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Abstract

Introduction:
Rare events data have proven di�cult to explain and predict. Standard statistical procedures can sharply underestimate the probability of rare
events, such as intravenous immune globulin therapy (IVIg) for bullous pemphigoid.

Methods
This retrospective cross-sectional study used Department of Defense TRICARE data to determine factors associated with IVIg therapy among
bullous pemphigoid patients. We used prior and weighted correction methods for logit regression to solve rare event bias.

Results
We identi�ed 2,720 individuals diagnosed with bullous pemphigoid from 2019 to 2022, of which 14 were treated with IVIg. Patients who received
IVIg therapy were younger (65.07 vs. 75.85, P = .0016) and more likely to be female (13 vs. 1, P = .0036). The underestimation with the standard
regression model for event probabilities ranged from 11–102% using the prior correction method and from 15–107% using the weighted correction
method.

Conclusion
Rare events are low-frequency, high-severity problems that can have signi�cant consequences. Rare diseases and rare therapies are individually
unique but collectively contribute to substantial health and social needs. Therefore, correct estimation of the events is the �rst step toward
assessing the burden of rare diseases and the pricing of their therapies.

BACKGROUND
In outcomes research data, we deal with rare cases frequently. Currently, about 7,000 rare diseases have been identi�ed, with an estimated
300 million people affected globally [1]. Rare diseases, although individually unique, collectively represent substantial unmet health and social care
needs and a signi�cant public health challenge to society as a whole [1]. De�nitions of rare diseases vary [1]: under the U.S. Orphan Drug Act, a rare
disease is de�ned as a disease or condition affecting fewer than 200,00 0[2], whereas it is de�ned as a condition that affects fewer than 5 people
per 10,000 population in Europe [1].

It is estimated that 95% of rare diseases have no approved treatment [1, 3]. The treatments for the remaining 5% are frequently expensive and
relatively unknown. In addition to the high research and development costs associated with largely limited treatment options, the rather small
market for rare diseases is conducive to prohibitive pricing. Rare diseases present a challenge for clinicians in reaching a conclusive diagnosis and
determining an appropriate course of treatment due to their low prevalence, heterogenicity, and complexity [1, 4, 5]. Thus, it can be challenging to
predict and estimate rare-disease outcomes in a real-world setting.

A rare event is de�ned as a binary dependent variable characterized by dozens to thousands of times fewer 1's (i.e., rare diseases, treatments, newly
approved medications) than 0's ("nonevents") [6]. There are two main reasons for the di�culty in estimating rare events. First, standard logistic
regression can sharply underestimate the probability of events. Therefore, the estimates would be biased. One real-life example is working with data
on a rare disease such as bullous pemphigoid (BP), a rare skin condition. It is estimated that BP affects fewer than 50,000 people in the U.S.,
primarily older people [7]. The most common treatment is prednisone, but long-term use increases the risk of weak bones, diabetes, high blood
pressure, high cholesterol, and infection. As an alternative, intravenous immunoglobulin (IVIg) is effective, although optimal use of IVIg is yet to be
determined. Most adverse effects of IVIg infusions are transient, infusion-related symptoms that do not have long-term sequelae, although serious
adverse events such as thrombosis, renal dysfunction, and acute renal failure have been noted [8]. Additional concerns about IVIg treatment include
its potential toxicity and cost. While a single infusion starts at $5,000 to $10,000, treatment usually requires repeated cycles for which insurance
coverage is not always covered. Therefore, it is essential to know the probability of using IVIg treatment for a rare disease.

To study the usage pattern of IVIg therapy in BP, we can formulate the model as follows: Let the outcome variable (e.g., whether the patient had IVIg
therapy) be  and follow a Bernoulli probability function that takes on the value 1 with probability . Let  be the vector of explanatory variables
such as age, comorbid conditions, gender, or insurance type. Then it can be shown that the variance matrix takes the following form:
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Rare events have small estimates for  observations. Standard logit models that use approximation rather than actual values will usually have
larger values for . Thus,  will be larger for 1’s than 0’s, stating that 1’s are more informative than 0’s in rare events. Since rare events
have small sample sizes (usually < 200 observations), the logit models will yield a suboptimal result [6]. Therefore, logit models need to be adjusted
to control this effect.

