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Abstract
Endogenous and exogenous processes are associated with distinctive molecular marks in somatic
tissues, including human tumours. Here, we used integrative multi-omics analyses to infer sources of
inter-patient somatic variation within clear cell renal cell carcinomas (ccRCC) and used them to explore
how the disease aetiology and progression are reflected in the tumour DNA methylome, transcriptome,
and somatic mutation profile. The main source of inter-patient variation within ccRCC tumours was
associated with ageing, particularly cellular mitotic age estimated by DNA methylation (epiTOC2), clock-
like DNA mutational signatures (SBS1/ID1), and telomere attrition, independent to chronological age.
This component was associated with PBRM1 and SETD2 somatic cancer driver mutations, genome
instability, tumor stage, grade, and ccRCC patient survival. Pan-cancer analysis supported the similar role
of this molecular component in other cancer types. The ccRCC tumour microenvironment was another
source of inter-patient variation, including a component associated with BAP1 driver mutations,
epigenetic regulation of epithelial-mesenchymal transition genes (i.e., IL20RB, WT1) and patient survival.
An additional source of ccRCC inter-patient variation was linked to the epigenetic regulation of the
xenobiotic metabolism gene GSTP1. This molecular component was associated with tobacco usage and
tobacco-related genomic features, implying a relationship with tobacco-related carcinogenesis, but also
present in tumours of never-smoking patients, potentially implicating it in other genotoxic effects. By
considering how the tumour DNA methylome, transcriptome, and somatic mutation profile vary across
patients, we provide novel insights into the endogenous and exogenous processes acting within ccRCC
tumours and their relation to the disease aetiology and progression.

Introduction
Renal cell carcinoma (RCC) is the 16th most common cancer type worldwide, accounting for ~ 2% of all
cancer patient deaths in 2020 (Sung et al., 2021). Clear cell RCC (ccRCC) is the most frequent histological
subtype (~ 75%) (Hsieh et al., 2017). The incidence rates of ccRCC are higher in high-income countries,
particularly in central and northern Europe, (Hsieh et al., 2017) with an increasing trend in incidence
globally (Huang et al., 2022). Risk factors associated with ccRCC include age, sex, obesity, hypertension,
and tobacco smoking; although they collectively explain less than 50% of the newly diagnosed cases
(Hsieh et al., 2017).

A better understanding of the underlying molecular processes associated with ccRCC tumours could
provide new insights into disease aetiology and how the tumour progresses. Endogenous and exogenous
exposures leave distinct molecular marks through the course of a lifetime, detectable at DNA and RNA
levels. Recurrent DNA mutation patterns, or DNA mutational signatures, have been linked to endogenous
(e.g., cellular ageing, APOBEC activity) and exogenous exposures (e.g., tobacco smoke, aristolochic acid)
(Alexandrov et al., 2015; Alexandrov et al., 2020, Scelo et al., 2014; Senkin et al., 2023). The methylome is
similarly impacted by exogenous and endogenous processes (Herceg et al., 2018), with tobacco smoking,
ageing and somatic driver mutations provoking aberrant DNA methylation patterns (Linehan et al., 1995;
Gerlinger et al., 2012; Cancer Genome Atlas Research Network, 2013; Hakimi et al., 2013; Hannum et al.,
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2013; Horvath et al., 2013; Guida et al., 2015; Joehanes et al., 2016; Şenbabaoğlu et al., 2016; Yang et al.,
2016; Ricketts et al., 2018; Levine et al., 2018; Motzer et al., 2020; Halaburkova et al., 2020; Belsky et al.,
2020; Chamberlain et al., 2022). Integrative multi-omics approaches, which detect sources of inter-
individual variability, can improve representation of the molecular processes present in somatic tissues
compared with a single-omic approach (Argelaguet et al., 2020; Cantini et al., 2021). In the current study,
we have investigated if the integration of somatic DNA mutational signatures, cancer driver mutations,
DNA methylome, and transcriptome profiles from well-characterized cohorts of ccRCC patients can
provide novel insights into kidney cancer aetiology and disease progression.

