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Abstract
Background

Accurate assessment of axillary lymph nodes (ALNs) is a critical step for timely diagnosis of metastasis
and proper subsequent intervention in breast cancer patients. Herein, we compare the diagnostic utility of
quantitative high-de�nition microvasculature imaging (qHDMI), shear wave elastography (SWE) and their
combination for differentiation of metastatic ALNs from reactive.

Methods

A total of 85 female patients with suspicious ALNs recommended for �ne needle aspiration biopsy
(FNAB) were included in the study, and the pathology results were used as the gold standard for labeling
the status of each ALN. Three SWE metrics and ten qHDMI-derived biomarkers were used in our analyses.
Additionally, age, as well as clinical ultrasound features such as nodal size and cortical thickness were
included as clinical factors. The Wilcoxon rank-sum test was utilized to analyze distributional differences
in biomarkers between metastatic and reactive ALNs. Multiple elastic-net logistic regression models were
developed based on varying combinations of clinical, qHDMI, and SWE feature sets. A 70%/30%
train/test split was adopted, and ROC curve analyses were performed to evaluate and compare
classi�cation performance. Moreover, distributional differences in qHDMI and SWE biomarkers between
ALNs corresponding to breast cancer immunohistochemical subtypes luminal A and B were investigated.

Results

Of the total of 85 ALNs included in the analysis, 42 were metastatic. Statistically signi�cant (p-value <
0.05) differences were observed in all but one of the qHDMI biomarkers, as well as all the SWE metrics.
Test-set discrimination de�ned by area under ROC curve (AUC) was low for the model using only clinical
features (0.62; 95% CI = [0.39,0.84]), with higher performance observed for models using SWE only (0.93;
[0.82,1.00]), qHDMI only (0.97; [0.91,1.00]), qHDMI-SWE (0.97; [0.92,1.00]), and qHDMI-SWE plus clinical
biomarkers (0.98; [0.94,1.00]). No statistically signi�cant improvements were seen in the combined SWE-
qHDMI and SWE-qHDMI-C classi�cation models relative to the qHDMI-only model, although power for
comparison was limited. Four qHDMI biomarkers and two SWE measures exhibited statistically
signi�cant distributions among breast cancer luminal A and B subtypes.

Conclusions

qHDMI classi�cation model was able to separate metastatic from reactive ALNs with high accuracy.
qHDMI, SWE, and the combined models had improved classi�cation performance over the baseline
Clinical model. qHDMI biomarkers can be valuable in determining the malignancy status of suspicious
ALNs, providing helpful information regarding breast cancer prognosis.

INTRODUCTION
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Axillary lymph node (ALN) status has important predictive value for staging and prognosis in breast
cancer patients [1]. Therefore, preoperative and accurate assessment of ALN status is essential for
optimizing treatment strategy in patients with breast cancer. Physical examination of the axilla is
extremely unreliable with limited sensitivity, resulting in about 70% false-negative and 20% false positive
results [2]. Among clinical imaging modalities, digital mammography or digital breast tomosynthesis has
limited value for detecting ALNs [3]. Currently, ultrasound (US) is the �rst-line imaging tool in assessing
ALNs in recently diagnosed breast cancer, with variable sensitivity ranging from 49–87%, while the
speci�city ranges from 55–97% [4, 5]. Cortical thickening is a nonspeci�c ultrasound �nding that can be
seen in both reactive lymphadenopathy and nodal metastasis, leading to considerable numbers of false
positives [6]. Commonly, preoperative classi�cation of ALNs is done through US-guided biopsy, sentinel
lymph node biopsy, and surgical excision that can be associated with complications including infection
or long-lasting problems such as lymphedema [7–10]. A noninvasive alternative approach, therefore, is
needed to accurately classify ALNs. The emergence of shear wave elastography (SWE) as a
complementary tool to conventional ultrasound has relatively increased the sensitivity and speci�city of
ultrasound for breast cancer detection [11–15] and improved the prediction of ALN metastasis and
invasiveness in breast cancer patients [16–18].

