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Abstract
BACKGROUND:  Diabetes mellitus (DM) exhibits a higher sensitivity to myocardial
ischemia/reperfusion(I/R)injury and may compromise the effectiveness of cardioprotective interventions,
including ischemic preconditioning. We previously found that liver ischemic preconditioning(RLIPC) could
limit infarct size post I/R in normal rat hearts and further exerted anti-arrhythmic effects in diabetic or
non-diabetic rats after myocardial I/R, however, little is known regarding the effect of RLIPC on infarct-
sparing in diabetic hearts. In this study, we evaluated the protective effects of RLIPC on I/R injury in
streptozotocin (STZ)-induced type 1 diabetic rats.

METHODS:Type 1 diabetes mellitus was induced by one-time intraperitoneal injection of streptozotocin in
Sprague–Dawley rats. Rats were exposed to 45 min of left anterior descendin(LAD) coronary artery
occlusion, followed by 3 h of reperfusion. For liver ischemic preconditioning, four cycles of 5 min of liver
I/R stimuli were performed before LAD occlusion. the cardioprotective effect of RLIPC was determined in
diabetic rats.

RESULTS: Compared to non-RLIPC treated DM rats, RLIPC treatment significantly reduced infarct size in
diabetic hearts post I/R. RLIPC also improved cardiac functions including LVESP, LVEDP, dp/dtmax, and -
dp/dtmax. In addition, RLIPC could largely preserved cardiac morphology by reducing the pathological
score post I/R in diabetic hearts. Finally, western blotting analysis showed that RLIPC stimulated
phosphorylation of ventricular GSK-3β and STAT-5, which are key components of RISK and SAFE
signaling pathways. 

Background
Cardiovascular disease is the most predominant cause of morbidity and mortality in patients with
diabetes mellitus (DM). Abundant evidence has clearly demonstrated that patients with type 1 or type
2 diabetes are at high risk for ischemic heart disease and the mortality rate of acute myocardial infarction
is dramatically increased in diabetic patients versus non-diabetic patients[1]. Myocardial ischemia
reperfusion(I/R) injury is a significant complication of reperfusion therapy for myocardial infarction.
Clinical and epidemiological studies indicate that diabetic hearts are more prone to I/R injury[2], that is,
diabetes is associated with larger infarcts and worse outcomes. Therefore, new strategies to limit
infarction in clinical settings is of great importance.

Ischemic preconditioning, which is induced by episodes of controlled ischemia-reperfusion, was first
demonstrated to have protective effect on myocardium against I/R injury in dog[3]. Later, it was shown
that this type of myocardial protection against I/R injury can be induced by imposing episodes of
controlled ischemia-reperfusion in other remote organs, i.e. remote ischemic preconditioning[4]. For
example, limb[5] or liver ischemic stimuli [6], applied prior to coronary artery occlusion, was demonstrated
to be associated with reduced infarct size. A number of randomized clinical trials were also conducted
and showed the beneficial effect of remote ischemia preconditioning [7, 8]. However, despite the
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overwhelming data indicating the effectiveness of preconditioning-induced cardioprotection, there is
concern that the infarct-sparing effect of ischemic conditioning may be abolished or compromised in the
diabetic heart[9]. Interestingly, we found that brief ischemic preconditioning of liver reduced the
occurrences of myocardial I/R-provoked ventricular arrhythmia in diabetic heart[10]. However, whether
this remote liver ischemic preconditioning (RLIPC) could protect diabetic hearts against infarction is
incompletely understood.

The exact mechanism underlying the cardioprotective effect of remote ischemic conditioning is unclear.
Activation of reperfusion injury salvage kinase (RISK) pathway, or the survivor activating factor
enhancement (SAFE)pathways can be involved in ischemic preconditioning and postconditioning[11, 12].
We previously reported that RLIPC activated RISK pathway post I/R, specifically, increased ERK1/2[10],
AKT[13], and GSK-3β[6] protein phosphorylation. Meanwhile, the inhibition of STAT3, the vital signal
molecule in SAFE pathway, abolished the protective action of liver preconditioning[12]. However, whether
RLIPC may alter RISK and SAFE pathway in diabetic hearts is unknown.