Results and discussion
The current work used a two-stage study design. An initial discovery phase identified the sources of
molecular variance (or latent factors) across tumours of ccRCC patients using the unsupervised Multi-
Omics Factor Analysis (MOFA) approach to integrate DNA methylome, transcriptome, and somatic
mutation profile data from whole-genome sequencing (WGS) data (see methods; Supplementary Fig. 1–
2). We used LASSO regression (see methods, Supplementary Table 1) to select key features to establish
signatures for ccRCC latent factors and attributed these signatures to independent cohorts of ccRCC
patients in a validation phase. Associations between latent factors and molecular and epidemiological
features were then tested within the discovery and validation phases. The characteristics of each cohort
are described in Supplementary Table 2 and workflow of the study in Supplementary Fig. 1.

Description of molecular components in ccRCC tumours
Collectively, 31%, 41%, and 6% of the variance in DNA methylome, transcriptome, and somatic mutation
profile data, respectively, were explained by the first six latent factors estimated by MOFA (Fig. 1). While
pan-cancer analyses reported the global DNA hypomethylation of tumours in comparison with their
histological normal material (Witte et al., 2014), the CpG sites associated with latent factors tended to be
hypermethylated and annotated to functional regions of the genome (CpG islands, shores, and shelves
within regulatory and coding regions) (Fig. 2A, Supplementary Tables 3–6, Source data file). There was
no consistent evidence for associations between latent factors and global DNA methylation, measured by
the mean methylation levels of Alu and LINE1 transposable elements (Supplementary Table 7), implying
that DNA methylation changes in specific functional regions of the genome contributed to most of the
inter-patient variation in the DNA methylome. Important inter-patient variation in the gene expression
levels (transcriptome) across ccRCC tumours were captured by the latent factors (Fig. 1). Pathway
analysis showed that the gene expression levels with the highest loadings in each latent factor were
enriched for cancer-related pathways, such as those involved on immune system, metabolism, cell cycle,
cell plasticity and signalling, chromatin remodelling, and tissue development (Fig. 2B, Supplementary
Table 8). Latent factors were also related to a range of DNA mutational signatures, including those
implicated in endogenous (i.e., SBS1, SBS13) and exogenous (e.g., SBS4, DBS2) processes, as well as
signatures where the aetiology remains unclear (i.e., SBS40a,b,c, ID5). Latent factors were also related to
the presence of ccRCC somatic cancer driver mutations in genes that act as epigenetic regulators
(PBRM1, SETD2, BAP1, and KTM2C) (Fig. 2C, Source data file).
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In the following sections, we will report the key findings of latent factors 1 to 6 using MOFA (discovery)
and their respective signatures (validation) to illustrate sources of ccRCC inter-patients’ variability
potentially attributed to endogenous and exogenous exposures (more details in MOFA subsection in
methods).

The major ccRCC molecular component is linked to cellular mitotic age.

