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Abstract 27 

The hypothesised main drivers of megafauna extinctions in the late Quaternary have wavered 28 

between over-exploitation by humans and environmental change, with recent investigations 29 

demonstrating more nuanced synergies between these drivers depending on taxon, spatial 30 

scale, and region. However, most studies still rely on comparing archaeologically based 31 

chronologies of timing of initial human arrival into naïve ecosystems and palaeontologically 32 

inferred dates of megafauna extinctions. Conclusions arising from comparing chronologies 33 

also depend on the reliability of dated evidence, dating uncertainties, and correcting for the 34 

low probability of preservation (Signor-Lipps effect). While some models have been 35 

developed to test the susceptibility of megafauna to theoretical offtake rates, none has 36 

explicitly linked human energetic needs, prey choice, and hunting efficiency to examine the 37 

plausibility of human-driven extinctions. Using the island of Cyprus in the terminal 38 

Pleistocene as an ideal test case because of its late human settlement (~ 14.2 ka–13.2 ka), 39 

small area (~ 11,000 km2), and low megafauna diversity (2 species), we developed stochastic 40 

models of megafauna population dynamics, with offtake dictated by human energetic 41 

requirements, prey choice, and hunting-efficiency functions to test whether the human 42 

population at the end of the Pleistocene could have caused the extinction of dwarf 43 

hippopotamus (Phanourios minor) and dwarf elephants (Palaeoloxodon cypriotes). Our 44 

models reveal not only that the estimated human population sizes (N = 3,000–7,000) in Late 45 
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Pleistocene Cyprus could have easily driven both species to extinction within < 1,000 years, 46 

the model predictions match the observed, Signor-Lipps-corrected chronological sequence of 47 

megafauna extinctions inferred from the palaeontological record (Phanourios at ~ 12 ka–11.1 48 

ka, followed by Palaeoloxodon at ~ 10.3 ka–9.1 ka). 49 

 50 

Παλαιολιθικοί ανθρώπινοι πληθυσμοί στην Κύπρο και οι μηχανισμοί 51 

κυνηγιού της εγγενούς μεγαλοπανίδας εώς την εξαφάνιση 52 

Οι κύριες υποθέσεις που έχουν διατυπωθεί αναφορικά με τους πρωταρχικούς παράγοντες 53 

εξαφάνισης της μεγαλοπανίδας στο τέλος του Τεταρτογενούς αφορούν είτε στην 54 

υπερεκμετάλλευση από τον άνθρωπο ή στην περιβαλλοντική αλλαγή. Πρόσφατες έρευνες 55 

καταδεικνύουν ελαφρώς διαφοροποιημένες συνέργειες μεταξύ αυτών των παραγόντων 56 

ανάλογα με την ταξινομική βαθμίδα, την χωρική κλίμακα και την περιοχή. Ωστόσο, οι 57 

περισσότερες μελέτες εξακολουθούν να βασίζονται στη σύγκριση χρονολογιών της αρχικής 58 

ανθρώπινης άφιξης σε παρθένα οικοσυστήματα σύμφωνα με αρχαιολογικά δεδομένα και 59 

παλαιοντολογικά συναγόμενες ημερομηνίες εξαφανίσεων της μεγαλοπανίδας. Τα 60 

συμπεράσματα που προκύπτουν από τη σύγκριση χρονολογιών εξαρτώνται επιπλέον από την 61 

αξιοπιστία των χρονολογημένων στοιχείων, τις αβεβαιότητες χρονολόγησης και τη διόρθωση 62 

για την χαμηλή πιθανότητα διατήρησης (φαινόμενο Signor-Lipps). Παρόλο που διάφορα 63 

μοντέλα έχουν αναπτυχθεί για να διερευνήσουν την ευαισθησία της μεγαλοπανίδας σε 64 

θεωρητικά ποσοστά απόληψης, κανένα δεν έχει συνδέσει ρητά τις ανθρώπινες ενεργειακές 65 

ανάγκες, την επιλογή θηραμάτων και την αποτελεσματικότητα του κυνηγιού για να εξετάσει 66 

την αξιοπιστία των εξαφανίσεων ως ανθρωπογενές φαινόμενο. Το νησί της Κύπρου στο 67 

τέλος του Πλειστόκαινου αποτελεί ιδανική περίπτωση διερεύνησης του φαινομένου της 68 

εξαφάνισης της εγγενούς μεγαλοπανίδας λόγω της ύστερης ανθρώπινης εγκατάστασης (~ 69 

14,200 χ.α.σ.–13,200 χ.α.σ.), της μικρής έκτασης του νησιού (~ 11,000 χμ2) και της χαμηλής 70 

ποικιλότητας της μεγαλοπανίδας (2 είδη). Για το σκοπό αυτό, αναπτύξαμε στοχαστικά 71 

μοντέλα της δυναμικής του πληθυσμού της μεγαλοπανίδας, με απόληψη που υπαγορεύεται 72 

από τις ανθρώπινες ενεργειακές απαιτήσεις, την επιλογή θηράματος και τις λειτουργίες 73 

απόδοσης κυνηγιού ώστε να εξετάσουμε εάν ο ανθρώπινος πληθυσμός στο τέλος του 74 

Πλειστόκαινου θα μπορούσε να είχε προκαλέσει την εξαφάνιση του νάνου ιπποπόταμου 75 

(Phanourios minor) και των νάνων ελεφάντων (Palaeoloxodon cypriotes). Τα μοντέλα μας 76 