In recent years, there has been a growing interest in exploring ultrasound methods that can image
angiogenesis and the formation of new blood vessels. Angiogenesis has an essential role in tumor
growth and metastasis [19–21], and changes in morphological features of tumor microvessels due to
angiogenic activity are positively correlated to histological grade, lymph node status, and disease
prognosis [22, 23]. Thus, such structural changes in the microvessel network are expected to be important
biomarkers in distinguishing metastatic ALN from reactive lymphadenopathy [24]. Evaluating the
vascularity of ALNs by noninvasive techniques could be useful in predicting lymph node metastasis,
especially in the absence of typical sonographic �ndings. Conventional Doppler ultrasound is only
sensitive to fast �ows, revealing patchy images of larger vessels, not structural analysis of tumor
microvessels. The potential utility of superb microvascular imaging (SMI) for identifying metastatic ALN
has been reported. However, the SMI technique is not based on microvessel morphology. Rather, SMI uses
a vascular index, a marker derived from pixel counting [25].

Recently, a novel contrast-free ultrasound-based technique called quantitative high-de�nition
microvasculature imaging (qHDMI) has been developed to visualize submillimeter vessels as small as
150 µm [26]. The qHDMI method uses a series of morphological �ltering and vessel enhancement
techniques, enabling the quanti�cation of tumor vessel morphological parameters as quantitative HDMI
biomarkers [27, 28]. This new technique has been tested for the differentiation of breast lesions [29],
thyroid nodules [30], hepatic masses [31], and prediction of axillary lymph node metastasis [24]. Since
both SWE and qHDMI data can be e�ciently collected during the same ultrasound examination, such
complementary information could be leveraged for clinical bene�t.

Here we compare the performance of quantitative morphological parameters of tumor microvessels, as
qHDMI biomarkers, with quantitative metrics of SWE and the combined of these two techniques. We
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hypothesized that the quantitative HDMI biomarkers are independent of the elasticity parameters, and
their information would complement each other for the prediction of ALN metastasis. The aim of this
current study is to leverage the combined information from SWE, HDMI, and clinical parameters for the
improvement of ultrasound-based diagnoses of lymph node metastasis. Toward this end, we develop a
set of penalized logistic regression models that use combinations of SWE, qHDMI, and clinical
parameters as predictors for biopsy-determined lymph node metastasis.

MATERIALS and METHODS

Ethics approval
This prospective study, from June 2018 to June 2023, received the institutional review board approval
(IRB#13-006035 and IRB # 19-003028) and was Health Insurance Portability and Accountability Act
compliant. A signed written informed consent was obtained from all participants prior to the study.

Study population
The imaging study was completed on a total of 85 women ages 18 years or older who had suspicious
axillary lymph nodes identi�ed in clinical ultrasound imaging and recommended for US-guided ALN �ne
needle aspiration biopsy (FNAB) as part of their clinical care plan. Patients did not receive any treatment
before the study, and the pathology results of the FNAB were used as a reference gold standard. All
quantitative HDMI and SWE studies were conducted prior to FNAB.

