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Abstract

Background:
The immune microenvironment impacts tumor growth, invasion, metastasis, and patient survival and
may provide opportunities for therapeutic intervention in pancreatic ductal adenocarcinoma (PDAC).
Although never studied as a potential modulator of the immune response in most cancers, Keratin 17
(K17), a biomarker of the most aggressive (basal) molecular subtype of PDAC, is intimately involved in
the histogenesis of the immune response in psoriasis, basal cell carcinoma, and cervical squamous cell
carcinoma. Thus, we hypothesized that K17 expression could also impact the immune cell response in
PDAC, and that uncovering this relationship could provide insight to guide the development of
immunotherapeutic opportunities to extend patient survival.

Methods:
Multiplex immunohistochemistry (mIHC) and automated image analysis based on novel computational
imaging technology were used to decipher the abundance and spatial distribution of T cells,
macrophages, and tumor cells, relative to K17 expression in 235 PDACs.

Results:
K17 expression had profound effects on the exclusion of intratumoral CD8 + T cells and was also
associated with decreased numbers of peritumoral CD8 + T cells, CD16 + macrophages, and CD163 + 
macrophages (p < 0.0001). The differences in the intratumor and peritumoral CD8 + T cell abundance
were not impacted by neoadjuvant therapy, tumor stage, grade, lymph node status, histologic subtype,
nor KRAS, p53, SMAD4, or CDKN2A mutations.

Conclusions:
Thus, K17 expression correlates with major differences in the immune microenvironment that are
independent of any tested clinicopathologic or tumor intrinsic variables, suggesting that targeting K17-
mediated immune effects on the immune system could restore the innate immunologic response to
PDAC and might provide novel opportunities to restore immunotherapeutic approaches for this most
deadly form of cancer.

Introduction
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal forms of cancer, not only because it
is often not diagnosed until after it has reached advanced stage and is intrinsically resistant to
Gemcitabine and 5-fluorouracil based chemotherapy, but because it generally does not respond to
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immune checkpoint inhibitors and is minimally impacted by intrinsic anti-tumor immune mechanisms
(Muller et al., 2022). Although immune evasion is a key hallmark of malignancy, impacting cancer
initiation and progression, knowledge of the mechanisms that shield PDAC from immune surveillance
have not been fully explored. Therefore, elucidation of the interactions between PDAC and the immune
response is critically needed to guide the development of more effective immunotherapeutic strategies.

Several studies have stratified PDAC patients into separate categories through transcriptomics,
proteomic analysis, gene signatures or immunological status using bulk RNA-Seq,
immunohistochemical, and single-cell RNA (scRNA) approaches (Y. Chen et al., 2022; de Santiago et al.,
2019; J. Yang et al., 2022a). Although numerous transcriptomic and proteomic reports have shown that
PDAC can be subdivided into major molecular subtypes that differ in response to chemotherapeutic
agents and patient survival, little is known about how biologically distinct PDACs can differ in their
immunogenic phenotypes, or the impact of the immune response on disease progression and survival.
To the best of our knowledge, this is the first study that aims to consolidate the histological subtype
stratification with the tumoral microenvironment status to better understand tumor aggression and
rationalize more personalized therapeutic strategies. We and others have shown that keratin 17 (K17)
drives chemoresistance and is a prognostic and predictive biomarker of the most aggressive (basal)
molecular subtype of PDAC (Oblein et al., n.d.; C.-H. Pan, Chaika, et al., 2022; C.-H. Pan, Tseng, et al.,
2022; Roa-Pena et al., 2019, 2021). K17 expression also impacts the immune response in several cancer
types, including basal cell carcinoma, head and neck cancer (Depianto et al., 2010; Wang et al., 2022b,
2023), and cervical squamous cell carcinoma (Baraks et al., 2022). At a mechanistic level, K17 has also
been reported to impact the pathogenesis of cervical squamous cell carcinoma, at least in part via
immunomodulatory mechanisms (W. Wang et al., 2020b) and others have explored mechanisms through
which K17 might regulate resistance to immunotherapy, through the regulation of Yap1 activation,
mediating downstream immunosuppressive effects in head and neck cancer. The potential impact of
K17 on the immune response to PDAC, however, has not been previously explored.