αποκαλύπτουν ότι τα εκτιμώμενα μεγέθη ανθρώπινου πληθυσμού (N = 3,000–7,000) στην 77 

Κύπρο του Ύστερου Πλειστόκαινου θα μπορούσαν εύκολα να οδηγήσουν και τα δύο είδη σε 78 

εξαφάνιση εντός < 1,000 ετών. Επιπλέον, οι προβλέψεις των μοντέλων μας ταιριάζουν με 79 

την παρατηρούμενη, διορθωμένη με Signor-Lipps, χρονική ακολουθία των εξαφανίσεων της 80 

μεγαλοπανίδας όπως προκύπτει από το παλαιοντολογικό αρχείο (Phanourios σε ~ 12,000–81 

11,100 χ.α.σ. και Palaeoloxodon σε ~ 10,300–9,100 χ.α.σ.). 82 

 83 

Key words: carrying capacity, cohort models, dwarf elephant, dwarf hippopotamus, human 84 

expansion, hunter-gatherers, mammals, Mediterranean, offtake, pre-agropastoralist 85 

 86 
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Introduction 89 

Explanations for the global extinction of hundreds of large terrestrial species during the late 90 

Quaternary1 have matured from relying on simple binary drivers, to a more nuanced 91 

demonstration of synergistic mechanisms varying across taxa and regions2-9. However, 92 

temporal variation in species composition inferred from the zooarchaeological record is still 93 

often attributed either to (i) changing environmental conditions altering natural abundances, 94 

(ii) humans depleting populations through subsistence offtake, or (iii) a combination of the 95 

two10-13. Yet, the relative contribution of these two mechanisms and/or their combination to 96 

the loss of megafauna during the Late Pleistocene and early Holocene are still largely 97 

examined based on inferred chronologies of relative human appearance and megafauna 98 

extinctions5,8,14. When the estimated window of human appearance to naïve ecosystems 99 

estimated from archaeological evidence precedes (but not by too much) palaeontologically 100 

inferred extinction dates, the conclusion tends to invoke human endeavour as the primary 101 

cause of the extinction15,16. On the other hand, when the palaeontological record suggests an 102 

extinction event occurred well before inferred human arrival, the assumed mechanism 103 

underlying the extinction tends to be environmental change. Here, proxy data indicating large 104 

climatological fluctuations17 or via species distributions derived from climate niche models13 105 

in the period immediately before inferred extinction tend to be the basis for conclusions that 106 

environmental change drove regional extinctions of large terrestrial species. 107 

Despite recent analytical advances in such (spatio- ) temporal analyses8,18, the quality and 108 

robustness of the underlying date estimates are still central to the appearance-extinction 109 

chronology, and therefore, the conclusions regarding the proximal drivers of extinction. 110 

Acknowledging that robust time series of a species' decline to extinction and the clear, 111 

unambiguous dates of initial human arrival are extremely rare, even high-quality data can still 112 

only hypothesise the mechanisms underlying the overarching causes19. In other words, how 113 

were particular populations of humans able to drive specific species to extinction, and how 114 

did an environment change express as a loss of fitness and the eventual demise of an entire 115 

species? While the literature is rife with supposition, there are in fact few quantitative or 116 

modelled examples of plausible ecological mechanisms driving extinction, whether the main 117 

determinants were human over-exploitation, environmental change, or a combination of both. 118 

Exceptions include mechanistic models of varying complexity that have been developed to 119 

discern the dynamics of megafauna extinctions19-24; however, none of these models has 120 

explicitly included the energetic needs of palaeolithic hunter-gatherers, hunting efficiency, 121 

and prey selection, and converted these parameters into equivalent animal offtake rates by 122 

humans. The main reasons for this gap likely arise from the complexity of hunter-gatherer 123 

foraging systems25, a lack of relevant data, and uncertainties regarding human patterns of 124 

expansion and settlement26. 125 

The island of Cyprus in the eastern Mediterranean offers an ideal set of conditions to test 126 

whether recently arrived populations of pre-agropastoralist humans had the capacity to drive 127 

megafauna species to extinction. Cyprus is an insular environment with a maximum area at 128 

the approximate period of human arrival (~ 14.2 ka–13.2 ka)27 of only ~ 11,000 km2, making 129 

spatial heterogeneity in archaeological and palaeontological evidence less important for 130 

inferring regional trends compared to large regions such as Eurasia with considerably larger 131 
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gaps in spatial coverage of the available evidence21, South America5, or Sahul8,16. Most 132 

importantly, there were only two megafauna species on the island when people first arrived 133 

(although there were other, smaller terrestrial species recovered from zooarchaeological 134 

records — a genet Genetta plesictoides, a murid Mus sp., a shrew Crocidura suaveolens 135 

praecypria, and a megachiropteran)28, making models of prey choice more tractable to 136 

construct compared to those situated in more biodiverse environments. Neither is there any 137 

evidence that Cyprus had predators large enough to kill either species29,30 prior to humans 138 

arriving. In addition, the patterns of initial human arrival and spread in Cyprus have recently 139 

been established with considerable certainty27.  140 

The two 'large' (> 100 kg body weight) species present on Cyprus when people first 141 

arrived were the dwarf hippopotamus Phanourios minor and the dwarf elephant 142 

Palaeoloxodon cypriotes31. Phanourios was the smallest dwarf hippopotamus in the 143 