The major component of ccRCC inter-patients’ variability (latent factor 1) was typified by DNA
hypermethylation of CpG islands annotated to functional regions of the genome (Fig. 2A, Supplementary
Table 4). These profiles were similar to those noted in cellular ageing processes (Marttila et al., 2015; Bell
et al., 2019) and latent factor 1 was associated with chronological age (Table 1), prompting us to explore
this ccRCC component in the context of biological ageing. Biological age is a complex process that
reflects an individual’s physiological state over time; varying aspects can be measured by epigenetic
clocks (Rutledge et al., 2022). Latent factor 1 was correlated with a range of epigenetic clocks, showing
the highest correlation with the age-adjusted mitotic-like clock epiTOC2 (Teschendorff, 2020)
(Supplementary Fig. 3). EpiTOC2 is based on the CpG sites of Polycomb target genes that are
unmethylated at birth but become progressively methylated as cells replicate, a process called cellular
mitotic age (Yan et al., 2016, Teschendorff, 2020). Consistent with this, pathway analysis of gene
expression levels correlated with latent factor 1 suggested an enrichment for Polycomb (EZH2) target
genes (Supplementary Table 8). Linear regression models estimated that this epigenetic clock explained
around 80% of the variance in latent factor 1 across ccRCC tumours (Fig. 3A). Latent factor 1 was also
associated with other types of mitotic clocks, including clock-like DNA mutational signatures (SBS1/ID1)
(Fig. 2C) and telomere attrition (Supplementary Table 9), reinforcing the hypothesis that these metrics act
as proxies for the number of cell mitosis (Alexandrov et al, 2015; Yang et al., 2016, Alexandrov et al, 2020;
Teschendorff, 2020). Similarly, phenotypic consequences consistent with higher mitotic counts, such as
higher copy number alteration fraction of the genome and homologous recombination DNA repair
deficiency, were associated with this ccRCC component (Supplementary Table 9). It was also associated
with the presence of somatic cancer driver mutations in PBRM1 and SETD2, chromatin remodeling genes
involved in cell senescence (Lee et al., 2016) and proliferation (Dominguez et al., 2016; Cai et al., 2019)
(Fig. 2A, Supplementary Table 9). Latent factor 1 was strongly associated with tumour stage and grade
(Table 1, Fig. 3B). Patients in the top quintile of latent factor 1 were estimated to be 23 times more likely
to be late-stage tumours (III and IV) and 9 times more likely to be high-grade tumours (grade 3–4),
compared to those in the bottom quintile (Supplementary Table 9). Nevertheless, the levels of latent
factor 1 considerably varied within ccRCC tumours within tumour stage and grades (Fig. 3B) and
multivariate analysis suggested that the associations between latent factor 1 appeared not to be driven
by tumour stage and grade alone (Supplementary Table 9). Consistent with the notion that cellular
mitotic age is accelerated in tumour tissues, the patient’s tumor material had marked higher values of
latent factor 1 (tumours: mean of 0.43 ± 0.95; normal tissue: mean of -0.87 ± 0.20, p = 1.6x10− 45) than
paired normal kidney tissue after adjustments for chronological age (Fig. 3C). Taken together, the main
source of ccRCC inter-patients’ variability in the tumour DNA methylome appears related to cellular
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mitotic age, which may be influenced by proliferative effects of somatic mutations in PBRM1 and SETD2.
The top 5 epigenetically regulated genes with the highest loadings in latent factor 1 encode zinc-finger
transcription factors with pleotropic role in cancer (Jen and Wang, 2016), such as ZNF471 previously
linked to ageing process (Marttila et al., 2015), and SPON1, essential to nephron formation in mice (Vidal
et al., 2020) (Supplementary Table 3). Such genes may provide additional clues to explain how the
deregulation of genes important to kidney homeostasis might contribute to the biological ageing process
in ccRCC tumours.

The latent factor 1 signature was inferred across tumour samples from the TCGA pan-cancer cohorts (N 
= 8,040) (see methods, Supplementary Table 1). The signature for latent factor 1 explained on average
15% of variance in tumor DNA methylation in TCGA patient cohorts, ranging from 31% of variance
explained in lymphoid neoplasm diffuse large B-cell lymphoma (TCGA-DLBC) to 5% in Uveal Melanoma
(TCGA-UVM) (Supplementary Table 10). Independent to ccRCC tumours (TCGA-KIRC), the latent factor 1
signature was strongly associated with epiTOC2, dosage of the clock-like mutational signature SBS1,
WGS-telomere length ratio, and copy number alterations in a joint model of TCGA tumours combined
(Table 2). Intriguingly, these effects also appeared particularly prominent in other histological subtypes of
kidney cancer (TCGA-KICH/chromophobe, TCGA-KIRP/papillary) as well as in other tumour types (e.g.,
adrenocortical carcinoma/TCGA-ACC, mesothelioma/TCGA-MESO, pancreatic/TCGA-PAAD)
(Supplementary Table 10).

Molecular components related to the ccRCC tumour microenvironment.