The second problem is related to how the data are collected. There is a fear among analysts that collecting data sets with no events (and thus with
no variation on outcome measures) has led researchers to choose very large data sets with few, and often poorly measured, explanatory variables.
For example, to avoid rare events, a researcher could include a broader sample by including a wide variety of International Classi�cation of Disease
(ICD) codes, a Healthcare Common Procedure Coding System (HCPCS) Level II alphanumeric code issued by the Center for Medicare and Medicaid
Services (J-Codes), or Current Procedural Terminology (CPT) codes rather than speci�c codes. This technique will cloud the estimates, making it
challenging to see the true effect of treatment on an actual targeted sample.

The twofold problem outlined above arises when predicting health outcomes of rare diseases, rare treatments, or small numbers of recently
approved medications. The objective of this study is to apply correction methods used in other rare event studies such as major stock market
crashes to solve the aforementioned issues in performing research on rare diseases.

METHODS
For this retrospective cross-sectional study, we extracted de-identi�ed patient data for �scal years (FYs) 2019 to 2022 from the Department of
Defense TRICARE data. Each FY (October 1–September 30) is based on the U.S. federal budget calendar. The data from Military Health Services
(MHS) has been recognized as a model of equitable healthcare access across socioeconomic and racial groups. The U.S. MHS is a global
healthcare network with a diverse population that is more representative of the U.S. population than other data sets, with fewer disparities in
healthcare services. The system serves 9.6 million bene�ciaries, including active-duty service members, retirees, and family members, on an annual
budget of $53 billion. The MHS delivers care through a direct-care/health maintenance organization system for Department of Defense military
treatment facilities and a purchased-care/preferred provider organization system for civilian facilities. In addition, the MHS provides universal
coverage for its bene�ciaries under its TRICARE program. The data do not capture healthcare delivery in combat zones or care received in the
Veterans Administrative system. All individuals were in the TRICARE Prime® managed care option.

Patients with BP were identi�ed using the International Classi�cation of Diseases, Tenth Revision, Clinical Modi�cation (ICD-10-CM) diagnosis
codes (L12.0). Our outcome variable was the use of IVIg therapy and identi�ed by J codes (J1459, J1554, J1556, J1557, J1561, J1566, J1568,
J1569, J1572, J1599). The inclusion criteria used were adults (≥ 18 years), diagnosed with BP and treated with or without IVIg. IVIg date was the
index date; the index date for the non-event cohort was randomly assigned between the minimum of IVIg date and maximum of IVIg date.

Patient age, gender, and comorbidities were available in the data sets. We identi�ed the top 10 comorbidities associated with BP: hypertension,
hyperlipidemia, pemphigoid, esophagitis re�ux, dermatitis, urinary tract infection, limp pain, rash, skin cancer, and dyspnea. A �ag was created for
patients who had at least three comorbidities prior to treatment to proxy for severity.

For descriptive analysis, we compared the patients with and without IVIg therapy. Numbers and percentages were provided for dichotomous and
polychotomous variables. Means and standard deviations were provided for continuous variables. For dichotomous and polychotomous variables,
P values were calculated according to the chi-square test, and for continuous variables, t-tests were used to calculate P values. Nonparametric tests
(e.g., the Mann-Whitney U test, log-rank test, or McNemar test) were applied if there was a deviation from asymptotical assumptions.

Since it is well documented that logit coe�cients are biased in small samples, we proposed a correction method to solve the possible “rare event”
bias in log estimation. Consider a logit model for outcome variable y and set of k explanatory variables x:

,

where G is the logistic function:

,

which is between 0 and 1 for all real numbers z.

To apply the �rst correction method, we obtained information about the fraction of 1’s in the population , and then the observed fraction of ones in

the sample . Then the adjusted coe�cient in the logit model is
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Note that prior correction affects only constant terms (therefore, not the odds ratio), but since most of the time interest lies in estimated
probabilities:

,

it is necessary to estimate a rare-event bias-adjusted constant term, with the �rst correction technique, called prior correction.

For the second correction technique, we used weights determined by the proportion of 1’s and 0’s in the sample to equal the true proportion in the

population, letting  and  be the dependent variable and weighting independent variables by  if and  if 

Then, we ran a standard logistic regression of weighted dependent and independent variables.

To solve commonly used data collection biases under rare-event data, King and Zeng propose collecting all (or all available) 1’s and a small random
sample of ‘0s to not avoid losing consistency or even much e�ciency relative to the full sample [6].

For the second part of the analysis, we tested differences in predicted probabilities. We proposed nonparametric tests since these tests are most
appropriate when the sample sizes are small. The Mann-Whitney U test and the Kolmogorov-Smirnov two-sample test were used on predicted
probabilities of logit regressions to see whether differences exist.