Mediterranean region30 and weighed ~ 130 kg at adulthood32. It was adapted to a largely 144 

terrestrial, browsing lifestyle given its lower orbits and nostrils33,34, loss of the 4th molar, 145 

brachydont molars, and a shortened and narrow muzzle34-36 when compared to semi-aquatic 146 

forms. Palaeoloxodon cypriotes probably derived from the straight-tusked elephant P. 147 

antiquus that inhabited Europe and Western Asia during the Middle and Late Pleistocene37. It 148 

weighed only about 530 kg and was therefore < 10% of the size of its mainland ancestor32. 149 

The arrival of an efficient, novel predator (humans) was therefore potentially catastrophic 150 

to these predator-näive populations. Despite strong evidence that large accumulations of 151 

Phanourios and Palaeoloxodon bones are anthropogenic in origin31,33,38, and global evidence 152 

that the likelihood of extinction is highest in the most extreme island dwarfs and giants39, 153 

many contend that humans played no part in their extinction29,40-42. 154 

In this paper, we hypothesise that pre-agropastoralist human populations in Cyprus were 155 

capable of driving these megafauna species to extinction. To test this hypothesis, we first (i) 156 

re-examined the extinction chronology for Phanourios and Palaeoloxodon, accounting for 157 

both dating uncertainty and the Signor-Lipps effect — the low probability of archaeological 158 

or palaeontological evidence being preserved or discovered, such that first and last dates in a 159 

time series almost never indicate the true dates of initial appearance or extinction, 160 

respectively43,44. Our new Signor-Lipps-corrected windows of extinction for both species 161 

now also account for dating uncertainty. (ii) Next, we developed stochastic, cohort-based 162 

models of the population dynamics for both Phanourios and Palaeoloxodon to estimate the 163 

offtake rates necessary to drive equilibrium populations of these two species to extinction in a 164 

Cyprus-equivalent area. Finally, (iii) we expanded the demographic models to include both 165 

hunting functions and the energetic requirements of pre-agropastoralist human populations to 166 

express offtake in terms of 'meat equivalents' for human consumption. This approach allowed 167 

us to estimate the size of the palaeo-Cypriot human population required to drive both species 168 

to extinction, as well as the most ecologically realistic chronologies of any ensuing extinction 169 

events. We show not only that the estimated human population sizes in Late Pleistocene 170 

Cyprus could have easily driven both species to extinction, the predictions match the 171 

observed chronological sequence of extinctions inferred from the palaeontological record. 172 

 173 

 174 
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Methods 175 

Inferring windows of extinction from the palaeontological record 176 

To estimate a Signor-Lipps-corrected window of extinction for both Phanourios minor and 177 

Palaeoloxodon cypriotes, we sourced available radiocarbon-dated time series41,45. We applied 178 

a quality-rating protocol46 to the radiocarbon dates using a customised R function47. The 179 

quality-rating algorithm uses information such as the type of material dated, quality pre-180 

assessment, pretreatment, and association to calculate a quality rating from A* (highest 181 

quality), A (high-quality), B (possibly reliable), and C (unreliable)46. We obtained as much of 182 

this information as possible from the source papers, and then ran the quality-rating algorithm 183 

in R. None of the dates for either species achieved a quality rating > B, so we removed all C-184 

rated dates from the series and applied the Signor-Lipps correction to estimate a possible 185 

(although only possibly reliable) window of extinction, as we explain below. 186 

Using the uncalibrated, quality-rated radiocarbon dates described above, we applied the 187 

calibration-resampled inverse-weighted McInerny method (CRIWM)48 that first calibrates the 188 

radiocarbon dates to calendar years before present based on a user-defined curve (we used the 189 

IntCal20 calibration curve49), and then resamples the intervals in the time series to provide a 190 

95% confidence interval for the estimated extinction date. 191 

 192 

Demographic parameter estimation 193 

To build age-structured population models for the two extinct species, we applied allometric, 194 

phylogenetic, and measured relationships to predict plausible component demographic rates. 195 

We used the estimated adult body mass of 132 kg for Phanourios minor and 531 kg for 196 

Palaeoloxodon cypriotes32. For each species, we calculated the maximum rate of 197 

instantaneous population growth (rm) using the following equation for mammals50: 198 

𝑟m = 10!.#$%&'!.(#((log!")    [eq 1]         199 

                                200 

where M = mass (g). We then calculated theoretical equilibrium population densities (D, 201 

km-2) based on the following: 202 

𝐷 = 10&.%$#'!.*&!log!") 2⁄                          [eq 2] 203 

 204 

for mammalian herbivores51 (M = body mass in g), where dividing by 2 predicts for females 205 

only (i.e., assumed 1:1 sex ratio). We estimated the maximum age (ω) of each species 206 

according to: 207 

𝜔 = 10!.+$,!.%-log10)                                    [eq 3] 208 

 209 

for non-volant birds and mammals52 (M in g). We estimated fecundity (F; mean number of 210 

female neonates produced per year and per breeding female) for mammals53 as: 211 

𝐹 = 𝑒(.*%$'!.(%%log) 2⁄                                    [eq 4] 212 

 213 

dividing by 2 for daughters only (M in g). To estimate the age at first breeding (α), we used 214 

the following relationship for mammals54: 215 

𝛼 = 𝑒'%.-&,(.%&log)                                             [eq 5] 216 

 217 
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We fit a logistic power function to estimate age-specific fertilities (mx) from F and α of the 218 

general form: 219 

𝑚. =
/

1,0#
$
1
%                                                       [eq 6] 220 

 221 

where x = age in years, and a, b, c are constants estimated for each species, to a vector 222 

composed of (α-1) values at 0F, 
𝛼

2
 values at 0.75F, and for the remaining ages up to ω, the full 223 

value of F. This produced a continuous increase in mx up to maximum rather than a less-224 

realistic stepped series. 225 

To estimate realistic survival schedules, we first used the allometric prediction of adult 226 

survival (sad) as: 227 

𝑆ad = 𝑒'2
&".(&".)(log*

                               [eq 7] 228 

 229 

for mammals55, where M = body mass (g). For Phanourios, we obtained age-specific 230 

mortality rates42 (qx) from which we calculated age-specific survival (Sx = 1 – qx). For 231 