SWE
The ultrasound examinations were conducted by two sonographers with more than 35/14 and 17/12
years of US/SWE scanning experience, A GE LOGIQ E9 (LE9) clinical ultrasound machine equipped with
SWE capability and a 9L-D linear array transducer (GE Healthcare, Wauwatosa, WI) was used for
scanning. SWE imaging was conducted in penetration mode, allowing for deeper tissue assessment.
During each acquisition, the patient was asked to hold breathing for 3 seconds to prevent motion
artifacts. Sonographers were instructed to keep away from hand motion and apply minimal compression
with the transducer to prevent pre-compression effect. At least six images were captured within a
rectangular-shaped �eld of view for each lesion. Each SWE image was captured by default with a
corresponding B-mode image. Three images with the fewest artifacts were selected for further
processing. Using the 2D dual circle tool from the scanner, the selected region of interest (ROI) appears
simultaneously on the B-mode image and the shear wave map. Up to three circular non-overlapping ROIs,
3 mm in diameter, were randomly placed on the enlarged cortex, depending on the size of the area. The
mean values of the maximum, mean, and standard deviation (SD) of the shear wave velocity were
calculated by the machine and converted to elasticity values in kilopascal in this study [17]. In addition to
the previously mentioned metrics, we also calculated a new SWE parameter, the mass characteristic
frequency (fmass), and included it into our analysis as described in [32, 33]. In total, three SWE metrics,
namely mean elasticity (Emean), maximum elasticity (Emax), and fmass, were included in our analysis.
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HDMI
The study utilized an ALPINION E-CUBE 12R ultrasound machine (ALPINION Medical Systems, Seoul,
South Korea) with the capability of plane wave imaging offering a sequence of high-frame-rate images
and equipped with a linear array transducer L3-12H, operating at a frequency of 8.5 MHz. The same
sonographers who did the SWE conducted ultrasound scanning for HDMI imaging. To identify the lymph
nodes, we used conventional line-by-line B-mode ultrasound imaging. Subsequently, a sequence of high-
frame-rate data (~ 600 frames per second) was acquired at the site of the lesion, with a total duration of
3 seconds. The acquired raw data underwent processing using the HDMI method, as described in
previous studies [26, 34–36]. Our sonographers were instructed to use less preload during ultrasound
examination to reduce unwanted compression on tissue microvessels. During data collection, patients
were asked to remain still and hold their breath for around 3 seconds to reduce motion artifacts. For each
orientation of the HDMI scanning, two acquisitions were made to improve repeatability. HDMI image
processing has been done as reported in [29]. The nodes were manually segmented using B-mode images
obtained from the IQ data reconstruction, and binary and skeleton images were generated to quantify
morphological parameters of tumor microvessels as qHDMI biomarkers [27, 28]. These biomarkers
include number of vessel segments (NV), number of branch points (NB), vessel density (VD), vessel
diameter (D), distance metric as a measure of tortuosity (τ) [27], microvessel fractal dimension (FD),
Murray's deviation (MD) and bifurcation angle (BA) [28]. A total of 10 HDMI biomarkers, namely NV, NB,
VD, Dmax, Dmean, τmax, τmean, FD, MDmax, and BAmax, were included in our analysis.

Clinical ultrasound features and immunohistochemical
parameters
All enrolled patients had a clinical breast and axillary lymph node imaging examination performed as part
of their clinical care, and the ultrasound morphological features of lymph nodes were assessed. Among
the ultrasound features of lymph nodes, cortical thickness and maximum diameter size of the lymph
nodes were considered in the analysis as clinical imaging �ndings.

Furthermore, histologic subtype, histologic grade, estrogen receptor (ER), progesterone receptor (PR),
human epidermal growth factor receptor (HER2) status, and the Ki-67 proliferative index were extracted
from the breast biopsy and immunohistochemical reports and included in the �nal analysis.