Thus, it is important to consolidate different stratification schemes into a novel classification of
pancreatic cancer, based on robust and clinically deployable biomarkers to predict survival and to
rationalize therapeutic strategies. Several studies have emphasized the importance of cancer cell
clearing by intratumoral and peritumoral immune cells, with favorable prognosis related to the extent of
intratumoral immune infiltration (Pyo et al., 2021). Since successful immunotherapy is dependent on the
infiltration into the tumor of sufficient effector cells, including CD8 + T cells and tumor-associated
macrophages, we aimed to characterize the PDAC immune microenvironment relative to K17 expression
by focusing on peritumoral and intratumoral immune cells via a comprehensive, distance-based spatial
analysis using brightfield multiplex immunohistochemistry (mIHC) of PDAC tissue sections. Overall,
these lines of exploration may uncover how tumor cell-intrinsic immunomodulatory proteins, including
K17, may shield PDAC from the development of effective immune responses and may highlight
opportunities for further exploration to develop novel and more effective immunotherapeutic approaches
for PDAC.
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Methods

Patient demographics
Primary PDAC surgical resection specimens (n = 235) were provided as formalin-fixed paraffin-
embedded (FFPE) surgical tissue blocks from the archival collections of the Department of Pathology at
Stony Brook University Hospital (n = 54, 23%), Thomas Jefferson University (n = 67, 29%), Cedars Sinai
Medical Center (n = 7, 3%) and a national biorepository, the Know Your Tumor program of the Pancreatic
Cancer Action Network (PanCAN/Perthera) (n = 107, 45%).

Hematoxylin and eosin-stained sections from each specimen were reviewed to identify the single tissue
block that contained the greatest total surface area of viable carcinoma. Exclusion criteria included
cases where the total surface area of viable tumor was < 1 cm2. Additionally, tumors metastatic to the
pancreas from other anatomic sites were also excluded. Survival and adjuvant therapy data was
obtained from each respective institution’s registry. Case stratification was based on tumor stage,
histologic subtype, and histologic grade. Tumor stage was assigned based on 8th edition American Joint
Committee on Cancer (AJCC) criteria (Amin et al., 2017; Chun et al., 2018) and histopathologic grade
was based on World Health Organization (WHO) criteria (Nagtegaal et al., 2020). Table 1 summarizes the
demographic and clinicopathologic features of all cases.
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Table 1
Patient cohort demographics

​ Cohort​

Total cases included​ n = 235

Overall survival, mean ± SD​ 20.7 ± 17.1

Age at diagnosis, mean ± SD​ 62.9 ± 14.3

Gender, number (%)​ ​

Female​ 109 (46%)​

Male​ 123 (52%)​

Unknown 3 (2%)

Histologic Grade (G), number (%)​ ​

G1 + G2, Well and Moderately Differentiated 172 (73%)​

G3, Poorly Differentiated 63 (27%)​

AJCC 8th Edition Pathological Stage, number (%)​ ​

I-IIB (Early) 65 (27%)​

III-IV (Advanced) 165 (70%)​

Unknown ​ 5 (3%)

Chemotherapy  

Neoadjuvant 41 (17%)

No Neoadjuvant 194 (83%)

Histologic Subtypes  

Conventional 180 (77%)

Foamy Gland (Adsay et al., 2000) 20 (9%)

Large Duct (Sato et al., 2021) 18 (8%)

Other 17 (6%)

Genetic Mutation Status  

KRAS, p53, SMAD4, CDKN2A 90 (38%)

mIHC
Multiplexed immunohistochemistry (mIHC) was performed on a Discovery Ultra Auto Stainer
(Roche/Ventana, Oro Valley, AZ), using VENTANA reagents according to the manufacturer's instructions.
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Antibodies for CD4 (helper T cells), CD8 (effector T cells), CD16 (pan-macrophage), CD163 (M2
macrophage), pancytokeratin (panCK), and K17 were provided by Roche Diagnostics Corporation through
a sponsored research agreement (RD005216). Multiple chromogens (Red: CD4+, Purple: CD8+, Yellow:
CD16+, CD163-, Green: CD16+, CD163+, Teal: panCK+, and Brown: K17+) were deployed to enable
multispectral imaging of diverse immune cell populations within the cancer microenvironment. Details of
the mIHC protocol are outlined in Supplementary Table 1.

