[1] Murphy CJ (2002). Nanocubes and Nanoboxes. Science, 298: 2139-2141. doi: 10.1126/science.1080007.
[2] Hsu SLC, Wu RT (2007). Synthesis of contamination-free silver nanoparticle suspension for micro-interconnects. Mater. Lett., 61(17): 3719-3722. doi: 10.1016/j.matlet.2006.12.040
[3] Hou S, Hu XN, Wen T, Liu WQ, Wu XC (2013). Core-shell noble metal nanostructures templated by gold nanorods. Adv. Mater., 25(28): 3857-3862. doi: 10.1002/adma.201301169.
[4] Corro G, Vidal E, Cebada S, Pal U, Banuelos F, Vargas D, Guilleminot E (2017). Electronic state of silver in Ag/SiO2 and Ag/ZnO catalysts and its effect on diesel particulate matter oxidation: An XPS study. Appl. Catal. B: Environmental. 216: 1-10. doi: 10.1016/j.apcatb.2017.05.059
[5] Sarma B, Sarma BK (2017). Fabrication of Ag/ZnO heterostructure and the role of surface coverage of ZnO microrods by Ag nanoparticles on the photophysical and photocatalytic properties of the metal-semiconductor system. Appl. Surf. Sci. 410:557-565. doi.: 10.1016/j.apsusc.2017.03.154.
[6] Sarma B, Sarma BK (2018). Role of residual stress and texture of ZnO nanocrystals on electro-optical properites of ZnO/Ag/ZnO multilayer transparent conductors. J. Alloy. Compd., 734: 210-219. doi: 10.1016/j.jallcom.2017.11.028.
[7] Monteiro JFHL, Monteiro FC, Jurelo AR, Mosca DH (2018). Conductivity In (Ag, Mg)-doped delafossite oxide CuCrO2. Ceram. Int., 44(12): 14101-14107. doi: 10.1016/j.ceramint.2018.05.008.
[8] Huang QL, Wei WX, Wang LL, Chen HB, Li T, Zhu XS, Wu YP (2018). Synthesis of uniform Ag nanosponges and its SERS application. Spectrochim. Acta A: Mol. Biomol. Spectrosc., 201: 300-305. doi: 10.1016/j.saa.2018.05.019.
[9] Liu Q, Ju L, Zhong X, Dai Z, Lu Z, Yang H, Chen R (2018). Enhanced antibacterial activity and mechanism studies of Ag/Bi2O3 nanocomposites. Adv. Powder Technol., 29(9): 2082-2090. doi: 10.1016/j.apt.2018.05.015.
[10] Xu Y, Ma JX, Han Y, Xu HB, Wang Y, Qi DP, Wang W (2020). A simple and universal strategy to deposit Ag/polypyrrole on various substrates for enhanced interfacial solar evaporation and antibacterial activity. Chem. Eng. J. 384: 123379-123387. doi: 10.1016/j.cej.2019.123379.
[11] Yuan LY, Wan CY, Ye XR. Wu FH (2016). Facial synthesis of silver-incorporated conductive polypyrrole submicron spheres for supercapacitors. Electrochim. Acta. 213: 115-123. doi: 10.1016/j.electacta.2016.06.165.
[12] Chen DP, Qiao XL, Qiu XL, Chen JG, Jiang RZ (2011). Large-scale synthesis of silver nanowires via a solvothermal method. J. Mater. Sci.: Mater. Electron. 22: 6-13. doi.: 10.1007/s10854-010-0074-2.
[13] Caswell KK, Bender CM, Murphy CJ (2003). Seedless, surfactantless wet chemical synthesis of silver nanowires. Nano Letters. 3(5): 667-669. doi.: 10.1021/nl0341178.
[14] Chen SY, Carey III JL, Whitcomb DR, Buhlmann P, Penn RL (2018). Elucidating the role of AgCl in the nucleation and growth of silver nanoparticles in ethylene glycol. Cryst. Growth Des., 18(1): 324-330. doi.: 10.1021/acs.cgd.7b01300.
[15] Misran H, Salim MA, Ramesh S (2018), Effect of Ag nanoparticles seeding on the properties of silica spheres. Ceram. Int., 44(6): 5901-5908. doi.: 10.1016/j.ceramint.2017.12.118.
[16] Wan CY, Yuan LY, Ye XR, Wu FH (2014). Silver chloride micelle-induced tuning of pseudocapacitive manganese dioxide. Electrochim. Acta, 147: 712-719. doi: 10.1016/j.electacta.2014.10.013.
[17] Sawangphruk M, Kaewsongpol T. Direct electrodeposition and superior pseudocapacitive property of ultrahigh porous silver-incorporated polyaniline films. Mater. Lett. 87: 142-145. doi.: 10.1016/j.matlet.2012.07.103
[18] Elsellami L, Dappozze F, Houas A, Guillard C. (2017). Effect of Ag+ reduction on the photocatalytic activity of Ag-doped TiO2. Superlatt. Microstruct. 109: 511-518. doi: 10.1016/j.spmi.2017.05.043.