To further explore how tumour microenvironment (TME) contributes to ccRCC inter-patients’ variability
across multi-omics layers, we imposed 65 gene expression TME signatures derived from previously
published single-cell RNA sequencing (scRNA) data of ccRCC tumours (Li et al., 2022) into bulk ccRCC
tumour transcriptomes (see methods). The scRNA-derived signatures were correlated within patient’s
tumours (Supplementary Fig. 4) and 27 representative signatures could be derived from the 65 TME
signatures (see methods). Figure 4A describes the replicated associations between TME signatures and
latent factors in the validation series, suggested from the discovery series (Supplementary Fig. 5A).
Latent factors 2–6 were associated with TME signatures related to kidney epithelial, immune cell
infiltrates, inflammation, epithelial-mesenchymal transition process (EMT) and cell proliferation
processes (Fig. 4B), consistent with the TME making an important contribution to the inter-patient’s
variability in ccRCC (Li et al., 2022).

Latent factor 2 captured shared inter-patients’ variability across omics layers (Fig. 1), associating with
DNA methylation changes (annotated to CpG island and open sea, Fig. 2A), immune system-related
pathways (Fig. 2B, Supplementary Table 8), and BAP1 cancer driver mutations (Fig. 2C). Higher latent
factor 2 levels were observed in male patient’s tumours compared with female patient’s tumours
(Table 1). This ccRCC component was associated with the presence of TME signatures related to EMT
process, proliferating cells (cycling endothelial cells and cell cycle kidney meta-programs) and myeloid
cells (particularly fibronectin-positive tumour associated macrophages/FN1_TAM) (Fig. 4A,
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Supplementary Fig. 5A), and late-stage, high-grade tumours (Table 1). Of the differentially methylated
regions associated with latent factor 2, the expression of EMT related genes (WT1, IL20RB, KRT19)
(Kalluri & Weinberg, 2010; Wang et al., 2020; Guo et al., 2022; Wu et al., 2023) appeared epigenetically
upregulated (Supplementary Table 5). The CpG sites annotated to IL20RB (interleukin 20 receptor subunit
beta) displayed the highest functional impact on its transcript levels (Supplementary Table 5), with higher
levels of latent factor 2 associating with DNA hypomethylation (1st exon and 5-UTR) of IL20RB and
respective upregulation of its RNA levels (Fig. 4B). The functional regulation of IL20RB expression by
DNA methylation was pronounced in the presence of BAP1 cancer driver mutations regardless of tumor
stage in ccRCC (Supplementary Fig. 5B). Multivariate analyses suggested that IL20RB expression levels
predicted TME features (i.e., cell cycle, EMT, and FN1_TAM) in addition to the effects of somatic cancer
driver mutations in BAP1 gene (Fig. 4C). Together, these results indicate that latent factor 2 is
representing a complex relationship between the DNA hypomethylation in specific CpG sites and
increased expression of EMT and cell proliferation related genes (i.e., IL20RB, KRT19, WT1), BAP1 cancer
driver mutations, and ccRCC tumour microenvironment components (i.e., FN1_TAM) that could contribute
to disease progression and unfavorable prognosis of the ccRCC patients, particularly in men.