Cell Detection and Classification
The ensemble of ColorAE and U-Net was developed previously12 for the detection and classification of
cells in mIHC images. ColorAE is a deep autoencoder which segments stained objects based on color; U-
Net is a convolutional neural network (CNN) trained to segment cells based on color, texture and shape.
The two methods provide complementary information and are used together to predict K17 and cell
types (Hasan et al., 2022). Each model is trained separately, and predictions from each model are
combined in the inference phase to create multi-class masks. The multiplex segmentation ensemble is
applied on patches of size 580 x 580 pixels extracted from whole slide images (WSIs) at 0.346 µm/pixel
resolution. The patches are extracted from tumor bed regions that were manually annotated by
pathologists. Multi-class masks are generated on patches using ColorAE and U-Net as described (Hasan
et al., 2022).

Dataset and Model Training
The training and validation datasets for the deep learning models were generated from 23 WSIs. Expert
pathologists manually put labeled dots into the vicinity of each cell over 1000×1000-pixel tiles extracted
from these 23 WSIs. To speed up the manual annotation process, we generated superpixel masks using
simple linear iterative clustering (SLIC) with 6000 segments. SLIC groups pixels into superpixels based
on their color and spatial proximity, using a k-means clustering approach.

Model Validation and Experimental Setup
We carried out a quantitative evaluation of our detection and classification model as previously
described (Hasan et al., 2022). In summary, we obtained the following F1 scores for our ensemble model
– CD4 F1 = 0.92, CD8 F1 = 0.89, CD16 F1 = 0.77, CD163 F1 = 0.93, K17 + F1 = 0.98, K17- F1 = 0.99. An F1
score is a statistical measure used in classification tasks, combining precision and recall into a single
metric by calculating their harmonic mean. We used a dropout rate of 0.3 in the U-Net and the following
color concentration thresholds in the colorAE model: 0.7 for K17-positive, 0.1 for K17-negative, 0.1 for
CD4, 0.1 for CD8, 0.1 for CD16, and 0.1 for CD163. We carried out computation using resources provided
through the National Science Foundation digital cyberinfraestructure eXtreme Science and Engineering
Discovery Environment (XSEDE) (Towns et al., 2014).

Quantification of Tumor-Immune Cell Spatial Relationships
The tumor regions were partitioned into K17-positive and K17-negative zones, leveraging the masks
generated with the ensemble model. Our goal was to compare immune cell density in regions close to
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K17-positive vs K17-negative tumor zones as well as intra-tumoral immune cell densities. First, we
assessed the relative density of stromal immune cells in a range from 25 to 200um of the closest tumor
border (defined as peritumoral immune cells) versus those that are in direct contact with K17-positive vs
K17-negative tumor cells (defined as intratumoral immune cells). As the maximal differences in
peritumoral immune cell counts relative to K17 status were seen at a stromal depth of 25µm the analsysi
of all cases included in the study was done only at 25µm (Supp. Figure 1). In a conceptual sense, the
approach we took was to associate each immune cell with K17-positive tumor cells when the closest
tumor boundary to the cell was K17-positive and to associate immune cells with K17-negative tumor
when the closest tumor boundary was K17-negative. The analysis described below formalizes this
approach.