The analysis uses SAS version 9.4 (SAS Institute Inc.) and STATA 17 (STATA Corp., LLC).

RESULTS
We identi�ed 2720 unique individuals diagnosed with BP in FY 2019-2022. Among these patients diagnosed with BP, 14 were treated with IVIg. The
remaining sample was a non-event cohort (n=2706). Overall, 54.19% of individuals were women, and 85% of our sample was 65 years or older
(mean, 78 years). We identi�ed the most frequent 10 comorbidities from our sample. According to Table 1, the most frequent comorbidity prior to
treatment with IVIg was hypertension (61.32%), followed by hyperlipidemia (37.20%), pemphigoid (34.70%), pain limp (24.15%), dyspnea (23.82%),
dermatitis (23.49%), skin cancer (22.31%), urinary tract infection (20.25%), esophageal re�ux (19.44%), and rash (16.43%). Within this sample,
54.08% of patients had more than three comorbidities within one year prior to treatment. 

BP patients receiving IVIg therapy were younger (65.07 vs. 75.85, P=.0016) and more likely to be female (13 vs. 1, P=.0036). Overall, patients with
IVIg treatment had signi�cantly more comorbidities than patients without IVIg therapy. (78.57% vs. 53.95%, P=.0653). Patients receiving IVIg therapy
also had a signi�cantly higher likelihood of esophageal re�ux (42.85% vs. 19.44%, P=.0265), dermatitis (57.14% vs. 23.49%, P=.0029), urinary tract
infection (50.00% vs 20.25%), P=.0055), and rash (42.85% vs, 16.43%, P=.0075).  

Table 1. Demographic Characteristics of BP Patients With and Without IVIg Therapies
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  Total With IVIg Therapy Without IVIg Therapy P Value

Sample size (n) 2720 14 2706  

Age, mean (SD) 75.79 (12.72) 65.07 (17.54) 75.85 (12.67) .0016

Age, median (IQR) 78 (70-85) 72 (54-76) 78 (70-85)  

Female, n (%) 1474 (54.19) 13 (92.85) 14 (53.99) .0036

Diseases        

Hypertension 1668 (61.32) 11 (78.57) 1657 (61.23) .1841

Hyperlipidemia 1012 (37.20) 8 (57.14) 1004 (37.10) .1219

Pemphigoid 944 (34.70) 8 (57.14) 936 (35.58) .0771

Esophagitis re�ux 529 (19.44) 6 (42.85) 523 (19.32) .0265

Dermatitis 639 (23.49) 8 (57.14) 631 (23.31) .0029

Urinary tract infection 551 (20.25) 7 (50.00) 544 (20.10) .0055

Pain limp 657 (24.15) 5 (35.71) 652 (24.09) .3112

Rash 447 (16.43) 6 (42.85) 441 (16.29) .0075

Skin cancer 607 (22.31) 5 (35.71) 602 (22.24) .2275

Dyspnea 648 (23.82) 5 (35.71) 643 (23.76) .2952

³3 comorbidities 1471 (54.08) 11 (78.57) 1460 (53.95) .0653

Abbreviations: IQR, interquartile range; IVIg, intravenous immune globulin; SD, standard deviation.

Table 2 shows the coe�cients from standard logistic regression, prior correction regression, weighting regression, and reduced non-event sample
regression. 

Table 2. Coe�cient Estimates from Logistic, Rare-Event Corrected Logistic, and Reduced Non-event Sample Regressions
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  Coe�cient Standard Error P Value

Standard logistic regression      

Age ³65 years -1.516914 0.5574599 .007

Male -2.213399 1.04429 .034

³3 comorbidities 1.427647 0.6653685 .032

Constant -4.618576 0.6239096 .6239096

Prior correction logistic regression      

Age ³65 years -1.533331 0.5673812 .007

Male -1.756653 1.078328 .103

³3 comorbidities 1.307087 0.6505784 .045

Constant -4.359911 0.6083402 .6083402

Weighting logistic regression      

Age ³65 years -1.533391 0.5673646 .007

Male -1.756592 1.078324 .103

³3 comorbidities 1.30694 0.650598 .045

Constant -4.35976 0.6083932 0

Reduced sample size      

Age ³65 years -1.145064 0.6302908 .069

Male -1.863163 1.075973 .083

³3 comorbidities 1.235095 0.7058335 .08

Constant -1.944585 0.6661061 .004

The correction rate for the prior correction technique assumes that the IVIg rate for BP is 0.00538918 (. This rate is obtained from an open-claims
database that covers 330 million patients in the United States. When comparing unadjusted rates for IVIg treatment, our rates were lower (0.00515).
There was agreement on the sign of the coe�cients across regressions. Older age, male self-identi�cation, and fewer comorbidities decreased the
likelihood of BP being treated with IVIg. Coe�cients from prior correction logistic regression and standard logistic regression were statistically
similar, but both were statistically different from weighting logistic regressions (P=.0001). The coe�cients from the regression that used the
reduced random sample of non-events were also different from standard logistic regression (P=.004) (Table 2).