Therefore, using a left anterior descending coronary artery (LAD) occlusion-induced myocardial I/R rat
model, we evaluated the therapeutic efficacy of liver ischemic preconditioning in acute streptozotocin-
induced diabetic hearts and reported an underlying possible molecular mechanism for its protective
effect.

Methods
Animals

The protocols of animal experiments were approved by the Institutional Animal Care and Use Committee
of Sichuan University (2015035A). Male rats (Sprague Dawley, 200-250 g body weight, 8 weeks old)were
purchased from Dashuo Experimental Animal Research Center (Chengdu, China). The rats were housed in
specific-pathogen free environment with a circadian rhythm of 12 h light/12 h darkness and free access
to food and water.

Rat model of type 1 diabetes

Rats received one-time intraperitoneal injection of streptozotocin (STZ, 50 mg/kg) (STZ,Sigma Chemical
Co.,St. Louis, MO, USA)to developtype 1 diabetes[14]. STZ was dissolved in 0.1M citrate buffer (pH 4.5).
One Touch Ultra Glucose meter was used to measured blood glucose 7 days following STZ
injection(Roche, USA). Diabetic rats were defined as rats with glucose levels equal to or more than 20
mmol/L. Rats that did not meet the criteria were excluded.

Experimental Protocol

The experimental protocols were delineated in Figure 1. Rats were randomly assigned as follows:(1)
sham group(sham) without diabetes: hepatic portal and left coronary artery were isolated with suture
placed underneath but not tightened; (2) control group without diabetes(CON): rats were subjected to left
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anterior descending coronary artery (LAD) occlusion. No hepatic intervention was implemented. (3) CON
with RLIPC: rats were subjected to LAD occlusionwith pretreatment of hepatic ischemia; (4) sham group
with diabetes(DM-sham), hepatic portal artery and LAD were isolated with suture placed underneath but
not tightened in diabetic rats; (5) control group with diabetes(DM-CON): diabetic rats had LAD occlusion.
No hepatic intervention was implemented; (6) DM-CON with remote liver ischemic preconditioning
treatment group (DM-RLIPC):diabetic rats had LAD occlusionwith pretreatment of hepatic ischemia. In a
parallel study(experiment 2),blood samples were obtained at the end of the experiment for the test of
serum levels of aspartate aminotransferase(AST) and alanine aminotransferase(ALT)to rule out the
possibility that liver stimuli might affect liver function.

Surgical procedure

Rats were anesthetized with sodium pentobarbital (50 mg/kg, intraperitoneal). Anesthesia was monitored
bythe loss of the corneal reflex Ligation of LAD was performed as previously reported[6, 15]. In brief, after
the rat was anesthetized, it wasventilated with a rodent ventilator throughout the experiment (Taimeng,
Chengdu, China). After thoracotomy, LAD was exposed and the 6-0 silk wasplaced under LAD(Ethicon,
Somerville, NJ, USA). LAD was occluded for 45 min followed by 180min of reperfusion. Exhibition of
epicardial cyanosis and dyskinesia in the heart was observed as evidence of successful occlusion of
LAD. Upon reperfusion, epicardial hyperemic responsewas seen in LAD region of the heart.Hemodynamic
parameters were recorded during the entire experiment (Taimeng, Chengdu, China). Remote liver ischemic
preconditioning was done by four cycles of clamping hepatic artery, portal vein and venous trunk for 5
min followed by 5 min reperfusion. At the end of the reperfusion, the rats were euthanized with an
overdose of sodium pentobarbital (200 mg/kg,i.p.).LAD was then untied and left ventricle(LV) was filled
with 1% Evans blue (Sigma Chemical Co.,St. Louis, MO, USA) to showthe ischemic area at risk (AAR).
Tissue samples in the AAR were then taken and stored in -80°C freezer for later protein phosphorylation
analysis.