A distance transform mapped each pixel to the closest boundary of interest. We only considered stromal
immune cells that are within 25µm of the closest tumor boundary; this region was computed using the
distance transform (Fabbri et al., 2008; Strutz, 2021). We then partitioned this tumor-associated stromal
region into K17-positive and K17-negative zones, leveraging the distance transform field of the stromal
area. A stroma pixel was assigned to the K17-positive influence area when the closest tumor boundary
was K17-positive, according to distance transform calculation; otherwise, the pixel was assigned to the
K17-negative influence area. We devise a metric that we named the “Tumor/Stromal Zone Score”,
denoted by , calculated by the following equation:

In the equation,  represents immune cells (e.g., CD4, CD8, CD16 and CD163), and M represents the
marker of tumor nest boundary (e.g., K17-positive boundary and K17-negative boundary). 
represents the number of immune cells of type  in either a K17 positive zone or in a K17 negative zone.
The equation represents the approximate count of each immune cell (numerator) normalized by the total
tumor-associated stromal zones (denominator). The estimation of immune cell count is achieved
through a series of steps, commencing with the computation of total pixel numbers specific to distinct
cellular subtypes. Following this, the pixel measurements were converted into square micron area units,
subsequently undergoing normalization based on the average dimensions of immune cells. Notably,
lymphocytes (CD4, CD8) average dimensions were approximated as circles with a diameter of around
8µm, while macrophages (CD16, CD163) average dimensions are approximated as circles with a larger
diameter of 16µm. This normalization process culminated in the derivation of an estimated count of
immune cells, designated as  and represented in the Equation. In addition to calculating
Tumor/Stroma Zone Score, we normalized Tumor/Stromal Zone Score for K17-negative ( ) with
respect to Tumor/Stromal Zone Score for K17-positive ( ) for visualization and interpretation
purposes, as depicted in multiple figures. Lastly, we performed proof of concept demonstrating that our
observed pattern for Tumor/Stroma zone score for all the WSI is not random. We tested a statistical null
hypothesis by randomly placing simulated immune cells in the tumor microenvironment and observed a
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statistically significant difference between the real and simulated scenarios, as previously reported
(Hasan et al., 2022).

Statistical analysis
Paired t tests were performed to define the difference between peritumoral and intratumoral immune cell
counts in K17 positive and K17 negative regions of each case. Statistical significance was set at p-value 
≤ 0.05, and analysis was done using SAS 9.4 (SAS Institute, Cary, NC, USA) and Graph Pad Prism 7
(Graph Pad Software, La Jolla, CA, USA). All p values were calculated using a two-sided test.

Results

Quantification of Tumor-Immune Cell Spatial Relationships
Model
As the immune system is known to have a crucial role in cancer and play an essential role in eradicating
tumor cells, the characterization of the immune component of the tumor microenvironment (TME) can
provide valuable information regarding the ways in which the host immune response interacts with
cancer cells (Karamitopoulou, 2019). We deployed mIHC and machine-learning tools to quantify T cells
and macrophages in the tumor microenvironment relative to K17 expression by tumor cells across a
broad range of clinically diverse PDAC cases (Supp. Figure 2.

Overall Immune Cell Landscape in PDAC
The immune populations of 235 PDAC patients were processed by mIHC for a panel of myeloid and
lymphoid cell markers encompassing CD8 + T cells, CD4 + T cells, CD16+/CD163- (M1) macrophages
and CD16+/CD163+ (M2) tumor-promoting macrophages. Based on overall cell counts across all cases,
16% of immune cells were CD4 + T cells, 35% were CD8 + T cells, 40% were CD163 + macrophages, and
16% were CD16 + macrophages (respective mean counts 1.04 x 104 /µm2, 3.00 x 104 /µm2, 3.03 x103/
µm2 and 2.44x104/µm2) (Fig. 1a). To determine if the immune microenvironment was correlated with
K17 status and to verify the accuracy of digital score, we confirmed that the K17 status based on a semi-
quantitative manual scoring within a single representative histologic section from each case to K17
scoring based on image analysis of corresponding whole slide digital images (r = 0.71, p < 0.0001)
(Fig. 1b). We then tested for correlations between the overall digital K17 score derived each tissue
section to the immune cell counts for each case. Sorting patient’s immune densities in ascendant order
of K17 expression revealed no obvious relationships at the macro level between K17 expression and any
immune cell type (Fig. 1c).