Statistical analysis methods
The Wilcoxon rank-sum test was used to evaluate the statistical signi�cance of the distributional
differences observed in values of interest. Using the R package glmnet, elastic-net logistic regression was
employed to train multivariable prediction models for lesion malignancy status. Five different models
were trained and evaluated in this study. The SWE model trained on the SWE metrics, the qHDMI model
trained on the qHDMI biomarkers, the qHDMI-SWE model trained on both qHDMI and SWE biomarkers,
the qHDMI-SWE-C model trained on the quantitative biomarkers of HDMI and SWE, as well as three
clinical features (age, maximum diameter of ALN, and ALN cortical thickness), and the Clinical model
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which was trained solely on the three clinical features. The training process involved randomly selecting
70% of lesions, while the remaining 30% were reserved for model validation. Tenfold cross-validation
within the training set was utilized for penalty parameter tuning, with a �xed alpha value of 0.05. Model
output probabilities were then used for assessing discrimination performance in the leave-out test set via
receiving operator characteristic (ROC) curves. In addition to estimating the area under the ROC curve
(AUC), we evaluated the classi�cation performance based on the Youden Index. The Youden Index, also
known as the J statistic, is a common approach for determining the optimal threshold that balances
sensitivity and speci�city in binary classi�cation tasks. It is calculated as the maximum value of
sensitivity + speci�city − 1 across all possible threshold values on the ROC curve [37]. Utilizing the Youden
Index, we identi�ed the optimal cutoff point on the ROC curve, which maximized the overall classi�cation
accuracy for the prediction models. This allowed us to assess the sensitivity and speci�city of the models
at the selected threshold, providing valuable insights into their discriminative ability for lesion malignancy
status. For each individual predictive model, we evaluated its performance on the test set by estimating
various measures, including the AUC accompanied by its corresponding 95% con�dence interval (CI),
speci�city, and sensitivity. To compare the performance of different models, we conducted pair-wise
comparisons based on the AUC using DeLong's test for paired data. Hypothesis testing was performed
with a two-sided alternative whenever appropriate, and the signi�cance level was set at α = 0.05,
indicating a 5% probability of a Type I error. All reported p-values are unadjusted for multiple testing, and
all statistical analyses were performed using RStudio (R version 4.2.3; R Core Team, Vienna, Austria).

RESULTS
A total of 85 female patients (mean age, 57 years ± 13) with 85 suspicious ALNs were included in the
analysis. The histopathology results of FNAB con�rmed of 42 metastatic and 43 reactive lymph nodes.
Patients’ ages ranged from 28 to 88 years (mean±standard deviation: 56±13) in the metastatic group,
and 28 to 79 years (mean±standard deviation: 58±14) in the reactive group. The size of the lymph nodes
ranged from 5.5 mm to 30.5 mm for the metastatic group and 6 mm to 30.4 mm for the reactive group.
Cortical thickness ranged from 2.5 mm to 25 mm in the metastatic group and 1.4 mm to 10.6 mm in the
reactive group. 

Of the 85 patients included in the study, 82 had breast cancer as the primary malignancy. Among the
remaining three patients, one patient with metastatic lymph node had chronic lymphocytic leukemia, and
in two reactive ALN patients, no cancer was detected. Table 1 provides a summary of the clinical
characteristics of the participants, along with the corresponding qHDMI, biomarkers, SWE metrics, and
their respective p-values.   

Table 1 Patients’ age, node characteristics, and summary of SWE and HDMI quantitative parameters.
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 Reactive(a)

N=42

Metastatic(a)

N=43

P-value(b)

Clinical    

      Age 58 ± 14 56 ± 13 0.40

      Node size(mm) 14 ± 5.70 17 ± 6.50            0.01

      Cortical thickness(mm) 4.10 ± 1.70 7.30 ± 4.10        <0.0001

qHDMI biomarkers    

       τmean 1.00 ± 0.03        1 ± 0.02           0.002

       τmax 1.10 ± 0.16    1.20 ± 0.18         <0.0001

       NV   5.80 ± 7         16 ± 15       <0.0001

       NB 2.60 ± 3.70 8.00 ± 9.60          0.0004

       VD 0.03 ± 0.03 0.05 ± 0.04            0.01

       FD 1.00 ± 0.28 1.20 ± 0.29          0.0003

       Dmax 630 ± 188    795 ± 168          0.0001

       Dmean 425 ± 125     445 ± 72             0.2

       MDmax 0.26 ± 0.33     0.50 ± 0.30           0.001

       BAmax 56 ± 64            96 ± 59           0.007

SWE metrics    

       Emean 17 ± 10 44 ± 23    <0.0001

       Emax 42 ± 28 116 ± 48  <0.0001

       fmass 175 ± 81  241 ± 126           0.007

(a) Values are presented as mean ± standard deviation, (b) P-values in bold indicate statistical
signi�cance (values less 0.05) 

