of u5. With Td of 24s, all tasks

except the first in the task list of all UAVs are re-assignable.

UAV u6 is able to perform task t2 in addition to its already

allocated tasks within their deadlines. Therefore, t2 is placed

at the first location in the task list of UAV u6, as shown in

Figure 7.

D. Simulation Scenario 4: Variation in Deadline

The scenario of the task deadline is similar to the task

duration. The only difference is with an extension in the

duration of a task; the respective UAV may not be able to

reach a task location that is placed later in the task list. In this

case, the task with an extended duration is either reassigned to

another UAV or removed from the task list. Similarly, when

the deadline of a task is set early by the central server, the

respective UAV may not be able to reach the task location

before its new assigned deadline. In this case, either task is

reassigned to another UAV or removed from the task list.

Therefore, the simulation of the variation in deadline is not

presented in the paper.

E. Simulation Scenario 5: Deletion of a Task

In this simulation scenario, 20 tasks are considered for

assignment to 6 UAVs, as shown in Figure 8. Using the

static part of the ECDPI algorithm, 19 tasks are allocated in

9 iterations, and one task, t16 cannot be allocated due to a

deadline constraint as given in Table IV. In this case, Tcd is

10s and Treas is equal to 18s. It is clear from Figure 8 that

tasks t16 and t4 are very close to each other, but t4 is assigned

due to the early deadline and higher task priority.

At the start of task execution, task t4 is deleted from the

system. Therefore, Tss is equal to zero and Td is equal to 28s

12

Fig. 5: UAV Malfunction during Task Execution

Fig. 6: Static Allocation for Simulation Scenario 3

TABLE III: Task Duration Variation at the start of Task Execution

UAV # 5 7251 s Static Task Allocation Dynamic Task Allocation
No. of Iterations 7 No. of Iterations 2

UAV Battery Time Task T3 T2 T8 T3 T8

Arrival Time 103.9 231.5 444.3 103.9 340.1
Priority 0.4756 0.5382 0.8814 0.4756 0.8814
Deadline 111 257 520 111 520

UAV # 6 17295 s Task T11 T10 T2 T11 T10

Arrival Time 111.9 401.2 227 533.9 823.1
UAV Battery Time Priority 0.7875 0.9860 0.5382 0.7875 0.9860

Deadline 552 871 257 552 871

13

Fig. 7: Extension in Task Duration during Task Execution

Fig. 8: Static Allocation for Simulation Scenario 5

respectively. At Td of 28s, UAV u2 is moving towards its first

task location; therefore, all of its tasks are re-assignable except

the first one. With the deletion of t4, task t16 is assigned to

UAV u2 as shown in Figure 9.

F. Simulation Scenario 6: Introduction of a New UAV in Multi-

UAV System

The 20 tasks are generated for assignment to 6 UAVs, and

the 19 tasks are assigned to 6 UAVs in 12 iterations, as shown

in Figure 10. From Figure 10 and Table V, it is clear that

t19 is a high-priority task with a short deadline as compared

to t11; therefore, t11 could not be assigned to u3. Based on

the available data, i.e., 6 UAV and 12 iterations for static task

allocation, the value of Tcd is computed as 10s and Treas as

24s respectively. A new UAV u7 is introduced in the system

as the start of the task execution phase; therefore, Tss is taken

as 0, the value of Td is 34s and hence, tasks starting after 34s
are re-assignable. Since task cost is equal to time to reach the

task location and time to perform that task. Since task duration

is taken as 100, each task in the task list of all UAVs except

the first task is re-assignable. Therefore, considering the best

position in the task list, unassigned tasks t19 and t5 initially

assigned to u1 are reassigned to u7, respectively, as shown in

Figure11.