Hemodynamic analyses

After stabilization, a 20-G catheter (Spacelabs Medical, Inc., Redmond, WA, USA) was inserted into the LV
via the right carotid artery. The catheter was then connected to a pressure transducer (Biolap 420F,
Taimeng, Chengdu, China) for hemodynamic measurements such as left ventricular end diastolic
pressure (LVEDP), left ventricular systolic pressure (LVSP), and maximum rate of increase/decrease in
left ventricular pressure (±dP/dtmax).

Serum tests

Blood samples were taken at the end of the experiment and the serum was obtained by centrifugation
(1000 g, 10 min, 4°C). The serum was then frozen at -20°C until further analysis. Levels of AST and ALT
were measured by an automatic BS-120 biochemical analyzer (Mindray, Shenzhen, China).

Determination of myocardial infarct size
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Hearts were briefly frozen and then cut into transverse slices (2 mm thick) and myocardial infarct size
was determined by triphenyltertrazolium chloride (TTC) staining. The heart slices were incubated with 1%
TTC (Sigma Chemical Co.,St. Louis, MO, USA) in 0.1 M phosphate buffer (pH 7.4) for 20 min at 37°C.
Tissues were then fixed in 10% formalin at room temperature overnight. Infarcted myocardial tissues
within AAR were unstained(white) and non-infarcted areas were stained red. They were carefully
separated and weighed. Infarct size was presented as a percentage of the AAR.

Heart tissue collection

At the end of the experiment, AAR regions were identified and were immersed in 10% formaldehyde
solution, followed bydehydration in a separated group of hearts. These hearts were embedded in paraffin
and sliced into 5μm thick consecutive sections parallel to the atrioventricular groove. Heart sections were
mounted on glass slides prior to being stained with hematoxylin and eosin (H&E).

Pathological Evaluation

Myocardial pathological scores were determined based on a modified numerical scoring
system[15]according to: (1) the severity of myocardial damage (i.e. myofibril degeneration, oedema, or
subendocardial haemorrhage) with0indicating normal, 1 mild, 2 moderate and3 significant; (2) the
distribution of myocardial damage with 0 indicating normal, 1 focal, 2 multifocal and 3 diffuse. A mean
score was calculated for each heart in a double-blinded manner.

Western blotting

Heart tissue samples were homogenized in lysis buffer consisting of 150 mMNaCl, 50 mMTris-
HCl(pH7.4), 0.25% sodium deoxycholate,1% NP-40, 1 mM EDTA, and phosphatase and protease inhibitor
cocktails (Sigma Chemical Co.,St. Louis, MO, USA). The homogenates were then centrifuged at 4°C for 10
minutes at 10,000x g. Protein concentration was determined using BCA assay kit (Pierce, Rockford, IL,
USA). Sample were separated on 12% SDS-PAGE gel (15μg/well). The protein bands were then
transferred onto nitrocellulose membranes (VWR, Batavia, IL, USA). The membranes were then blocked
for 1h and incubated at 4°C overnight with the following primary antibodies: phosphorylated extracellular
signal-regulated kinase1/2 (ERK1/2) (Thr202/Tyr204), total ERK1/2, phosphorylated glycogen synthase
kinase-3β(Ser9) (p-GSK-3β Ser9), total -GSK-3β Ser9, phospho-Akt (Ser473, p-Akt), total Akt,
phosphorylated STAT3(Tyr705) (p-STAT3),and total STAT3, phosphorylated STAT5(Tyr694) (p-
STAT5),and total STAT5 (all: rabbit, 1:1000, from Cell Signaling Technology, Danvers, MA, USA).We used
horseradish peroxidase (HRP)-conjugated goat anti-rabbit IgG as secondary antibody and target bands
were detected using a chemoiluminescence ECL (Millipore, Billerica, MA, USA) and were visualized using
Amersham Imager 600 (GE healthcare, Little Chalfont, UK). The images were then analyzed with ImageJ
Data Acquisition Software (National Institutes of Health, Bethesda, MD, USA).