Latent factor 6, epigenetic regulation of GSTP1, and genotoxicity
An additional source of inter-patient’s variability was an intriguing ccRCC component (latent factor 6)
linked to DNA hypermethylation and gene expression changes (Fig. 1). This component was associated
with tobacco smoking (Table 1), the environmental exposure robustly associated with ccRCC risk by
observational studies (Hsieh et al., 2017). The DNA methylation patterns in CpG sites in proximity to CpG
islands and gene bodies noted with latent factor 6 (Fig. 2A) were similar to those observed in tobacco
smokers in blood (Guida et al., 2015; Joehanes et al., 2016; Plusquin et al., 2017; Svoboda et al., 2021); it
was also associated with the dosage of tobacco-related DNA mutational (SBS4 and DBS2) (Fig. 2C)
(Alexandrov et al., 2020) and methylation signatures (Fig. 5A) (Chamberlain et al., 2022). Of the
differential methylated regions associated with latent factor 6, the CpG sites annotated to GSTP1
(glutathione S-transferase pi) displayed the highest functional impact on its transcript levels
(Supplementary Table 6). Latent factor 6 was related to hypermethylation and decreased expression of
GSTP1 (Fig. 5A), estimated to jointly explain around 36% of the variance in latent factor 6. GSTP1 is a key
enzyme involved in phase II detoxification of xenobiotics by glutathione conjugation and it has been
implicated in the metabolism and clearance of a variety of genotoxic compounds (e.g., the carcinogens in
tobacco smoke, cisplatin, mercury as well as endogenous free radicals) (Miller et al., 2003; Simic et al.,
2009; Sawers et al., 2014; Shin et al., 2017). Epigenetic silencing of GSTP1 is postulated to increase
cellular sensitivity to genotoxic compounds (Su et al., 2007; Rønneberg et al., 2008, Cui et al., 2020).
Consistent with this, when excluding the outlier effect of high mutation burden tumours from Romania,
latent factor 6 was associated with total tumor mutation burden (Fig. 5A) among tobacco smokers,
particularly in ever smokers (Supplementary Table 11). It is noteworthy that latent factor 6 was also
present in never smokers and associated with DNA mutational signatures ID5 and SBS40b (Fig. 2C)
commonly observed in ccRCC, suggesting that these DNA mutational signatures may be related to
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genotoxic compounds, as raised elsewhere (Senkin et al., 2023). ccRCC tumours with higher loadings of
latent factor 6 tended to have lower levels of the gene expression signatures related to interferon gamma
(INFG) response, implying a decrease in cellular response to INFG (Fig. 2B, Fig. 4A, Supplementary
Table 8). INFG acts as a gatekeeper of ccRCC progression by restraining the clonal expansion of ccRCC
cells (Perelli et al., 2023). The suppression of INFG response associated with latent factor 6 might also
have contributed to formation of a permissive environment for the expansion of these tumour cells and
disease progression. Latent factor 6 was also associated with the presence of cancer driver mutations
(e.g., KMT2C) (Fig. 2C) and ccRCC tumours of female patients had higher loadings of this ccRCC
component (Table 1), although how these relate to molecular processes captured by latent factor 6
remains to be elucidated. Interestingly, latent factor 6 was significantly higher in a subset of normal
kidney tissues in comparison with the matched ccRCC tumours (mean of 0.95 ± 0.26 vs. mean of -0.47 ± 
0.89, p = 6.1x10− 56) (Fig. 5B). While ccRCC tumours tended to have lower RNA levels of GSTP1 than
matched normal kidney tissues, a discrete distribution of DNA methylation levels of GSTP1 in tumour
samples were observed, with one subset of tumours displaying hypermethylation and another one
hypomethylation of GSTP1 CpG sites (Supplementary Fig. 6). Together, these findings suggest that there
may be an impaired metabolism of potentially exogenous compounds, such as tobacco smoke exposure,
in ccRCC tumours, leading cells to accumulate more somatic DNA mutations once exposed to such
genotoxic compounds.

We then inferred latent factor 6 across tumour samples from the TCGA pan-cancer cohorts (see methods,
Supplementary Table 12). The associations between latent factor 6, DNA methylation and RNA levels of
GSTP1, tobacco methylation signature, and total mutation burden were also observed in papillary cell
kidney cancer (Supplementary Table 12). However, this relationship varied substantially in other tumour
types (Supplementary Table 12), which might reflect the differences in aetiology by tumour type.

The prognostic significance of ccRCC components
Finally, we investigated the prognostic value of the latent factors identified in ccRCC tumours in the
discovery and validation sets. Latent factors were associated with ccRCC patients’ survival (Fig. 6), with
worse survival of ccRCC patients noted for higher values of latent factors 1 (Validationmodel1: HR: 1.63,