VI. CONCLUSION

This paper explores the problem of task allocation in a

scenario where multiple UAVs are involved in SAR operations

under dynamic conditions. The dynamic events considered

in this study include variations in the duration and deadline

of tasks, UAV faults, and the deletion or addition of new

UAVs to the system to improve the performance of the CDPI

14

Fig. 9: Deletion of a Task during Task Execution

TABLE IV: Task Deletion at the start of Task Execution

UAV # 2 15799 s Task Static Task Allocation Dynamic Task Allocation
No. of Iterations 9 No. of Iterations 2

UAV Battery Time T9 T17 T4 T18 T9 T17 T16 T18

Arrival Time 30.7 185.4 578.2 714.9 30.7 185.4 573.4 715.2
Priority 0.3218 0.4620 0.8482 1 0.3218 0.4620 0.8300 1
Deadline 465 475 616 777 465 475 673 777

Fig. 10: Static Allocation for Simulation Scenario 6

15

Fig. 11: Insertion of a new UAV during Task Execution

TABLE V: Inclusion of a New UAV at the start of Task Execution

UAV # 1 4302 s Static Task Allocation Dynamic Task Allocation
Task No. of Iterations 12 No. of Iterations 3

UAV Battery Time T13 T10 T5 T13 T10

Arrival Time 109 233 387.6 109 233
Priority 0.6668 0.6364 0.8199 0.6668 0.6364
Deadline 918 542 432 918 542

UAV # 7 11000 s Task UAV inserted during task execution T19 T5

Arrival Time 25.8 235.8
UAV Battery Time Priority 0.6527 0.8199

Deadline 45 432

algorithm. The simulation results show that when a UAV fails,

its assigned tasks are automatically reassigned to other UAVs

while ensuring that all constraints are satisfied. Additionally,

the proposed ECDPI algorithm can handle variations in task

duration and deadline. Furthermore, the ECDPI algorithm is

also capable of successfully dealing with dynamic events, such

as adding a new UAV to the system or deleting a task. In the

future, the study will consider the following aspects:

1) Dynamic events are handled separately in the presented

simulation. The simulation needs to be enhanced to cater

to multiple dynamic events.

2) In the simulations presented, only one instance of a

dynamic situation is considered in each simulation. This

means that only one task is deleted or one UAV is

included in the system. In order to handle multiple

instances of a dynamic event, the simulation needs to

be enhanced.

3) The proposed ECDPI algorithm requires enhancements

to accommodate dynamic events such as changes in

battery limit, task priority, etc., during task execution.

Author Contributions: Conceptualization, Rahim Ali Qa-

mar, Sajjad A. Ghauri, and Mubashar Sarfraz; Methodology,

Rahim Ali Qamar, Sajjad A. Ghauri, Mubashar Sarfraz and

Nauman Anwar Baig; Software, Rahim Ali Qamar, Sajjad A.

Ghauri, Mubashar Sarfraz and Nauman Anwar Baig; Valida-

tion, Sajjad A. Ghauri, Mubashar Sarfraz, Tanweer Ahmad

Cheema and Nauman Anwar Baig; Formal analysis, Rahim

Ali Qamar, Sajjad A. Ghauri, Mubashar Sarfraz; Investigation,

Rahim Ali Qamar, Sajjad A. Ghauri, and Tanweer Ahmad

Cheema; Resources, Sajjad A. Ghauri, Mubashar Sarfraz and

Nauman Anwar Baig; Data curation, Rahim Ali Qamar, Sajjad

A. Ghauri, Mubashar Sarfraz, and Nauman Anwar Baig;

Writing—original draft preparation, Rahim Ali Qamar, Sajjad

A. Ghauri, Mubashar Sarfraz, Tanweer Ahmad Cheema and

Nauman Anwar Baig; Writing—review and editing, Rahim Ali

Qamar, Sajjad A. Ghauri, Mubashar Sarfraz, Tanweer Ahmad

Cheema and Nauman Anwar Baig; Visualization, Sajjad A.

Ghauri and Mubashar Sarfraz; Supervision, Sajjad A. Ghauri;

All authors have read and agreed to the published version of

the manuscript.

Funding: The conducted research is slated for publication

through the Robert Gordon University Journal Fee Support

Program.