Statistical Analysis
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All data were presented as mean ± standard error of the mean (SEM). Statistical analyses were performed
using SPSS 13.0 software for Windows (SPSS Inc., Chicago, IL, USA)or Graphpad Prism 5 software
(GraphPad Software, Inc. La Jolla, CA, USA). Two-way repeated-measures ANOVA was used to analyze
hemodynamics data. One-way ANOVA followed by Newman-Keuls test was used for multiple group
comparison. Statistical significance was set as P < 0.05 (two-tailed)

Results
Confirmed phenotype of DM rats

Our experimental protocol successfully induced diabetes (DM) in the rats by single intraperitoneal
administering of STZ. After 7 days, DM rats showed a 30% decrease in body weight (all p<0.001, Figure
2A) and hyperglycemia with doubled or tripled blood glucose level (all p<0.001, Figure 2B) when
compared to rats without STZ injection in sham, CON and RLIPC group.

Remote liver ischemic preconditioning reduces myocardial infarct size

We first investigated if RLIPC caused liver injury by measuring serum levels of AST and ALT. We found
that there was no significant difference in serum levels of AST (Figure 3A) and ALT (Figure 3B) between
RLIPC and non-RLIPC, control rats(all p > 0.05). This result suggested that RLIPC did not cause liver
injury. Infarct size of diabetic rats increased approximately 24% when compared with normal ratsafter
myocardial I/Ras a result of LAD occlusion and re-opening (61.74%±1.82%vs. 49.58%±2.78%, p<0.001)
(Figure 4B). This suggests that diabetic state aggravates theI/R injury caused by LAD ligation.
Interestingly, we found that RLIPC resulted in a 20% reduction of cardiac infarct size when compared to
non-RLIPC group in both normal (39.91%±1.66% in RLIPC vs. 49.58%±2.78% in CON, p<0.01) and DM rats
(50.70%±1.59% in DM-RLIPC vs. 61.74%±1.82% in DM-CON, p<0.01) (Figure 4A, B), suggesting RLIPC
effectively limited the infarct size in diabetic or non-diabetic rats. Meanwhile, we did not see any
difference in the ratio of the AAR to the LV among groups, indicating similar areas affected by LAD
ligation (Figure 4B, p>0.05). We also evaluated the cardiac injury using the pathological scoring system.
Consistent with TTC staining results, RLIPC significantly reduced pathological score when compared to
non-RLIPC control group in both normal rats and DM rats (Figure 5).

Hemodynamic measurements

The time course of hemodynamics was shown in Table 1. Systemic hemodynamics were comparable
among each group under baseline conditions (p>0.05). LVSP (p=0.002), dP/dtmax (p=0.001), LVEDP
(p=0.003) and -dP/dtmax (p=0.001) were significantly different among CON, RLIPC, DM-CON and DM-
RLIPC group during the 3h of reperfusion. There were significant interactions between groups and the
time course for LVSP (p=0.011), dP/dtmax (p=0.028), LVEDP (p=0.003) and -dP/dtmax (p=0.001).Recovery
of cardiac function was significantly better in RLIPC group in both normal and DM rats when compared
to CON group in terms of the above-mentioned parameters (p<0.01 for all).
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RISK and SAFE pathway protein phosphorylation

ERK phosphorylation is reported to be associated with cardiac pathophysiological process like
myocardial infarction. We found that LAD ligation significantly increased ERK1/2 phosphorylation by 3-4
folds in both normal (p<0.001) and DM rats (p<0.001) (Figure 6A). However, RLIPC did not alter the
pattern of increased ERK phosphorylation caused by LAD ligation in both normal and DM rats (Figure
6A). This suggested that ERK phosphorylation was not associated with RLIPC-induced cardioprotection
in diabetic hearts. We previously found GSK-3β phosphorylation was associated with cardiac protection
offered byliver ischemic conditioning[6]. As expected, we again showed that RLIPC significantly increased
GSK-3βphosphorylation by 2-3 folds when compared to CON rats (p<0.001), and the same effect was
also observed in DM rats (p<0.001) (Figure 6B). This suggested increased GSK phosphorylation caused
by RLIPC was not affected by diabetic state. AKT signaling pathway was reported to be associated with
cardiac injury caused by myocardial infarction. Consistently, we also found that AKT phosphorylation
increased by 50% in the CON when compared to sham ones (p< 0.05). However, RLIPC could not further
increase the phosphorylation levels of AKT in both normal and DM rats when compared with their
corresponding non-RLIPC controls(Figure 6C).