The visual representation of the HDMI and SWE images and their corresponding B-mode ultrasound of a
metastatic and a reactive ALN, along with the values of respective qHDMI biomarkers and SWE metrics,
are displayed in Fig. 1. Fig. 1 (top row) shows the HDMI and SWE images of a metastatic lymph node
from a woman in her 60s with grade II invasive lobular carcinoma. B-mode ultrasound image shows a
large lymph node, 30 mm in largest dimension with a cortical thickness of 12.2 mm. Fig. 1 (bottom row)
shows the HDMI and SWE images of a reactive lymph node in a woman in her 60s with grade 3 invasive
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ductal carcinoma with the corresponding qHDMI biomarkers and SWE metrics. The ultrasound features
include a node size of 11.5 mm in the largest dimension with a cortical thickness of 4 mm. The
hypervascularity and morphological vessel irregularity, along with the associated qHDMI biomarkers and
SWE metrics, suggest this ALN is metastatic.  

The distributions of all the 10 qHDMI and three SWE metrics for the metastatic and reactive ALNs are
depicted in Fig. 3. SWE values (Emean, Emax, fmass) were notably higher in the metastatic group.
Furthermore, qHDMI biomarkers, including FD, NB, NV, VD, Dmax, τmax, τmean, MDmax, and BAmax, were
signi�cantly higher in the metastatic nodes. 

Fig.2 illustrates the Spearmean correlation coe�cient between the signi�cant SWE and qHDMI measures.
All coe�cients fall below 0.40 indicating low correlation among biomarkers of these two different
methods.

Classi�cation models 

In our study, �ve distinct models (SWE, qHDMI, qHDMI-SWE, qHDMI-SWE-C, and Clinical) were trained and
employed to classify malignant and benign ALNs, yielding the following outcomes: The SWE model
demonstrated a sensitivity of 0.93, and a speci�city of 0.91 with an AUC of 0.93. The qHDMI model,
trained on the signi�cant qHDMI parameters (NV, NB, VD, Dmax, τmean, τmax, BAmax, MDmax, and FD),
exhibited a sensitivity of 0.87, a speci�city of 1.00, and an AUC of 0.97. The sensitivity and speci�city of
the qHDMI-SWE model were found to be 0.93 and 1.00, respectively, with an AUC of 0.97. The qHDMI-
SWE-C model integrated qHDMI, SWE, and clinical parameters. This model displayed a sensitivity of 0.87,
a speci�city of 1.00, and an AUC of 0.98. Finally, the Clinical model, trained only on age, maximum
diameter of ALN, and ALN cortical thickness, achieved a sensitivity of 40% and a speci�city of 91%, with
an AUC of 0.62. Fig. 4 demonstrates all models’ ROC curves, and the table beneath the plots contains
performance metrics of the models. 

Table 2 shows the pair-wise AUC comparisons between the �ve developed models using the p-values
obtained from the DeLong’s test. The results indicate that compared to the baseline Clinical model, all the
models exhibit improved classi�cation performance. On the other hand, even though the qHDMI model
had higher AUC than the SWE model (0.97 compared to 0.93), and the addition of clinical features to the
combination of SWE and qHDMI biomarkers led to a slight increase in the AUC (up to 0.98), these
improvements were not statistically signi�cant. 

Table 2:  P-values of AUC pair-wise comparisons using DeLong test.
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Model (AUC) Clinical
(0.62)

SWE
(0.93)

qHDMI
(0.97)

qHDMI-SWE
(0.97)

qHDMI-SWE-C
(0.98)

Clinical (0.62) 1.0000 0.0100 0.0011 0.0017 0.0007

SWE (0.93) 0.0100 1.0000 0.5780 0.2044 0.3110

qHDMI (0.97) 0.0011 0.5780 1.0000 0.8754 0.6619

qHDMI-SWE
(0.97)

0.0017 0.2044 0.8754 1.0000 0.7314

qHDMI-SWE-C
(0.98)