Data Availability: Not applicable

Conflicts of Interest: The authors declare no conflict of

interest.

Acknowledgment: The conducted research is slated for

publication through the Robert Gordon University, Scotland,

Journal Fee Support Program.

16

REFERENCES

[1] E. Nunes, M. Manner, H. Mitiche, and M. Gini, “A taxonomy for task
allocation problems with temporal and ordering constraints,” Robotics

and Autonomous Systems, vol. 90, pp. 55–70, 2017.

[2] J. Garcı́a-Pulido, G. Pajares, and S. Dormido, “Uav landing platform
recognition using cognitive computation combining geometric analysis
and computer vision techniques,” Cognitive Computation, pp. 1–21,
2022.

[3] F. Zhao, Y. Zeng, G. Wang, J. Bai, and B. Xu, “A brain-inspired decision
making model based on top-down biasing of prefrontal cortex to basal
ganglia and its application in autonomous uav explorations,” Cognitive

Computation, vol. 10, pp. 296–306, 2018.

[4] X. Liu, Z. Li, N. Zhao, W. Meng, G. Gui, Y. Chen, and F. Adachi,
“Transceiver design and multihop d2d for uav iot coverage in disasters,”
IEEE Internet of Things Journal, vol. 6, no. 2, pp. 1803–1815, 2018.

[5] G. Wu, W. Pedrycz, H. Li, M. Ma, and J. Liu, “Coordinated planning
of heterogeneous earth observation resources,” IEEE Transactions on

Systems, Man, and Cybernetics: Systems, vol. 46, no. 1, pp. 109–125,
2015.

[6] S. Zhang and J. Liu, “Analysis and optimization of multiple unmanned
aerial vehicle-assisted communications in post-disaster areas,” IEEE

Transactions on Vehicular Technology, vol. 67, no. 12, pp. 12 049–
12 060, 2018.

[7] A. Khamis, A. Hussein, and A. Elmogy, “Multi-robot task allocation: A
review of the state-of-the-art,” Cooperative robots and sensor networks

2015, pp. 31–51, 2015.

[8] A. Zhang, D. Zhou, M. Yang, and P. Yang, “Finite-time formation
control for unmanned aerial vehicle swarm system with time-delay and
input saturation,” IEEE Access, vol. 7, pp. 5853–5864, 2018.

[9] W. Shen, L. Wang, and Q. Hao, “Agent-based distributed manufactur-
ing process planning and scheduling: a state-of-the-art survey,” IEEE

Transactions on Systems, Man, and Cybernetics, Part C (Applications

and Reviews), vol. 36, no. 4, pp. 563–577, 2006.

[10] Y. Cao, W. Yu, W. Ren, and G. Chen, “An overview of recent progress
in the study of distributed multi-agent coordination,” IEEE Transactions

on Industrial informatics, vol. 9, no. 1, pp. 427–438, 2012.

[11] S. Xie, A. Zhang, W. Bi, and Y. Tang, “Multi-uav mission allocation
under constraint,” Applied Sciences, vol. 9, no. 11, p. 2184, 2019.

[12] W. Zhao, Q. Meng, and P. W. Chung, “A heuristic distributed task
allocation method for multivehicle multitask problems and its application
to search and rescue scenario,” IEEE transactions on cybernetics,
vol. 46, no. 4, pp. 902–915, 2015.

[13] R. A. Qamar, M. Sarfraz, A. Rahman, and S. A. Ghauri, “Multi-criterion
multi-uav task allocation under dynamic conditions,” Journal of King

Saud University-Computer and Information Sciences, vol. 35, no. 9, p.
101734, 2023.

[14] M. Akram, A. N. Al-Kenani, J. C. R. Alcantud et al., “Group decision-
making based on the vikor method with trapezoidal bipolar fuzzy
information,” Symmetry, vol. 11, no. 10, p. 1313, 2019.

[15] M. Yang, W. Bi, A. Zhang, and F. Gao, “A distributed task reassign-
ment method in dynamic environment for multi-uav system,” Applied

Intelligence, vol. 52, no. 2, pp. 1582–1601, 2022.