The signal transducers and activators of transcription (STAT) functions as regulators of cellular stress.
We next investigated if STAT signaling was involved in the cardiac protection from RLIPC. We found that
STAT3 phosphorylation was significantly increased by 6-7 folds in the CON and DM-CON groups
compared to sham (p<0.001) and DM-sham (p<0.001) groups, respectively. RLIPC did not alter the
expression pattern of STAT3phosphorylation induced by LAD ligation (Figure 6D), suggesting STAT3
signaling pathway is not associated with RLIPC-induced cardioprotection. Surprisingly, althoughSTAT5
phosphorylation was similar between rats with LAD ligation and sham surgery, we found that RLIPC
increased STAT5 phosphorylation by 2 folds compared to non-LAD ligation rats in both normal (p<0.001)
and DM rats (p<0.001), indicating that STAT5 signaling plays a role in the cardioprotective effect of
RLIPC in both non-diabetic and diabetic rat hearts (Figure 6E).

Discussion
The present data suggests that pretreatment with liver ischemic preconditioning prior to a 45 min LAD
occlusion and a subsequent 3 h reperfusion reduced myocardial injury in STZ-induced diabetic rat hearts,
as shown by reduced infarct size and decreased pathological score. To our knowledge, this is the first
study reporting the results of using RLIPC in a diabetic myocardial I/R model. Our data demonstrate that
increased GSK-3β and STAT-5 phosphorylation may be associated with RLIPC treatment in diabetic
hearts.

Diabetes and myocardial protection

DM is a common metabolic disorder, characterized by hyperglycemia, hyperlipidemia, and hypoinsulimia.
Patients with DM have increased risk of coronary artery disease and myocardial infarction [24].
Furthermore, diabetic patients exhibit a higher sensitivity to myocardial reperfusion-induced injury[16], as
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such, it is more difficult for diabetic patients to recover from heart attack after pharmacological or
mechanical reperfusion strategies including fibrinolytic therapy or percutaneous transluminal coronary
intervention (PCI)[17]. Our study revealed that myocardial damage caused by reperfusion injury was more
severe in diabetic rats than that in non-diabetic rats. This suggests that hyperglycemia may have a
more adverse impact on cardiomyocytes  in response to ischemia and reperfusion stimuli. Therefore,
effective therapeutic approaches and novel targets are required to rescue reperfusion-injured myocardium
in diabetic state.

Since remote ischemic conditioning was found beneficial to the recovery after myocardial infarction,
multiple clinical trials have conducted to evaluate the effect of remote limb ischemic conditioning in
patients with myocardial infarction. Botker and colleagues showed that remote limb ischemic
conditioning applied during myocardial infarction period before hospital admission increased salvaged
area of myocardium [7]. Other clinical studies have also confirmed the effect of limb ischemic
conditioning during cardiac surgery, elective PCI, and acute myocardial infarction[4]. Additionally, liver is
the biggest metabolic organ in the body that remote ischemic conditioning can be applied. Compared
with limb ischemic conditioning, which has been studied intensively, the effect of liver ischemic
conditioning was largely unknown. We and others have reported that RLIPC reduced infarct area in
normal hearts in vivo[10] or ex vivo[18]. More recently, our laboratory demonstrated the existence of anti-
arrhythmic effect of RLIPC post myocardial I/R in diabetic heart[14]. In the current study, we tested the
efficacy of RLIPC in STZ-injected rats whose beta pancreatic cells were destroyed leading to type I
diabetes phenotype. To the best of our knowledge, RLIPC-induced infarct-sparing effects has never been
tested in type 1 diabetes models. The current results demonstrated that pretreatment of liver ischemic
stimuli before sustained myocardial ischemia limits infarction post-I/R in diabetic rats. However, our
results contrast with reports concerning that efficacy of ischemic conditioning could be attenuated, or
may even completely lost in diabetes[19-21] . This discrepancy may be explained by the possible
interactions between anti-diabetic medication and remote ischemic conditioning, different protocols of
designs of conducting ischemia cycles and observing different primary outcomes, as well as differences
in animal species.