0.0007 0.3110 0.6619 0.7314 1.0000

P-values in bold indicate statistical signi�cance (values less 0.05) 

The visual representation and quantitative measures of the qHDMI and SWE images for a metastatic and
a reactive ALN with false negative and false positive SWE outcomes are displayed in Fig. 5. The qHDMI
and SWE images of a metastatic lymph node from a woman in her 60s with grade II invasive ductal
carcinoma are shown in Fig. 5, top row. B-mode ultrasound image of this node shows a lymph node of
5.5 mm in largest dimension with a cortical thickness of 3.6 mm. While visual presentation and
quantitative biomarkers of qHDMI suggest this ALN as metastatic, the SWE map and estimates
incorrectly favored this ALN as reactive. Furthermore, the HDMI images and quantitative biomarkers of a
reactive lymph node with a size of 10 mm in largest dimension and with a cortical thickness of 4.1 mm,
from a woman in her 50s with grade II invasive ductal carcinoma suggest a reactive ALN, but the SWE
map estimating high stiffness falsely suggests a metastatic ALN (Fig. 5, bottom row).  

Breast cancer subtypes

In this study, we also conducted an analysis to investigate associations between breast cancer
immunohistochemical subtypes luminal A and B and qHDMI and SWE biomarkers of ALNs. Speci�cally,
we investigated distributional differences of the qHDMI and SWE biomarkers between ALNs with these
two subtypes as the primary cancer. Among our 81 breast cancer patients, we could gather
immunohistochemical data from 67 patients. 21 patients were Luminal A, 41 were Luminal B, 2 were
HER2+, and three were triple-negative (TNBC). Since luminal A and B comprised most of the sample, we
did the analysis only for the comparison of the luminal A and B groups.

Fig. 6 offers an overview of the set of biomarkers that displayed statistically signi�cant distributional
differences for the two different luminal subtypes, identi�ed using the Wilcoxon rank-sum test. The more
aggressive luminal subtype B corresponded to higher elasticity values (Emax and Emean) and qHDMI
biomarkers (NV, MDmax, τmax, and FD). 

DISCUSSION
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In this study, we compared the effectiveness of two ultrasound methodologies, quantitative HDMI and
SWE, as well as combining the quantitative parameters of these two imaging tools in differentiating
metastatic and reactive ALNs. Additionally, we sought the effect of adding clinical factors to the
combined model. The results of this study showed that qHDMI prediction model biomarkers can
determine the status of ALNs with high accuracy, AUC of 0.97 and accuracy of 0.92. SWE prediction
model as well as combining qHDMI biomarkers with those of SWE parameters did not exhibit statistically
signi�cant differences in terms of the accuracy in differentiating metastatic and reactive ALNs. Therefore,
our �ndings underscore the potential effectiveness of qHDMI biomarkers in determining the status of
suspicious ALNs, which is in agreement with the results of the previous study [24]. On the other end of the
spectrum, the Clinical predictive model demonstrated an AUC of 0.62, which was much lower than the
performance achieved by other individual predictive models, qHDMI and SWE, developed in this study. As
shown in Fig. 2, there are very low correlation between the SWE and qHDMI measures indicating that
these two sets of parameters are independent from each other.

In another study, the authors used the two independent quantitative parameters, SWE estimating tumor
stiffness and qHDMI biomarkers quantifying tumor angiogenesis for the differentiation of benign and
malignant breast lesions. However, unlike the �ndings of the present study on predicting metastasis, the
authors demonstrated a signi�cant improvement of using combined qHDMI-SWE over the individual SWE
or qHDMI models for the differentiation of benign and malignant breast lesions [38].

Previous studies have reported SWE estimation to be helpful in distinguishing between reactive and
metastatic axillary lymph nodes with various accuracies [16, 39, 40]. Similar to the current study, Gregory
et al. demonstrated high sensitivity and speci�city for differentiation of reactive and metastatic ALNs
using quantitative SWE [17].