Palaeoloxodon, we applied the Siler hazard model56 to estimate the age- (x-) specific 232 

proportion of surviving individuals (lx); this combines survival schedules for immature, 233 

mature, and senescent individuals within the population: 234 

𝑙. = 𝑒
0&+!
$!

13%'2&$!#4𝑒'/).𝑒
0+,
$,
13%'2$,#4

            [eq 8] 235 

 236 

where a1 = initial immature mortality, b1 = rate of mortality decline in immatures, a2 = the 237 

age-independent mortality due to environmental variation, a3 = initial adult mortality, and b3 238 

= the rate of mortality increase (senescence). From lx, age-specific survival can be estimated 239 

as:  240 

𝑆. = 1 −
(6#'6#-!)

6#
                               [eq 9] 241 

 242 

We estimated the component parameters starting with 1 – Sad for a1 and a2, adjusting the 243 

other parameters in turn to produce a dominant eigenvalue (λ1) from the transition matrix 244 

containing Sx such that loge λ1 ≈ rm. 245 

 246 

Leslie matrix projections 247 

From the estimated demographic rates for each species, we constructed a pre-breeding, ω+1 248 

(i) × ω+1 (j) element (representing ages from 0 to ω years old), Leslie transition matrix (M) 249 

for females only (males are demographically irrelevant assuming equal sex ratios). Fertilities 250 

(mx) occupied the first row of the matrix, survival probabilities (Sx) occupied the sub-251 

diagonal, and we set the final diagonal transition probability (Mi,j) to Sω. Multiplying M by a 252 

population vector n estimates total population size at each forecasted time step (Caswell 253 

2001). Here, we used n0 = ADMw, where w = the right eigenvector of M (stable stage 254 

distribution), and A = the surface area of Cyprus at 14 ka (approximate period of arrival of 255 

humans) applied in the stochastic extinction scenario (A = 11,194 km2)27.  256 

To avoid an exponentially increasing population without limit generated by a transition 257 

matrix optimised to produce values as close to rm as possible, we applied a theoretical 258 
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compensatory density-feedback function. This procedure ensures that the long-term 259 

population dynamics were approximately stable by creating a second logistic function of the 260 

same form as mx to calculate a modifier (Smod) of the Sx vector according to total population 261 

size (Σn): 262 

           𝑆𝘮𝘰𝘥 =
/

1,0./
$
1
%                                         [eq 10] 263 

 264 

We adjusted the a, b, and c constants for each species in turn so that a stochastic projection of 265 

the population remained stable on average for 40 generations (40G), where: 266 

𝐺 =
log03𝘷𝘛𝘔4

1
1

@1
                                           [eq 11] 267 

 268 

and (vTM)1 = the dominant eigenvalue of the reproductive matrix R derived from M, and v = 269 

the left eigenvector57 of M. Although arbitrary, we chose a 40G projection time as a 270 

convention of population viability analysis to standardise across different life histories58,59. 271 

The projections were stochastic in that we β-resampled the Sx vector assuming a 5% 272 

standard deviation of each Sx and Gaussian-resampled the mx vector at each yearly time step 273 

to 40G. We also added a catastrophic die-off function to account for the probability of 274 

catastrophic mortality events (C) scaling to generation length among vertebrates60: 275 

𝐶 = A%
B                                                      [eq 12] 276 

 277 

where pC  = probability of catastrophe (set at 0.14). Once invoked at probability C, we 278 

applied a β-resampled proportion centred on 0.5 to the β-resampled Sx vector to induce a ~ 279 

50% mortality event for that year19, as we assumed that a catastrophic event is defined as “… 280 

any 1 yr peak-to-trough decline in estimated numbers of 50% or greater”60. Finally, for each 281 

species we rejected the first G years of the projection as a burn-in to allow the initial 282 

(deterministic) stable stage distribution to stabilise to the stochastic expression of stability 283 

under compensatory density feedback19. We ran 10,000 stochastic iterations of each model 284 

starting with allometrically predicted stable population size divided into age classes 285 

according to the stable stage distribution. We projected all runs to 40G for both species 286 

(removing the first G values as burn-in).  287 

 288 

Offtake simulation 289 

To determine relative susceptibility to offtake, first we progressively removed individuals 290 

from the n population vector, with age-relative offtake following the stable stage distribution 291 

of the target species. We then progressively increased the offtake and calculated the 292 

proportion of 10,000 stochastic model runs where the final population size fell below a quasi-293 

extinction (EQ) of 50 female individuals (100 total individuals total assuming 1:1 sex ratios). 294 

This threshold is based on the updated minimum size below which a population cannot avoid 295 

inbreeding depression61. This basic scenario does not link offtake to human dietary 296 

requirements or hunting capacity, nor does it translate offtake to resident human population 297 

sizes — it only establishes a relationship between gross offtake rates (individuals removed 298 

per projection interval) and the probability of quasi-extinction. 299 

 300 
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Animal growth rates 301 