Based on the premise that not only the relative abundance of T cells, but also the distribution and spatial
relationship between T-cell subpopulations and cancer cells reflect biological interactions, we next set
out to develop a model to score immune cells in the spatial context of direct interaction, reflected by
immune cells that overlapped or directly contact tumor cells (intratumoral immune cells) versus those
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present within 25µm of the closest tumor cells (peritumoral immune cells), relative to the expression of
K17 (Fig. 1d).

K17 has profound effects on the PDAC immune microenvironment.

Analytic algorithms were developed to count intratumoral and peritumoral immune cells (respectively
those that directly contact tumor cells versus stromal immune cells located within 25µm of the closest
tumor cells, relative to K17 status). Immune cell counts were normalized relative to cell counts in K17-
positive zones and results were ranked in order of increasing immune cell density ratios. In this analysis,
immune cell ratios reflect differences in K17 negative versus K17-positive zones, rather than relative
differences in overall immune cell counts across the entire tumor region.

Cytotoxic T cells target tumor cells that expose tumor-specific antigens in various malignancies,
including pancreatic ductal adenocarcinoma(Carstens et al., 2017; Masugi et al., 2010; Raghavan et al.,
2021) and higher CD8 + T-cell density in tumor is generally associated with prolonged pancreatic cancer
survival (Z. gang Chen et al., 2021; Li et al., 2022; Tsujikawa et al., 2017; B. Yang et al., 2021). Conversely,
K17 has been associated with immune cell response in psoriasis as well as in basal cell skin cancer and
in cervical carcinoma and is a negative prognostic biomarker in PDAC, suggesting that K17 might have
some role in CD8 + T cell exclusion (Xiao et al., 2020; Zhou et al., 2022). Thus, to test for relationships
between K17 expression the tumor inflammatory microenvironment, we analyzed intratumoral and
peritumoral CD8 + T cells, CD4 + T cells, CD16+/CD163- tumor-targeting (M1) macrophages and
CD16+/CD163 + tumor promoting (M2) immune cells ratios across all cases. CD8 + peritumoral T cells
were more numerous in K17-negative areas than in K17 + areas p < 0.0001) in 83% of PDACs (Fig. 2a).
Even more profoundly, intratumoral CD8 + T cell ratios were greater in K17-negative regions than in K17-
positive regions in 93% of PDACs (p = < 0.0001) (Fig. 2c). Although the magnitude of the correlation with
K17 was much less than seen for CD8 + T cells, peritumoral CD4 + T ratios were also greater in K17
negative areas for 59% of cases (Fig. 2e) but were increased in K17 + intratumoral areas in 62% of cases
(Fig. 2g).

To uncover any relationships between K17 expression and macrophage distribution, we then analyzed
the immune cell density of CD16 + macrophages and CD163 + macrophages across all cases. CD16 + 
cells were more abundant in K17 negative versus K17 positive peritumoral areas in 77% of cases (p < 
0.0001) (Fig. 2i). Intratumoral CD16 + macrophages were more numerous in K17-negative tumor zones
compared to the K17-negative regions in 62% of cases (p < 0.0001) (Fig. 2k). In peritumoral zones,
CD163 + macrophages were more abundant in K17-negative zones in 66% of cases (p < 0.0001)
(Fig. 2m). Conversely, intratumoral CD163 + macrophages were more numerous in K17-positive zones in
57% of cases (p = < 0.0001) (Fig. 2o). The relationships between CD16 + and CD163 + macrophages and
K17 expression were independent of other clinicopathologic features, including tumor grade,
pathological stage, treatment history, histologic variant, and mutational status (data not shown

To explore changes in tumor-infiltrating immune cells in PDACs after neoadjuvant immunotherapy we
separate our cohort into two categories, including patients that received gemcitabine-based or 5-FU
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based neoadjuvant treatment (n = 23, 10%) versus those that did not receive any neoadjuvant treatment
before surgery (n = 212, 90%). CD8 + T cell ratios were consistently greater in K17-negative peritumoral
and intratumor zones, for both no-neoadjuvant and neoadjuvant treatment groups (Fig. 3a-d). These
results suggest that neoadjuvant therapy has minimal impact on CD8 + T cell ratios in K17-negative
versus K17-positive tumor zones.