RISK/SAFE pathway in diabetes

Although efforts have been made trying to find new signaling targets contributing to the remote ischemic
preconditioning-induced anti-infarction against myocardial I/R injury, little is known about the potential
role of RLIPC in cardioprotection in diabetic hearts. Reperfusion injury salvage kinase (RISK) pathway,
first described by Yellon et al[11] has been demonstrated to be involved in remote ischemic conditioning
in multiple studies[22]. RISK pathway includes two major kinases cascades: the p42/p44 extracellular
signal-regulated kinases (ERK1/2) and kinase B (AKT), all of those are pro-survival protein kinases,
responsible for cell proliferation, transcription and survival[11]. The RISK pathway can be activated in
response to stress such as ischemia-reperfusion, initiating phosphorylation of a wide array of intracellular
targets, resulting in modification of protein synthesis. The failure of cardioprotection by ischemic
conditioning in diabetes has largely been attributed to the impaired activation of signaling molecules in
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RISK pathway[9]. We therefore evaluated whether RLIPC-induced infarct limitation in diabetic heart is
associated with the RISK signaling kinases. It has been shown that either ischemic conditioning or
pharmaceuticals could induce ERK1/2 or AKT phosphorylation, thus ultimately reduced myocardial
infarct size[23, 24]. We previously found that RLIPC protected hearts against sudden cardiac death via
activation of ERK1/2 pathway[10]. Meanwhile, we also observed increased phospho- AKT levels in the
brainof RLIPC rats compared to controls[13]. However, in the current study, we found that pretreatment
with liver I/R stimulus prior to LAD occlusion did not enhance ERK1/2 or AKT phosphorylation in diabetic
or non-diabetic hearts. It seems that the infarction sparing effect of RLIPC against myocardial I/R injury is
independent of these two signaling cascades. However, Glycogen synthase kinase-3β (GSK-3β), the vital
component of the RISK pathway, is an essential regulator of survival in cardiac myocytes, thus is involved
in the pathogenesis of myocardial I/R injury. The phosphorylation within the amino-terminal domain of
GSK-3β at Ser9, results in the inhibition of GSK-3 kinase activity[25] and inactivation therefore, is
cardioprotective[26]. Prior studies provides evidence that ischemic conditioning can stimulate GSK-
3βphosphorylation[27]. We found in our previous study that RLIPC caused GSK-3β phosphorylation in
normal hearts post I/R[6], our current study extends these findings by showing that RLIPC exerted
cardioprotection via increasing phosphorylation of ventricular GSK-3β in diabetic hearts compared with
non-RLIPC treated diabetic hearts post I/R. Our data are consistent with previous studies showing that
pretreatment with GSK-3β inhibitors prior to myocardial ischemia produced cardioprotection in diabetic
hearts[28].

The survivor activating factor enhancement (SAFE) pathways, another cell survival pathway independent
of the RISK pathway has been shown to be associated with I/R injury[29, 30]. It involves the activation of
signal transducer and activator of transcription 3 (STAT3) and 5 (STAT5). Previous studies have shown
that STAT3 or STAT5 phosphorylation at reperfusion was increased with remote preconditioning in
various animal models[12, 31]. Accordingly, the protective effect of preconditioning can be blocked with
the administration of STAT inhibitors[32]. We previously showed that increased phospho-STAT3 and
STAT5 levels were found in the RLIPC-treated rat lungs and the administration of STAT inhibitor could
effectively block the pulmonary protection offered by RLIPC[12]. However, it contrasts with our current
findings that STAT5 phosphorylation, not STAT3, played a role in the protective effect of RLIPC in both
normal and diabetic rats. This suggested that activation of SAFE pathway may be organ specific. Taken
together, RLIPC induced infarction sparing effect in diabetic and non-diabetic hearts may share a similar
mechanism involving activation of GSK-3β and STAT-5 signaling pathways.