[19] Sawangphruk M, Pinitsoontorn S, Limtrakul J (2012). Surfactant-assisted electrodeposition and improved electrochemical capacitance of silver-doped manganese oxide pseudocapacitor electrodes. J. Solid State Electrochem. 16: 2623-2629. doi: 10.1007/s10008-012-1691-x.
[20] Sarno M, Casa M (2018). Green and one-step synthesis for Ag/graphene hybrid supercapacitor with remarkable performance. J. Phys. Chem. Solids. 120: 241-249. doi: 10.1016/j.jpcs.2018.04.045.
[21] Jiang RY, Cui CY, Ma HY, Ma HF, Chen T (2015). Study on the enhanced electrochemical performance of LiMn2O4 cathode material at 55 0C by the nano Ag-coating. J. Electroanal. Chem. 744: 69-76. doi: 10.1016/j.jelechem.2015.02.016.
[22] Singu BS, Yoon KR (2018). Highly exfoliated GO-PPy-Ag ternary nanocomposite for electrochemical supercapacitor. Electrochim. Acta. 268: 304-315. doi: 10.1016/j.electacta.2018.02.076.
[23] Patil DS, Pawar SA, Devan RS, Gang MG, Ma YR, Kim JH, Tatil PS (2013). Electrochemical supercapacitor electrode material based on polyacrylic acid/polypyrrole/silver composite. Electrochim. Acta. 105: 569-577. doi.: 10.1016/j.electacta.2013.05.022.
[24] Liu J, Li M, Zhang YQ, Yang LL, Yao JS (2013). Preparation and enhanced electrochemical properties of Ag/polypyrrole composites electrode materials. J. Appl. Polym. Sci. 129: 3787-3792. doi.: 10.1002/app.39102.
[25] Iqbal J, Numan A, Ansari MO, Jagadish PR, Jafer R, Bashir S, Mohamad S, Ramesh K, Ramesh S (2020). Facile synthesis of ternary nanocomposite of polypyrrole incorporated with cobalt oxide and silver nanoparticles for high performance supercapattery. Electrochim. Acta 348: 136313-136322. doi: 10.1016/j.electacta.2020.136313.
[26] Feng XM, Huang HP, Ye QQ, Zhu JJ, Hou WH (2007). Ag/Polypyrrole core-shell nanostructures: interface polymerization, characterization, and modification by gold nanoparticles. J. Phys. Chem. C 111(24): 8463-8468. doi: 10.1021/jp071140z.
[27] Singu BS, Yoon KR (2018). Mesoporous polypyrrole-Ag nanocomposite for supercapacitors. J. Alloy. Compd., 742: 610-618. doi: 10.1016/j.jallcom.2018.01.328.
[28] Dong XY, Ji XH, Wu HL, Zhao LL, Li J, Yang WS (2009). Shape control of silver nanoparticles by stepwise citrate reduction. J. Phys. Chem., 113(16): 6573-6576. doi: 10.1021/jp900775b.
[29] Ji XH, Song XN, Li J., Bai YB, Yang WS, Peng XG (2007). Size control of gold nanocrystals in citrate reduction: the third role of citrate. J. Am. Chem. Soc., 129(45): 13939-13948. doi: 10.1021/ja074447k.
[30] Yang ZQ, Qian HJ, Chen HY, Anker JN (2010). One-pot hydrothermal synthesis of silver nanowires via citrate reduction. J. Colloid Interface Sci. 352(2): 285-291. doi: 10.1016/j.jcis.2010.08.072.
[31] Djokic S (2008). Synthesis and antimicrobial activity of silver citrate complexes. Bioinorg. Chem. Appl., 2008: 1-7. doi:10.1155/2008/436458.
[32] Genies EM, Bidan G, Diaz AF (1983). Spectroelectrochemical study of polypyrrole films. J. Electroanal. Chem. 149(1-2): 101-103. doi: 10.1016/s0022-0728(83)80561-0.
[33] Prieto P, Nistor V, Nouneh K, Oyama M, Abd-Lefdil M, Diaz R (2012). XPS study of silver, nickel and bimetallic silver-nickel nanoparticles prepared by seed-mediated growth. Appl. Surf. Sci. 258(22): 8807-8813. doi: 10.1016/j.apsusc.2012.05.095.
[34] Perry DL, Grint A (1983). Application of XPS to coal characterization. Fuel, 62(9): 1024-1033. doi: 10.1016/0016-2361(83)90135-7.
[35] Zhang S, Xie H, Zeng XT, Hing R (1999). Residual stress characterization of diamond-like carbon coatings by an X-ray diffraction method. Surf. Coat. Technol. 122(2-3): 219-224. doi: 10.1016/S0257-8972(99)00298-4.
[36] Pong BK, Elim HI, Chong JX, Ji W, Trout BL, Lee JY (2007). New insights on the nanoparticle growth mechanism in the citrate reduction of gold(III) salt: formation of the Au nanowire intermediate and its nonlinear optical properties. J. Phys. Chem. C, 2007, 111: 6281–6287. doi: 10.1021/jp068666o.