We randomly selected 140 patients from 2706 non-event patients, so the total regression sample was 154, with 10% of the sample in the IVIg cohort
(i.e., the rare-event proportion increased from 0.5% to 10%). The reduced random sample increased the event proportion in the regression sample.
We calculated event probabilities for each group of patients with respect to age, gender, and comorbidities (Table 3). As expected, standard logistic
regression signi�cantly underestimated the event probabilities. The underestimation ranged from 11% to 102% using the prior correction method
and from 15% to 107% using the weighting correction method. For example, standard logistic regression predicted that male patients 18 to 64 years
old with few comorbidities have a 0.1% probability of receiving IVIg treatment; however, the actual probability was double according to prior
correction and weighting correction. Random selection of non-event samples signi�cantly biased the results and found probabilities 10 times larger
than corrected probabilities and 20 times larger than probabilities calculated by standard logistic regression.

Rare-event correction affected the constant term the most. Table 3 shows the constant term for each model with its lower and upper con�dence
intervals. 

Table 3. Standard and Corrected Predicted Probabilities for Different Sets of Groups
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Age
(years)

Gender Comorbidities Standard
Logistic
Regression

Prior Correction Method Weighting Method Random Reduction of
Non-Event Sample

Point
Estimate

Underestimation
of Probabilities

Point
Estimate

Underestimation
of Probabilities

Point
Estimate

Deviation of
Probabilities

18-64 Male High  0.0044769 0.00831 -85.62% 0.0085 -89.86% 0.0755036 108.82%

³65  Male High  0.0009856 0.00171 -73.50% 0.0017 -72.48% 0.0156083 102.12%

18-64 Female High  0.0395085 0.04662 -18.00% 0.04552 -15.22% 0.4761266 364.52%

³65  Female High  0.0089435 0.00997 -11.48% 0.01031 -15.28% 0.1499854 230.68%

18-64 Male Low  0.0010776 0.00218 -102.30% 0.00223 -106.94% 0.0230371 102.25%

³65  Male Low  0.0002366 0.00047 -98.65% 0.00048 -102.87% 0.0045571 100.46%

18-64 Female Low  0.0097704 0.01253 -28.24% 0.01216 -24.46% 0.2078657 173.60%

³65  Female Low  0.00216 0.00275 -27.31% 0.0027 -25.00% 0.0484764 100.79%

 

DISCUSSION
Table 4 lists the top 10 most expensive drugs marketed in United States with annual cost based on length of therapy. The common feature of these
medications is that they treat a rare condition. A pair of recently related studies sheds new light on the staggering cost of developing new drugs, an
expense that now exceeds $2 billion per therapy on average [9]. To create an incentive for pharmaceuticals to bear the cost of a rare condition,
treatment prices for these medications are prohibitive. Therefore, analyzing rare conditions and estimating the event rates correctly has signi�cant
importance. All pricing models are based on these estimates. We applied several correction techniques to a rare treatment for BP using a military
health data set. 

Table 4: Ten Most Expensive Drugs in the United States

Order Drug Annual Cost Based on Length of Therapy ($)

1 Zolgensma 2,125,000

2 Zokinvy 1,073,760

3 Danyelza 1,011,882

4 Kimmtrak 975,520

5 Myalept 929,951

6 Luxturna 850,000

7 Folotyn 842,585

8 Brineura 755,898

9 Blincyto 754,720

10 Ravicti 695,970

The overall BP prevalence is 0.012%, or 12 per 100,000 adults in United States[10]. The prevalence of BP among those aged 60 years and older is
0.038%, or 37.7 per 100,000 adults [10].  Studies have shown that BP is mostly a disease of older adults, with a reported onset around 75 years, and
a clear female preponderance [11, 12]. Our results supported these statistics, as 85% of our sample was at least 65 years old (median, 78 years) and
54.19% were women. 