We next tested for relationships between tumor stage, grade and lymph node status and found that the
inverse correlations between K17 + expression and CD8 + T cells are independent of each of these
tumor-specific clinicopathologic variables (Fig. 4). Furthermore, CD8 + cell counts relative to K17 status
were independent of tumor histologic subtype, including conventional, foamy cell, and large duct PDAC
variants (Supp. Figure 3).

Several studies have reported that TP53 missense mutations lead to reduce the infiltration of cytotoxic
CD8 + T cells and approximately 70% of all PDACs harbor TP53 gene mutations (Maddalena et al., 2021;
McCubrey et al., 2022; M. Pan et al., 2023). Furthermore, wild-type (WT) and mutant variants of p53 can
modulate the antigen presentation machinery and can influence cytokine and chemokine secretion from
the cancer cells, thereby impacting the immune TME (Maddalena et al., 2021). We set out to elucidate
the impact of the 4 most common mutations on the immune TME of PDAC based on the analysis PDACs
from the KYT cohort that had undergone comprehensive genomic sequencing through the Precision
Promise program of the Pancreatic Cancer Action Network (Pishvaian et al., 2018, 2020) (Fig. 5a). We
divided our samples based on their genomic status into WT or Mutant for each gene and we found that
regardless of the mutational landscape, the impact of K17 CD8 + T cell rations within the immune
microenvironment was unchanged (Fig. 5b-q).

Thus, K17 expression correlates with major differences in the immune microenvironment, most notably
through profound exclusion of CD8 + T cells that is independent of clinicopathologic features or tumor
intrinsic variables, treatment history, tumor grade, pathological stage, lymph node status, histologic
variant, and tumor mutational status.

DISCUSSION
Although K17 expression impacts gene expression, cell proliferation, and numerous other hallmarks of
cancer, the impact of K17 on the immune response to PDAC has not previously been explored. In this
study, we found that tumor cell expression of K17 expression impacts the PDAC microenvironment by
shielding tumor cells from CD8 + T cells responses, while recruiting tumor promoting CD163+ (M2)
macrophages, indicating that K17 impacts the immune response as a fundamental hallmark of
aggression in PDAC. This work also provides a platform for image analysis of multiplexed
immunohistochemical protocols that can efficiently analyze the immune composition of the cancer
microenvironment.

PDAC is generally regarded as a “cold tumor” with a low T cell infiltration and low tumor mutation burden
(TMB) with few neoantigens (Ullman et al., 2022). This makes the successful application of
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immunotherapy a very challenging task. High levels of T cell infiltration, however, correlate with improved
outcome in PDAC (Goulart et al., 2021; Kiryu et al., 2021), including CD8 + T Cells (Orhan et al., 2020).
Interestingly, the proximity of CD8 + T cells to tumor cells in the PDAC TME correlates to longer patient
survival (Carstens et al., 2017). Consistent with our previous works which showed that K17 expression in
PDAC is associated with shorter survival (Roa-Pena et al., 2021a; Roa-Peña et al., 2021b), our current
findings also support the hypothesis that K17 blocks immune cell infiltration, with the most profound
impact being on CD8 + T cells.

A multiparameter analysis of the immune landscape in PDAC revealed heterogeneous expression of
immune checkpoint receptors in individual patients’ T cells and increased markers of CD8 + T cell
dysfunction in the disease stage (Steele et al., 2020). In vivo studies have also shown that blockade of
IL-1β increased the numbers of tumor-infiltrating lymphocytes and CD8 + T-cell responses. Furthermore,
Wang et al. 2022 studied the role of K17 in cancer metastasis using an immunocompetent mice model
and their results suggest that K17 confers resistance to immunotherapy. One mechanism through which
K17 downregulates T cell infiltration could be through the suppression of CXCL9 production in
macrophages through tumor cell-macrophage interactions. Other in vivo studies, also suggest that K17
expression suppressed T cell infiltration and enhanced neutrophil infiltration in in the tumor
microenvironment of cervical cancers (Wang et al., 2023).