For Phanourios, we sourced several parameters to estimate female and male Von Bertalanffy 302 

growth functions of the form:  303 

𝑀. = 𝑀max − (𝑀max −𝑀0)𝑒'G.    [eq 13] 304 

 305 

where M0 = mass at birth (kg), Mmax = maximum adult body mass (kg), k = growth rate 306 

constant, and x = age in years. We used 3 ages per sex (birth, age at sexual maturity, 307 

longevity) and corresponding mass estimates to fit the Von Bertalanffy equations using the 308 

nls function in R. We estimated sex-specific age at sexual maturity for females following 309 

equation 5, and adjusted for males by multiplying αfemale by the ratio of mean age at sexual 310 

maturity for male (6–13 years) and female (7–15 years) extant pygmy hippopotamus 311 

(Choerpsis liberiensis)62. For the corresponding masses, we calculated a ratio of maximum 312 

adult weight for Phanourios (132 kg) to the extant pygmy hippopotamus (Choerpsis 313 

liberiensis; 179–273 kg)62, and then used this ratio to correct size at birth for female (4.5 kg) 314 

and male (6.2 kg) C. liberiensis63, and estimated size at sexual maturity based on the 315 

observation that female H. amphibius reach sexual maturity at 0.78 of maximum weight64, 316 

and males at 0.65, as well as the maximum female and male weights estimated for C. 317 

liberiensis (179 kg and 273 kg, respectively62). The fitted Phanourios female and male Von 318 

Bertalanffy growth equations (Appendix I, Fig. S1) estimated median k = 0.3722 and 0.2972, 319 

respectively 320 

For Palaeoloxodon, we first calculated the mean adult male and female masses for African 321 

savanna elephants (Loxodonta africana)65, and proportioned the ratio across the mean mass 322 

for both sexes to estimate equivalent female and male maximum masses for Palaeoloxodon. 323 

We then substituted these masses into the sex-specific growth equations estimated for Asian 324 

elephants66 of the form: 325 

𝑀. = 𝑀𝘮𝘢𝘹51 − 𝑒'G(.,/)6
3
    [eq 14] 326 

 327 

where k = 0.092 (females) or 0.149 (males), a = 6.15 (females) or 3.16 (males), and x = age in 328 

years (Appendix I, Fig. S1).  329 

 330 

Edible meat 331 

To estimate the amount (mass) of edible meat ('meat weight') that can be obtained from a 332 

carcass of a large herbivore, we obtained data on the edible proportions (η) of several species 333 

of large ungulate67. There were multiple total weights of the edible portion available for the 334 

following species: barren-ground caribou (Rangifer tarandus groenlandicus), woodland 335 

caribou (R. tarandus caribou), moose (Alces alces), and muskox (Ovibos moschatus). We 336 

then divided these weights by the mean total mass (both sexes) of each species obtained from 337 

the following sources: R. tarandus groenlandicus68,69, R. tarandus caribou69, A. alces70, and 338 

O. moschatus71. While no edible-meat data on similar-sized elephants or hippopotamus exist, 339 

the values we obtained for other species of similar size are indicative of the approximate 340 

edible meat proportions of Phaniouros and Palaeoloxodon (we also test the relative 341 

importance of variation in this parameter in the global sensitivity analysis provided in 342 

Supplementary Information Appendix II). We then bootstrapped (10,000 iterations) the mean 343 
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and standard deviation of these proportions combining all species to provide a global mean 344 

proportion η = 0.314 ± 0.095 that we used in the stochastic hunting scenarios described 345 

below. 346 

 347 

Hunter-gatherer diet 348 

We first obtained estimates of the daily energy intake for hunter-gatherers72 for both adult 349 

females (ξf = 1877 ± 364 kCal day-1 = 7853 ± 1523 kJ day-1) and adult males (ξm = 2649 ± 350 

395 kCal day-1 = 11083 ± 1653 kJ day-1). Assuming the proportion of meat in the diet of 351 

hunter-gatherers73 (ζ) was 0.65, we translated meat into energy equivalents based on the mean 352 

value for African elephants (L. africana) of 130 kCal (μ) 100 g-1 meat74,75. With these values, 353 

we can estimate the total amount of meat consumed by an average adult female (342.6 kg) 354 

and male (483.4 kg) per year. Compared to the highest per-capita meat-consuming countries 355 

today (e.g., USA: 101.9 kg person-1 yr-1; Israel: 90 kg person-1 yr-1; Australia: 89.6 kg person-356 

1 yr-1; data for 2019)76), the estimated values for palaeo-hunter-gatherers are just over 4 times 357 

higher. 358 

 To create a function of annual meat requirements for each human age class from 0 to 359 

longevity, we obtained data on age-specific protein requirements for people77 (50 kg adult: 40 360 

g protein day-1, 14–18 year olds: 37 g day-1, 9–13 year olds: 24 g day-1, 4–8 year olds: 13.5 g 361 

day-1, 1–3 year olds: 9.2 g day-1) that we first transformed to proportions of the adult 362 

requirement (Ip) to which we fitted a logistic power function of the form:  363 

𝐼A = 𝑎 K
(/'K)2&%#,K     [eq 15] 364 

 365 

to estimate age- (year-) specific proportions and correct for the age class consuming meat (a 366 