BP is often associated with various systemic diseases and tends to have a poor prognosis because of limited physical function and low immunity
among older people. A notable increase in incidence rates may be related to an aging population, increased drug use, diagnostic sensitivity, and
non-bullous presentations, the latter of which have frequently been underdiagnosed [11, 13]. We found that 54% of the population had at least three
comorbidities within one year prior to diagnosis. The most frequent comorbidity prior to diagnosis was hypertension (61.32%), followed by
hyperlipidemia (37.20%), pemphigoid (34.70%), pain limp (24.15%), dyspnea (23.82%), dermatitis (23.49%), skin cancer (22.31%), urinary tract
infection (20.25%), esophageal re�ux (19.44%), and rash (16.43%). 

Diagnosis is usually made based on clinical features, histological examination, and the quanti�cation of circulating typical autoantibodies [11, 14].
However, especially in the �rst phases of the disease, typical clinical features may be lacking, resulting in a late diagnosis and consequently delayed
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treatment [11].

Glucocorticoid, a systemic corticosteroid, is the �rst line of treatment for BP12,16,17. Oral prednisone (0.5-1 mg/kg/day, progressively, over a period of
6-9 months), the most commonly used treatment for BP, usually controls the disease within 2 weeks. In addition, compared with high-dose
glucocorticoids alone, the combination of glucocorticoids and immunosuppressive agents like IVIg or antibiotics have been found reduce mortality
because of the synergistic effect of combined therapy and the reduction of adverse reactions caused by glucocorticoids17 Moreover, due to a higher
incidence of this rare disease in elderly patients—a population with a higher frequency of comorbidities—BP treatment and management remain a
challenge. Glucocorticoids may be contraindicated as a treatment option in some of these patients due to their comorbidities. For example, a
patient with severe hypertension might not be eligible for treatment with corticosteroids. Further, the main problem linked with the use of systemic
steroids in elderly patients is the high rate of adverse effects, which may result in higher rates of mortality and adverse outcomes than with topical
clobetasol propionate 0.05%21. Therefore, alternative treatments like IVIg can play an important role in managing this disease.

IVIg has demonstrated pleiotropic anti-in�ammatory effects [15], including increased autoantibody catabolism, and meaningful positive effects in
BP in several cases and studies both as monotherapy and in combination with rituximab [16][17, 18]. IVIg may particularly bene�t patients (1) who
may be recalcitrant or nonresponsive to conventional therapy with oral corticosteroids and/or other adjuvants; (2) who are unable to tolerate such
agents; (3) who develop signi�cant side effects to these agents, necessitating their discontinuation; or (4) for whom these agents are
contraindicated [18].

Our study indicated that other treatments such as glucocorticoids continue to be predominantly used, as only 14 individuals in our population were
receiving IVIg therapy. Those treated with IVIg were younger (65.07 vs. 75.85 years, P=.0016), more likely to be female (1474 vs. 13, P=.0036), and
had signi�cantly more comorbidities than those patients not receiving IVIg (78.57% vs 53.95%, P=.0653). This �nding might be explained by a
recent study that indicates efgartigimod, a monoclonal antibody, has entered clinical trials for BP after promising results in patients with pemphigus
and myasthenia gravis [16]. Although we did not investigate myasthenia gravis as a comorbidity, it is well-known that this disease is predominant in
women and that one of its treatments is IVIg. This might indicate that the population with BP who will bene�t most from IVIg are patients who tend
to be younger and female and have other comorbidities. Further research is needed to explore this possible association. 

As discussed previously, rare events are di�cult to explain and predict because statistical procedures tend to underestimate the probability of rare
events or because the data collection strategies are ine�cient [6]. As expected, our results yielded that standard logistic regression signi�cantly
underestimated the event probabilities. The underestimation in our study ranged from 11% to 102% using the prior correction method and from 15%
to 106% using the weighting correction method.  For example, in our study, standard logistics regression predicted that male patients 18 to 64 years
old, with fewer comorbidities, have a 0.1% probability of receiving IVIg treatment; however, the actual probability was more than double according to
prior correction and weighting correction. This discrepancy could give rise to a large margin of error and, ultimately, cost-ineffective decisions.

Furthermore, our study showed that the random selection of non-event samples signi�cantly biased the results. We found the probabilities were 10
times larger than the corrected probabilities and 20 times larger than the probabilities calculated by standard logistic regression. These results
support King and Zeng’s �ndings, which indicated that a second, more important common problem in analyzing rare events lies in how data are
collected [6]. The reduced sample size in our study demonstrated the most bias, supporting the idea that data collection can greatly in�uence
results.