The potential of qHDMI biomarkers in differentiating metastatic and reactive axillary lymph nodes was
previously investigated, and the predictive models trained on HDMI biomarkers were shown to be capable
of ALN characterization with high accuracy, highlighting the utility of qHDMI-based biomarkers [24].
Superb microvascular imaging (SMI) and power Doppler US have been used to differentiate metastatic
from reactive ALNs; however, the quantitative analysis was limited to counting vascular branches [25].
Moreover, another study found a better diagnostic performance of SMI compared to SWE in
differentiating metastatic ALN from lymphadenitis [41]. However, quantitative analysis for SMI in this
study was limited to the vascularity index, while in our study, a number of quantitative HDMI biomarkers
based on morphological features of microvessels are used for classi�cation.

Signi�cant associations were identi�ed between breast cancer subtypes Luminal A and B and the
evaluated parameters, including elasticity parameters (Emax and Emean) and qHDMI biomarkers (NV,
MDmax, τmax, and FD). Consistent with our study, Gu et al. demonstrated a relationship between higher
Emax and Emean values with poor prognosis [32].
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This study has some limitations. First, it was a single-center study with a limited number of participants.
Future direction involves conducting the study on a larger population of breast cancer patients to
increase precision in model performance estimation and pair-wise comparisons. Moreover, our study
primarily relied on 2D microvasculature imaging. The implementation of our newly developed 3D qHDMI
[42] and ongoing research would be helpful in overcoming this limitation. Furthermore, a future
multicenter comprehensive study will determine the capability of the ultrasound-based quantitative
microvessel imaging for the characterization of ALNs in large numbers of diverse patients with all
challenging situations, as well as breast cancer patients with ALN metastasis who undergo neoadjuvant
therapy.

Conclusion
In summary, our study compares the effectiveness of quantitative biomarkers of qHDMI, SWE estimates
and combining the two, SWE and qHDMI for improved characterization of axillary lymph nodes. The
results conclude that HDMI-prediction model was able to separate metastatic from reactive ALNs with
high accuracy. Compared to a baseline Clinical model, models trained on qHDMI, SWE, and the combined
models showed enhanced classi�cation accuracy. The qHDMI biomarkers can be valuable in determining
the status of suspicious ALNs, providing helpful information regarding breast cancer prognosis.
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Figure 1

B-mode images (a, e), HDMI images (b, f), and SWE B-mode and elasticity maps (c, g and d, h) of a
metastatic (top) and a reactive (bottom) ALNs. In B-mode and HDMI images, white dashed lines indicate
the boundaries of the lymph node, and green dashed lines depict these boundaries after a 2 mm dilation.
Selected qHDMI biomarkers and SWE metrics are presented to the right of the corresponding images.

Figure 2

Spearman correlation coe�cient plot between SWE and qHDMI biomarkers
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Figure 3

Box plots of quantitative HDMI and SWE biomarkers for the metastatic (cyan) and reactive (magenta)
lymph nodes.
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Figure 4

ROC curves for all the models and the table containing performance metrics of the models. FP (False
positive), FN (False negative), TP (True positive), TN (True Negative).
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Figure 5

B-mode images (a, e), HDMI images (b, f), and SWE B-mode and elasticity maps (c, g and d, h) of a
metastatic (top) and a reactive (bottom) ALNs. In B-mode and HDMI images, white dashed lines indicate
the boundaries of the node, and green dashed lines depict these boundaries after a 2 mm dilation.
Selected qHDMI biomarkers and SWE metrics are presented to the right of the corresponding images.
Figures at the top and bottom present cases where the SWE model (in contrast to the qHDMI model) had
a false negative and a false positive, respectively.
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Figure 6

Box plots of qHDMI and SWE biomarkers exhibiting signi�cant distributional differences between ALNs
with luminal A (cyan) and luminal B (magenta) breast cancer subtypes as the primary malignancy. The
table shows the mean±standard deviation of the biomarker values for the two groups and their
corresponding Wilcoxon rank-sum test p-values.