= 1.1381, b = 0.1393, c = 0.1983, and x = age in years) (Appendix I, Fig. S2). 367 

 368 

Prey choice 369 

Different species provide different returns to human hunters based on components such as 370 

capture probability, animal body size, edible portion, and handling costs (e.g., pursuit time, 371 

butchering time, preparation time, etc.)75. We therefore applied the equations of Yaworsky et 372 

al.13 using the adult mass estimates of both species to estimate the mean and standard 373 

deviation of post-encounter return rate (π; cal hour-1) (defined as the energy provided divided 374 

by handling costs13: 375 

𝜋L = 60 22(%'A2)
M2,(%'A2)ℎ2

     [eq 16] 376 

 377 

where e = energetic payoff (cal), p = probability of acquisition failure, c = pre-acquisition 378 

handling time (min), h = post-acquisition handling time (min), s subscript indicates value for 379 

species s, and the multiplier 60 converts to energy hour-1. Using the coefficients and their 380 

standard errors used to estimate the parameters in equation 16, we developed a resampling 381 

approach where we produced 100,000 samples of πPhanourios and πPalaeoloxodon, and then 382 

calculated the number of times where πPhanourios > πPalaeoloxodon. The higher average relative 383 

return rate of Phanourios compared to Palaeoloxodon results from the increased handling 384 

costs of larger species due to higher probabilities of failed pursuit13. This sum divided by the 385 
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total number of iterations (100,000) gives the relative probability of targeting Phanourios 386 

over Palaeoloxodon (ψ = 0.773). Therefore, we assumed that ψ represented the relative 387 

likelihood of selecting Phanourios versus Palaeoloxodon that we resampled stochastically 388 

(see below) following a β distribution with mean = ψ and an arbitrary standard deviation = σψ 389 

= pψ(ψ) = 0.05ψ (but see global sensitivity analysis in Supplementary Informaiton Appendix 390 

II regarding the choice of pψ = 0.05). 391 

 392 

Hunting simulation 393 

We developed a stochastic simulation similar to the offtake simulation described above, but 394 

instead of sequentially reducing the n vectors for each species separately, we incremented the 395 

number of humans on the island of Cyprus and converted this number into megafauna meat 396 

equivalents to sustain the human population. This approach not only required translating 397 

animals culled into protein energy required by humans of different ages and sex, we also 398 

incorporated a prey-selection function (described in the previous section) as well as a density-399 

feedback on the meat portion of the human diet fulfilled by megafauna sources. 400 

 Assuming that 0.65 of the age-specific human energy requirements were provided by meat 401 

(ζ) on average73 (but see global sensitivity analysis in Supplementary Information Appendix 402 

II regarding this value), we developed an arbitrary feedback function whereby the proportion 403 

of 'other' meat sources (e.g., marine fish and shellfish, small terrestrial animals, etc.)77 404 

increased from 0.33 at the time of initial human arrival (assuming the populations of 405 

Phanourios and Palaeoloxodon were at their maximum equilibrium sizes), approaching 1.0 406 

sigmoidally as the megafauna populations approached extinction. This function accounts for 407 

decreasing prey encounter rates by human hunters as the prey populations dwindle, such that 408 

0.67 of the meat requirements are provided by megafauna sources at maximum megafauna 409 

densities, and approach zero as those populations approach extinction. 410 

 Starting with an initial human population size of 1000 (i.e., 500 females) — a large-411 

enough predator population to elicit some extinctions during the iterative process), we 412 

applied the age-specific energy requirements to the stochastic age structure generated by the 413 

model at each time step. Next, we β-resampled the probability of successfully acquiring 414 

Phanourios relative to Palaeoloxodon, and then calculated the number of individuals across 415 

their age distribution required to fulfil this human meat requirement (i.e., using the female- 416 

and male-specific growth curves for both species). We assumed that humans did not select 417 

male or female prey preferentially (relative proportion female versus male prey taken φ = 0.5, 418 

but see global sensitivity analysis in Supplementary Information Appendix II). We then 419 

removed these meat equivalents in terms of individuals culled from the megafauna n vectors 420 

at each time step, projecting those populations through to 80 generations (80G: to allow a 421 

sufficiently large human population enough time to drive a megafauna population to 422 

extinction) in each iteration. In cases when the Phanourios population declined enough to 423 

where it could no longer supply sufficient meat as the prey with the highest energy return rate 424 

(even after accounting for the change in 'other' meat categories described above), we 425 

transferred that meat requirement to Palaeoloxodon by removing the equivalent number of 426 

Palaeoloxodon individuals to account for the missing meat requirement.  427 
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 We then incremented the number of humans on the island and recorded the probability of 428 

quasi-extinction for each megafauna species, as well as the median time (years) required to 429 

drive each population to extinction. For each human population size increment we tested, we 430 

assumed that that human population remained stable during a 80 prey-generation projection 431 

interval, so our extinction predictions are necessarily conservative. We ran all code on the 432 

Flinders University High-Performance Computing facility DeepThought78, and all code and 433 

data required to repeat the analyses are available at 434 

github.com/cjabradshaw/CyprusHippoElephant. 435 

 436 

Results 437 

Estimated extinction windows 438 

After quality rating, there were 5 dates for Phanourios from the original 13 provided by 439 

Zazzo et al.41 that had a B rating, and 14 B-rated dates for Palaeoloxodon from the original 440 

30 provided by Wigand and Simmons45. The resultant windows of extinction estimated using 441 

the CRIWM unbiased algorithm on this B-rated dates were 11,995–11,092 calendar years 442 

before present for Phanourios, and 10,347–9,073 calendar years before present for 443 