Limitations
Our study has several limitations. First, animal model of type 1 diabetes(streptozotocin induced) was
used in the current study, rather than a high-fat diet induced type of diabetes (type II), the latter may better
mimic human metabolite signature, characterized by insulin resistance and hyperinsulinemia. Thus, it is
not clear if RLIPC may exert cardioprotection against I/R injury on type 2 diabetes. Second, streptozotocin
was used for induction of type 1 diabetic animal model, however, the chemical has been reported to be
toxic at other organs of the body, including liver[33], therefore, it remains unknown whether this chemical
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can affect the efficiency of liver preconditioning stimuli. Third, our protocol had fixed preconditioning
cycle of liver ischemia and reperfusion stimuli, therefore, it is not certain if the number of ischemic cycles
and duration of ischemic period have dose-response relationship in terms of the cardioprotective effect of
RLIPC. Fourth, diabetes may desensitize, remodel or even shift other signaling molecules. We only
determine several signaling molecules in RISK and SAFE pathway, it is possible that other molecules and
signaling cascades may also be involved in the cardioprotective effect of RLIPC. In addition, our study did
not investigate the interaction between pathways, such as the crosstalk between RISK and SAFE
pathway. Therefore, future attention will be focused on functional studies so as to indentify the
relationship between the cardioprotective effect and those altered molecules. Finally, our animal model is
limited in that only significant hyperglycemia was present. Nevertheless, given the importance of
hyperglycemia in aggravating I/R injury in the heart, our results from this model do provide relevant
understanding on RLIPC mediated myocardial protection during ischemia and reperfusion.

Conclusions
Liver ischemic preconditioning exerts strong cardioprotective effects in diabetic heart post I/R injury, as
evidenced by decreased infarction size, improved cardiac fuction and alleviated cardiac damage. This
RLIPC-induced cardioprotection is mediated by the activation of GSK-3β and STAT-5 signaling pathways.
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Tables
Table 1 The effect of RLIPC on hemodynamics 
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Variable Baseline 　 Reperfusion 　

1h 2h 3h

LVSP (mmHg)        

CON 135.3±10.1 104.1±11.2*** 98.8±5.2*** 85.9±11.6***

RIPC 137.5±4.0 110.8±6.3**† 111.5±10.6***#†† 104.3±6.7***##†

DM-CON 139.8±13.9 101.7±7.2*** 96.0±4.7*** 91.0±9.5***

DM-RLIPC 136.7±8.0 110.0±4.8***† 112.2±6.8***##†† 105.5±5.8***##††

LVEDP (mmHg)        

CON -5.3±1.9 1.0±0.3*** 3.0±0.8*** 5.7±1.6***

RLIPC -5.1±2.0 -1.2±0.9**#† 0.7±0.2***##† 2.2±0.9***###†††

DM-CON -6.3±1.8 1.4±0.8*** 3.3±2.1*** 5.4±0.8***

DM-RLIPC -5.6±1.9 -2.7±1.6*#† -0.2±0.2**#† 2.9±1.1***##††

dp/dtmax (mmHg/ms)        

CON 5.1±0.6 2.9±0.6*** 2.3±0.9*** 1.6±0.6***

RLIPC 5.3±1.1 3.7±1.0* 3.5±0.7**#† 3.4±0.6***###†††

DM-CON 5.6±0.7 2.7±0.7*** 2.4±1.0*** 1.5±0.6***

DM-RLIPC 5.4±1.0 3.8±1.1* 3.9±0.8*##† 3.2±0.3***###†††

-dp/dtmax (mmHg/ms)        

CON -4.9±0.5 -2.8±0.5*** -2.2±0.3*** -1.4±0.7***

RLIPC -5.2±1.0 -4.1±1.2***#† -3.3±0.9**#† -3.1±0.7**##†††

DM-CON -4.8±0.8 -2.2±0.9*** -2.1±0.9*** -1.3±0.6***

DM-RLIPC -5.3±0.9 -4.0±0.4*##†† -3.5±0.8**##† -3.4±0.5**###†††

 