[16] A. Adeel, M. Gogate, S. Farooq, C. Ieracitano, K. Dashtipour, H. Lari-
jani, and A. Hussain, “A survey on the role of wireless sensor networks
and iot in disaster management,” Geological disaster monitoring based

on sensor networks, pp. 57–66, 2019.

[17] E. Osaba, J. Del Ser, A. D. Martinez, and A. Hussain, “Evolutionary
multitask optimization: a methodological overview, challenges, and
future research directions,” Cognitive Computation, vol. 14, no. 3, pp.
927–954, 2022.

[18] C. Wei, K. V. Hindriks, and C. M. Jonker, “Dynamic task allocation for
multi-robot search and retrieval tasks,” Applied Intelligence, vol. 45, pp.
383–401, 2016.

[19] I. Jang, H.-S. Shin, and A. Tsourdos, “Anonymous hedonic game for task
allocation in a large-scale multiple agent system,” IEEE Transactions on

Robotics, vol. 34, no. 6, pp. 1534–1548, 2018.

[20] A. Whitbrook, Q. Meng, and P. W. Chung, “Reliable, distributed
scheduling and rescheduling for time-critical, multiagent systems,” IEEE

Transactions on Automation Science and Engineering, vol. 15, no. 2, pp.
732–747, 2017.

[21] H.-L. Choi, L. Brunet, and J. P. How, “Consensus-based decentralized
auctions for robust task allocation,” IEEE transactions on robotics,
vol. 25, no. 4, pp. 912–926, 2009.

[22] X. Chen, P. Zhang, G. Du, and F. Li, “A distributed method for dynamic
multi-robot task allocation problems with critical time constraints,”
Robotics and Autonomous Systems, vol. 118, pp. 31–46, 2019.

[23] U. Baroudi, M. Alshaboti, A. Koubaa, and S. Trigui, “Dynamic multi-
objective auction-based (dymo-auction) task allocation,” Applied Sci-

ences, vol. 10, no. 9, p. 3264, 2020.
[24] Q. Wang and X. Mao, “Dynamic task allocation method of swarm robots

based on optimal mass transport theory,” Symmetry, vol. 12, no. 10, p.
1682, 2020.

[25] W. Dai, H. Lu, J. Xiao, Z. Zeng, and Z. Zheng, “Multi-robot dynamic
task allocation for exploration and destruction,” Journal of Intelligent &

Robotic Systems, vol. 98, pp. 455–479, 2020.
[26] X. Wu, Z. Gao, S. Yuan, Q. Hu, and Z. Dang, “A dynamic task allocation

algorithm for heterogeneous uuv swarms,” Sensors, vol. 22, no. 6, p.
2122, 2022.

[27] S. Choudhury, J. K. Gupta, M. J. Kochenderfer, D. Sadigh, and J. Bohg,
“Dynamic multi-robot task allocation under uncertainty and temporal
constraints,” Autonomous Robots, vol. 46, no. 1, pp. 231–247, 2022.

[28] B. P. Gerkey and M. J. Matarić, “A formal analysis and taxonomy of task
allocation in multi-robot systems,” The International journal of robotics

research, vol. 23, no. 9, pp. 939–954, 2004.
[29] R. A. Qamar, M. Sarfraz, S. A. Ghauri, and A. Mahmood, “Trmaxalloc:

Maximum task allocation using reassignment algorithm in multi-uav
system,” Computer Communications, vol. 206, pp. 110–123, 2023.

[30] Z. Gao, R. Y. Liang, and T. Xuan, “Vikor method for ranking concrete
bridge repair projects with target-based criteria,” Results in Engineering,
vol. 3, p. 100018, 2019.

Supplementary Files

This is a list of supplementary �les associated with this preprint. Click to download.

RahimFINAL.rar

https://assets.researchsquare.com/files/rs-3879027/v1/2c74bfa11da425ca5021541a.rar