Palaeoloxodon. Compared to the arrival window of 14,257–13,182 estimated for pre-444 

agropastoralist humans in Cyprus27, the Signor-Lipps-corrected megafauna extinction 445 

windows suggest that Phanourios went extinct 1,187–3,165 years after human arrival, and 446 

Palaeoloxodon went extinct 2,835–5,184 after human arrival (Fig. 1), although with the 447 

caveat that the extinction windows are not based on the highest-quality radiocarbon age 448 

estimates. 449 

 450 

Figure 1. Human arrival window (grey vertical bar; estimated27 using the calibration-resampled inverse-451 

weighted McInerny method, CRIWM algorithm48, and the CRIWM-estimated windows of extinction (red 452 

vertical bars) for Phanourios and Palaeoloxodon. Also shown are the hindcasted temperature anomalies (ºC, 453 

relative to the present) for Cyprus derived from the HadCM379 and TraCE21ka80,81 global circulation models. 454 

Also shown are major climatic periods: Last Glacial Maximum (LGM), Bølling-Allerød interstadial (B-O), 455 

Younger Dryas (YD), and the early to mid-Holocene. 456 

 457 
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 458 

Demographic estimates 459 

For Phanourios and Palaeoloxodon, respectively, the allometric equations predicted age at 460 

first breeding (α) = 4 and 5 years, maximum longevity (ω) = 36 and 43 years, equilibrium 461 

density = 1.28 and 0.46 individuals km-2 (corresponding to populations of 14,280 and 5,098 462 

individuals assuming a land area27 of Cyprus at 14 ka = 11,194 km2), and maximum 463 

instantaneous rate of exponential increase (rm) = 0.22 and 0.15. The deterministic matrix 464 

models provided generation lengths (G) of 11.4 and 14.2 years, respectively. 465 

 466 

Offtake simulation 467 

The offtake simulations demonstrated that Palaeoloxodon was more susceptible to extinction 468 

than Phanourios (Fig. 2), which is expected given the slower life history of the latter. Once 469 

the annual offtake of Palaeoloxodon began to exceed 200 individuals, the probability of 470 

quasi-extinction climbed precipitously, becoming close to 1.0 at an annual offtake of ~ 350 471 

individuals (Fig. 2). The extinction probability of the smaller Phanourios only began to 472 

increase after an annual offtake of ~ 650 individuals, reaching near certainty at ~ 1000 473 

animals annually (Fig. 2). 474 

 475 

Figure 2. Probability of quasi-extinction (EQ) of dwarf hippopotamus (Phanourios minor) and dwarf elephant 476 

(Palaeoloxodon cypriotes) as a function of the number of individuals removed per year (following the stable 477 

stage distribution).478 

 479 
 480 

Hunting simulation 481 

However, these relative susceptibilities reverse when we consider the second set of 482 

simulations estimating offtake as a function of human dietary requirements and prey choice. 483 

Because of the higher relative return rate of Palaeoloxodon, as well as their ~ 4-fold greater 484 
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mass compared to Phanourios, the elephant's extinction probability was lower than for the 485 

hippopotamus across the range of human population sizes eliciting some extinction risk (Fig. 486 

3). Here, Phanourios extinction risk began to increase once the human population on the 487 

island exceeded 3,000, and was near certain at human population sizes of ~ 4,500 (Fig. 3). 488 

The extinction risk of Palaeoloxodon similarly began to rise at human population sizes > 489 

3,000, but increased more slowly than for Phanourios, eventually achieving near-certain 490 

extinction risk at an island-wide human population of around 7,500 (Fig. 3). The time to drive 491 

the population of Phanourios to extinction correspondingly declined from around 800 years 492 

at a human population of ~ 3,700, to < 100 years at a human population of 4,500 (Fig. 3). 493 

Meanwhile, the time to drive the population of Palaeoloxodon to extinction declined from 494 

around 800 years at a human population of ~ 6,300, to < 100 years at a human population of 495 

just over 7,000 (Fig. 3). 496 

 497 

Figure 3. Probability of quasi-extinction (EQ) of dwarf hippopotamus (Phanourios minor) and dwarf elephant 498 

(Palaeoloxodon cypriotes) as a function of the number of people living on Cyprus (left axis; red), and median 499 

number of years to extinction for each species (right axis; blue). 500 

 501 

 502 

Discussion 503 

Conclusions drawn about the role of palaeo-human exploitation on the extinction of 504 

megafauna species are too often predicated on an uncritical comparison of uncertain 505 

chronologies, and do not typically examine the ecological plausibility of extinctions based on 506 

predator-prey dynamics or human energetic requirements42. Our stochastic model not only 507 

demonstrates that 3000–7000 pre-agropastoralist humans on Cyprus could have driven both 508 

dwarf hippopotamus and dwarf elephants to extinction, within < 1000 years, the predicted 509 
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chronology of extinctions (first hippopotamus, then elephants) matches the Signor-Lipps-510 

corrected extinction sequence derived from independent palaeontological evidence. Indeed, 511 

median human population sizes predicted for Cyprus during the Late Pleistocene have been 512 

estimated in the several thousands, from initial arrival at 14.3–13.2 ka to settlement of the 513 

entire island in as little as 200 years27. Rapid growth during that time also estimates that the 514 

human population could have numbered > 10,000 within < 400 years from initial arrival 515 