The delicate balance between the populations of CD4 + and CD8 + subsets determines whether the TME
is anti- or pro-tumorigenic (Saka et al., 2020). Notably, regulating the differentiation of naïve CD4 + T cells
into Th1, Th2, Th17, Th9, Th22, and Tregs is essential for eliminating immunosuppressive restrictions
from the tumor environment and boosting effector T-cell activity (Huber et al., 2020; Karamitopoulou,
2019; Murakami et al., 2019). It is possible that the disruption of the correct ratio of these cell
populations causes immune evasion in cancer and even the failure of several immune cell targeted
therapies. We hypothesize that most CD4 T cells associated with K17-positive tumor areas are Tregs and
that K17 contributes to PDAC growth by suppressing T cell infiltration. Although the mIHC panel
described in this paper was not designed to identify CD4 T cells subsets, further studies to identify CD4 T
cell subsets and their association with K17 expression in PDACs are ongoing in our lab.

K17 has a wide range of effects on the immune response in different tissues. For example, increased
K17 expression upregulates the expression of multiple proinflammatory cytokines and chemokines,
including IFN-γ, IL-22, and CXCL1, and plays an important role in the development of psoriasis. Whereas
in models of head and neck cancer, the knockout of K17 gene expression slowed tumor growth and
increased CD8 + T cell infiltrate in immunocompetent syngeneic C57/BL6 mice compared to parental
MOC2 tumors(Rickman et al., 2008; Wang et al., 2022a). Here, we observed an inverse correlation
between K17 and CD8 + T cells, as reported previously in other skin and allergic disease processes.
Insight into the mechanism that underlie these effects may be inferred from previous studies that have
linked K17 and CD8 + T cells in psoriasis and allergic contact dermatitis (ACD) (Luo et al., 2022; Xiao et
al., 2020). Providing further insight into the mechanisms through which K17 acts in ACD, it was found
that K17 translocates into the nucleus of activated keratinocytes, facilitating activation of STAT3 and



Page 13/26

downstream CCL20 production as well as T cell trafficking. Our lab previously reported that the soluble
form of K17 undergoes nuclear translocation and serves as a nuclear shuttle of p27 (Escobar-Hoyos et
al., 2015). Thus, it is possible that similar mechanisms may have a role in the immune response to PDAC.
M2 macrophages contribute to chronic inflammation, cancer cell stemness, desmoplasia, immune
suppression, and metastasis in PDAC, highlighting their importance in pancreatic cancer (Poh, 2021).
Our observations that CD163+ (M2) macrophages are more numerous in K17-positive intratumoral areas
are consistent with previous studies in colorectal cancer(Xue et al., 2021) and align with work depicting
CD163 CD + T cells as promoter of biologic aggression in pancreatic cancer (J. Yang et al., 2022b).

In conclusion, our data support the hypotheses that K17 shields tumor cells from CD8 + T cells and
recruits tumor promoting CD163 + M2 macrophages, indicating that K17 fundamentally impacts the
immune response to PDAC. These effects are independent of neoadjuvant treatment, clinical pathologic
features, or PDAC mutational status, suggesting that the interactions between K17 and immune cell
responses in cancer are robust and could be important in both early stage and advanced stage disease.
Beyond our exploration of tumor and immune cell interactions that are impacted by K17, the
development of a platform for image analysis of multiplexed immunohistochemical protocols may also
be applicable for the analysis of immune composition for solid tumors of other anatomic sites. Further
studies are still needed to uncover how K17 expression facilitates evasion from immune surveillance,
and to identify new druggable targets, relative to K17 status, that could enhance the efficacy of
immunotherapy for PDAC. Whether K17 could also be used as a biomarker to identify subgroups of
PDAC patients who may benefit from immunotherapy or could be therapeutically targeted to restore the
efficacy of the innate immune response against PDAC should also be subjects of future research.