Data are expressed as mean±SEM. CON: LAD occlusion only, RLIPC: remote liver ischemic
preconditioning, DM:STZ-induced diabetes. LVSP=left ventricular systolic pressure, LVEDP=left ventricular
end-diastolic pressure; ±dP/dtmax=maximum rate of increase/decrease in left ventricular pressure. n=6
in each group. *P<0.05, **P<0.01, ***P<0.001 versus baseline, #P<0.05, ##P<0.01,###P<0.001 versus
CON,†P<0.05,††P<0.01 versus DM-CON.
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Figures

Figure 1

Flowchart of experimental protocol
Red block: four cycles of liver ischemic stimuli. Black block: duration
of left anterior descending (LAD) coronary occlusion. Grey block: duration of reperfusion. Sham: sham-
operated surgery, CON: LAD occlusion only, RLIPC: remote liver ischemic preconditioning, DM:STZ-
induced diabetes.
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Figure 2

Body weight and plasma glucose after STZ treatment
(A) body weight (n=7-10); (B) plasma glucose (n=6-
10). Sham, sham surgery; CON, LAD ligation; RLIPC, remote liver ischemic pre-conditioning; DM: STZ-
induced diabetes. Data presented as mean±SEM. ***p<0.001 compared with normal rats(by one-way
ANOVA)

Figure 3

Remote ischemic preconditioning did not cause liver injury
(A) plasma AST (n=5-6); (B) plasma ALT (n=5-
6). Sham, sham surgery; RLIPC, remote liver ischemic preconditioning; DM: diabetic rats. Data presented
as mean±SEM. NS: non-significant between groups (p>0.05, by one-way ANOVA)
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Figure 4

Remote ischemic preconditioning alleviated myocardial infarction (A) Representative sections of
triphenyltetrazolium chloride (TTC)-stained heart subjected to 45min myocardial ischemia followed by
3hrs of reperfusion. Sham, sham surgery; CON, LAD ligation; RLIPC, remote liver ischemic
preconditioning; DM: diabetic rats.
(B) Quantification of myocardial infarct size expressed as a
percentage of leftventricular (LV) area at risk (AAR) (top) and AAR expressed as a percentage of LV area
(bottom). Data were presented as mean±SEM; n = 6-7 each group. **p<0.01and ***p<0.001 compared
with CON; ##p< 0.01 and ###p<0.001compared with RLIPC; and ††p<0.01 compared with DM-CON (by
one-way ANOVA).
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Figure 5

Effect of RLIPC on morphological changes post-myocardial ischemia/reperfusion
(A) Representative (of
n =4 rats/group) H&E stained heart sections are shown. Heart histopathology scores were determined
under a light microscope; Panel (a) scale bars:100 μm; panel (b) scale bars, 20 μm.Sham, sham surgery;
CON, LAD ligation; RLIPC, remote liver ischemic preconditioning; DM: diabetic rats. Data were presented
as mean±SEM; *p<0.05and ***p<0.001 compared with CON; #p<0.05 and ###p<0.001compared with
RLIPC; and ††p<0.01 compared with DM-CON (by one-way ANOVA).
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Figure 6

RLIPC stimulated GSK-3β and p-STAT-5 phosphorylation in both non-diabetic and diabetic rats.
Representative Western blots (left) and quantification (right) ofp-ERK1/2 (A), p-GSK-3β(B), p-AKT (C), p-
STAT-3 (D) and p-STAT-5 (E) protein band densities (normalized to total protein, respectively) in sham,
CON and RLIPC group in both normal and Diabetic rats. Sham, sham surgery; CON, LAD ligation; RLIPC,
remote liver ischemic preconditioning; D: diabetic rats. (n=3-5), data were presented as mean±SEM.
*p<0.05 and ***p<0.001 compared with Sham. #p<0.05 and ###p<0.001 compared with DM-sham.
†††p<0.001 compared with CON.‡‡‡p<0.001 compared with DM-CON. (by one-way ANOVA).