(median = 4300 after 400 years27). Clearly, these human population sizes were therefore 516 

sufficient to drive both the dwarf hippopotamus and dwarf elephant to extinction according to 517 

our conservative models.  518 

Elsewhere, the zooarchaeological record of large-mammal remains during the Late Upper 519 

Palaeolithic (14.0 ka–12.6 ka) is influenced strongly by cost-benefit regimes arising from 520 

human decision making, meaning that the abundance of zooarchaeological remains do not 521 

necessarily reflect animal densities in the landscape13. As such, the higher relative return rate 522 

of hippopotamus compared to elephants (expressed as ψ in the model) was an important 523 

determinant of the relative extinction chronology of the two species. However, ψ was a weak 524 

driver of variation in extinction risk predicted by our model (Fig. 4). Instead, the most 525 

important determinant of extinction risk for both species was the proportion of edible meat 526 

that could be derived from a single carcase (η). While we determined η from measured edible 527 

proportions of several Arctic species, it is possible that pre-agropastoralists on Cyprus were 528 

able to obtain higher portions, thereby reducing the number of individual hippopotamus or 529 

elephants killed to supply their human energetic requirements.  530 

We also incorporated a function that increased the proportion of 'other' meat sources in the 531 

diet as megafauna were depleted, based on empirical data that hunter-gatherers of the Late 532 

Pleistocene pursued and exploited a broad range of prey74. But this function was partially 533 

arbitrary because we do not know the shape of the relationship between megafauna 534 

abundance and reliance on other meat sources. However, traditional diets of Indigenous 535 

peoples in North America favour large species (particularly mammals)82, and both modelling 536 

and empirical data suggest that the distribution of body sizes in archaeological inventories 537 

match those built from food-recall and harvest surveys82. This latter evidence supports the 538 

assumption in the model that palaeolithic peoples would have preferentially selected 539 

megafauna over other meat sources until rarity of the former forced them to rely more on the 540 

latter. 541 

While the initial (pre-human) population sizes of both species of course influence 542 

extinction risk, there was only a modest influence of initial population size of hippopotamus 543 

on that species' extinction rate. The lack of a strong influence of the initial population size of 544 

elephants on that species' extinction rate is partially a function of the two-prey model 545 

favouring hippopotamus as human prey over elephants. Further, while our estimates of initial 546 

population size were derived from ecological theory, population densities would have varied 547 

spatially according to habitat diversity and island topography, including the presence of a 548 

large mountain range (Troödos Mountains) in the western region of Cyprus. While fossil sites 549 

for Phanourios and Palaeoloxodon remains span most of the island (Appendix III Fig. S5; 550 

Table S1), there are still large spatial gaps within the Troödos Mountains region and the far 551 

northeast (Fig. S5). 552 
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We did not incorporate any theoretical prediction of how environmental change might 553 

have exacerbated the extinction risk our model predicted. Climate hindcasts from the 554 

HadCM3 atmosphere-ocean general circulation model79 for Cyprus during the period from 14 555 

ka to 10 ka predicted a mean temperature rise of ~ 1.5 ℃ (Fig. 1) and a 44-mm increase in 556 

annual precipitation. However, the temporally finer-resolution (seamless) TraCE21ka climate 557 

model80,81 predicts a more dynamic climate during this same period, with a ~ 1 ℃ rise during 558 

the latter half of the Bølling-Allerød interstadial (14.6 ka–12.9 ka), followed by a ~ 1.4 ℃ 559 

decline during the Younger Dryas, and then a ~ 2.0 ℃ rise by 10 ka (Fig. 1). With increasing 560 

evidence for extinction synergies83 between human over-exploitation and environmental 561 

change in the demise of late Quaternary megafauna extinctions2-4,6-8, such simultaneous 562 

temperature and precipitation fluctuations could have exacerbated the extinction risk of both 563 

dwarf hippopotamus and elephants on Cyprus. Indeed, there is evidence for human- and 564 

climate-mediated collapse of ecological networks in ancient Egypt84, and Saltré et al.8 565 

concluded that combinations of aridification and human presence contributed to the local 566 

extinction of many megafauna species in Sahul. Our predictions of extinction risk arising 567 

solely from human over-exploitation should therefore be considered conservative. 568 

In addition to the feasibility of pre-agropastoralist humans driving both megafauna species 569 

on Cyprus to extinction demonstrated by our conservative models, we also argue that it was 570 

an attractive destination for early palaeolithic explorers. The notion that Cyprus was an 571 

“impoverished” landscape29-31,85-87 is not supported either by climate models hindcasting net 572 

primary production27 or from archaeobotanical records88,89. Indeed, evidence from pollen 573 

analysis of the early Holocene suggests that Cyprus was covered by dense forests of typical 574 

Mediterranean trees and shrubs (e.g., carob Ceratonia siliqua, cypress Cupressus spp., 575 

juniper Juniperus spp., kermes oak Quercus coccifera, Aleppo oak Q. infectoria, bay laurel 576 

Laurus nobilis, olive Olea europaea, oriental plane Platanus orientalis)88,89. Eratosthenes 577 

reported in the 3rd Century BC that the island was “thickly overgrown with forests”90, even in 578 

the arid central plain of Mesaoria91. In the Classical period, Cyprus was referred to as a 'green 579 

island', exporting timber and specialising in ship building92. Such a diverse, prey-filled 580 

landscape would therefore have been a highly sought destination once discovered by 581 

palaeolithic peoples27. 582 
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