Conclusions
K17 expression shields tumor cells from CD8 + T cells and recruits tumor promoting CD163 + M2
macrophages, indicating that K17 fundamentally impacts the immune response to PDAC. These effects
are independent of neoadjuvant treatment, clinical pathologic features, or PDAC mutational status,
suggesting that the interactions between K17 and immune cell responses in cancer are robust and could
be important in both early stage and advanced stage disease. Therefore, targeting K17-mediated
immune effects on the immune system could potentially restore the innate immunologic response to
PDAC and might provide novel immunotherapeutic approaches for this devastating disease.
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Figure 1

Analysis of Keratin 17 relative to the PDAC immune microenvironment. a. Overall fraction of immune cell
types averaged across all cases (n=235). b. Spearman correlation between manual and digital K17
scoring across entire tumor sections. c. Overall immune cells stacked bar plot including CD4+ T cells,
CD8+ T cells, CD16+ macrophage, and CD163+ macrophage density (cells/mm2). The right Y-axis
depicts the overall K17 score within each tumor. d. Development of a digital scoring system focused on
spatial relationships between peritumoral and intratumoral immune cells and K17. Intratumoral zones
were defined as those that directly contacted a tumor cell while peritumoral zones included only immune
cells within 25μm of the closest tumor cell boundary.



Page 23/26

Figure 2

K17 impacts intratumoral and peritumoral T cells and macrophages. a-h. T cell counts in peritumoral and
intratumoral K17-positive and K17-negative regions. a. Peritumoral CD8+ T cells. c. Intratumoral CD8+ T
cells. e. Peritumoral CD4+ T cells. g. Intratumoral CD4+ T cells. i-p. Macrophage counts in peritumoral
and intratumoral K17-negative regions relative to K17-positive regions. i. Peritumoral CD16+
macrophages; k. Intratumoral CD16+ macrophages; m. Peritumoral CD163+ macrophages; o.
Intratumoral CD163+ macrophages. K17 expression profoundly excludes intratumor CD8+ T cells and to
a lesser extent, peritumoral CD8+ T cells, CD16+ and CD163+ macrophages as noted by bargraph
distribution (p<0.0001). Representative mIHC images for each panel highlight intratumor and peritumor
b,d. CD8+ T cells (purple); f, h. CD4+ T cells (red); j, l. CD16+ macrophages (yellow) and; n, p. CD163+
macrophages (green) relative to K17-positive tumor cells (brown) and K17-negative tumor cells (teal).
Note that immune cell ratios are normalized to counts in K17-positive zones and relative height of the
bars reflects the magnitude of differences between ratios in K17-negative versus K17-positive zones, not
relative differences in overall immune cell counts.
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Figure 3

The impact of K17 on CD8+ T Cells is independent of neoadjuvant therapy. a-b. Peritumoral and
intratumoral CD8+ T cell density ratios in cases that did not receive neoadjuvant treatment and, c-
d.Cases treated with neoadjuvant treatment.



Page 25/26

Figure 4

The impact of K17 on CD8+ T cells is independent of PDAC stage, grade, and lymph node status.
Immune cell ratios in peritumoral and intratumoral K17-negative regions relative to K17-positive regions,
ordered based on the density of immune cells in K17-positive zones. The inverse correlation between
K17 expression and CD8+ peritumor and intratumoral T cells is independent of a-d. Stage, e-h. Tumor
grade, and i-l. Lymph node status.
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Figure 5

CD8+ T cells are increased in K17-negative regions, regardless of mutation status. Immune cell ratios in
peritumoral and intratumoral K17-negative regions relative to K17-positive regions and mutational status
of KRAS, p53, SMAD4, and CDKN2A. a. OncoPrint (Cerami et al., 2012; de Bruijn et al., 2023; Gao et al.,
 2013) depicting the most frequently mutated genes in the KYT cohort. b-q. Wild type versus mutant
KRAS, p53, SMAD4, and CDKN2A.
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