Other techniques such as meta-analysis have been suggested for rare event bias correction. However, meta-analyses of binary data can be
problematic when the proportion of events is low [19, 20]. Meta-analyses of binary data are frequently performed using the standard inverse-
variance �xed-effects model, based on large-sample normal approximation, or �xed-effects methods, based on exact distributional theory such as
the Mantel–Haenszel (MH) or Peto model, or the standard random-effects DerSimonian-Laird (DL) model [20]. These methods, based mostly on
large-sample normal approximation (particularly inverse-variance) [20, 21, 22], lack power to investigate the incidence of rare events. Therefore, their
statistical properties for estimating treatment effects are often judged as suboptimal either through biased results, inappropriately wide con�dence
intervals, or insigni�cant statistical power to detect true differences.

The Cochrane guidelines (Version 6.1, 2020) recommend the use of methods mostly accessible in Review Manager (RevMan), a free-access
software developed by the Nordic Cochrane Centre [20, 22]. Its guideline suggests that, at event rates less than 1%, the Peto odds ratio should be
utilized [20]. In circumstances where event rates are above 1% and meta-analyses involves many studies with imbalanced treatment groups, the MH
odds ratio should be used [20, 23]. However, some of these methods, notably, the MH without continuity correction, logistic regression, and exact
methods, are not available in RevMan. Second, meta-analysts often have to revert from inverse-variance weighting to a random-effects DL model to
reduce bias in estimation when heterogeneity is present.

Most recently, new methods, including maximum likelihood, pro�le likelihood, and restricted maximum likelihood or the nonparametric
“permutations” methods, have been proposed for improved estimation of variance (τ) [20, 24, 25]. The nonparametric bootstrap of the DL estimator
was shown to be a better performer in small meta-analyses that were falsely assumed to be homogenous under the standard DL
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model [20]. Although this nonparametric bootstrap of the DL model has now been extended for both the MH and Peto models, little is known about
the performances of these methods in meta-analyses involving rare events when heterogeneity is an issue.

LIMITATIONS 
This study has several limitations related to the use of administrative data sets and retrospective analysis. Although retrospective studies are an
important tool to study rare diseases, manifestations, and outcomes [26], their design has is subject to limitations. Since the analysis was based on
claims data not originally designed for research, some information is bound to be missing. Selection, recall, and loss of follow-up biases may affect
how representative the data is for the rare event of interest.

Using an administrative database has several strengths, including a large population/base sample size, which provides an established
denominator [27]. The data include patient demographics, clinical characteristics, detailed healthcare use, and cost information, allowing
treatments and outcomes to be identi�ed and compared across populations included in the data [27]. However, some limitations warrant
mentioning. First, like most claims-based data sources, there is a lag between the time when individual receives services and when the �les become
available for research (typically 2-3 years) [27]. Thus, some information may be missed in processing or reimbursement and the data may not be
generalizable to the entire population. Also, the claims to not capture all health data. Therefore, while diagnoses are included, information that may
be found in medical records, such as health-related behaviors, anthropomorphic data, and nonprescription medication use, are not captured in the
claims. Further, claims for which services were recommended but not yet received would not be captured in the data set. Additionally, administrative
claims data do not include information about the decision-making process (e.g., how, why, and by whom the decisions were made; the correlation
between planned and received treatment; and why treatment was altered or discontinued) and patient-reported outcomes [27]. 

Finally, it is important to note that the correction models we applied have not been validated, and further research must be done in different
settings. 

CONCLUSION
Rare events are low-frequency, high-severity problems that can have signi�cant consequences including major stock market crashes, pandemics,
wars, rare diseases, and small counts of recently approved medications. While rare diseases are individually unique, they collectively contribute to
substantial health and social care needs. Additionally, rare diseases present a challenge for clinicians in reaching a conclusive diagnosis and
determining an appropriate course of treatment due to their low prevalence, heterogenicity, and complexity [1, 4, 5]. Predicting and estimating rare-
disease outcomes in a real-world setting can be challenging to researchers and can have signi�cant public health implications.

Therefore, improving statistical techniques to understand rare events is a tremendous analytical challenge that can have major impacts on health
care. In technical terms, the maximum likelihood-based logit model can generate heavily biased parameter estimates and is prone to over�tting rare-
event data even in low-dimensional models. Such issues have forced scientists to get creative and explore unconventional analytic methods. We
have proposed the application of several correction techniques used in public economics to outcomes research studies dealing with rare-event
estimation bias from standard logistic regression or ine�cient data collection techniques.
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