95%CI = 1.35–1.98, p = 4.1x10− 7), latent factor 2 (Validationmodel1: HR: 1.46, 95%CI = 1.16–1.84, p = 
0.001), and latent factor 5 (Validationmodel1: HR: 1.34, 95%CI = 1.11–1.63, p = 0.003) at baseline model
(model1: sex and age at diagnosis). Despite the respective 14% and 17% attenuation in the effect of
latent factors 2 (Validationmodel2: HR: 1.33, 95%CI = 1.06–1.67, p = 0.014) and 5 (Validationmodel2: HR:
1.23, 95%CI = 1.00-1.53, p = 0.055) on the overall survival of ccRCC patients after additional adjustments
for tumour stage and grade, their association estimates remained consistent (Fig. 6). Furthermore, these
latent factors were also associated with tumour stage and grade (Table 1). When considering other
tumour types in the TCGA cohorts, we also noted a similar striking prognostic value for latent factor 1 in
patients with papillary kidney cancer (TCGA-KIRP: HR: 2.63, 95%CI = 1.75–3.69, p = 6.8x10− 17) and other
cancer types (e.g., TCGA-LGG, TCGA-ACC) (Supplementary Table 10). Our findings are in line with the
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previously described role of BAP1 somatic mutations, EMT, and tumour immune cells (factor 2), as well
as cell proliferation (factor 5) on ccRCC patients’ outcomes (Hakimi et al., 2013; Rickets et al., 2018;
Motzer et al., 2020).

Discussion and conclusions
We have explored how the DNA methylome, transcriptome, and somatic mutation profiles of ccRCC
tumors are shaped by disease aetiology and progression. The main biological sources of ccRCC inter-
patient variation were detected using an integrative multi-omics analysis and then attributed into
independent normal and tumour validation ccRCC datasets, as well as in other tumour types. We
identified how ccRCC risk factors, such as cellular ageing processes, sex, and tobacco smoking
behaviours impact the ccRCC tumour’s genomic profiles, as well as gained novel insights into tumor
microenvironment features and genotoxic agents related to disease aetiology and progression.

Kidney tissue has striking physiological heterogeneity determined by a unique vascularization structure
with varying oxygen supply, energy demand, and different physiological functions. The proximal nephron
segments are responsible for reabsorption of filtered fluid and solutes, whereas the distal nephrons
concentrate urine and regulate salt excretion (Scholz et al., 2021). The function of the proximal nephron
segment makes this part of the kidney particularly sensitive to metabolites derived from insults or risk
factors. Given that ccRCC tumours arise from the proximal tubule (Young et al., 2018), this notion may
explain the extent to which we observed genomic changes across ccRCC tumours to be associated with
endogenous and exogenous process linked to risk factors and disease progression.

Some limitations of this study should be recognized. Firstly, our study is primarily focused on ccRCC
tumours, which may have limited our ability to distinguish elements involved in disease aetiology (i.e.,
tobacco smoking) compared to those involved in the progression (tumour microenvironment features
such as pro-inflammatory tumour-associated macrophages) of the tumour. We partially mitigated this by
inferring the ccRCC molecular components in histologically normal kidney material and exploring
molecular processes related to aetiological risk such as cellular ageing. Additional observational and
genomic studies are needed to demonstrate factors involved in ccRCC aetiology and progression.
Secondly, the integrative multi-omics approach used in this study (MOFA) is based on high-variance
molecular variables across tumours capturing the principal sources of inter-patient’s variation, and thus,
minor sources of variation may not be resolved, which could explain the lack of ccRCC molecular
components related to SBS22, the DNA mutational signature suspected to be provoked by the
aristolochic acid exposure in ccRCC patients from Romania but only present in less than 15% of patients.
The inference of signatures in the validation series, derived from whole-exome sequencing data in
contrast to the WGS from the discovery set, is also not expected to be perfectly accurate, which may
explain differences in effect sizes between the discovery and validation series. The high rates of missing
data in the TCGA datasets also limited further validation of some findings, such as those related to body
mass index, hypertension, and tobacco smoking status. WGS data were also absent in the validation
cohorts limiting our ability to explore and replicate the relationship between latent factors and DNA
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mutational signatures that are more difficult to attribute (e.g., SBS4, SBS40B) in the cohort we used for
validation.

In summary, our study expands the current knowledge of the underlying biological processes in ccRCC
tumours by unravelling molecular marks linked to endogenous and exogenous exposures detected at
different omic layers. This includes ccRCC components linked to cellular mitotic age, tobacco smoke
exposure, and tumour microenvironment, with potential prognostic value for patients.

Material and methods

Participants of the study
Discovery set. The participants included in the discovery set were part of the Mutographs project that was
coordinated by the International Agency for Research on Cancer (IARC/WHO) with available WGS,
transcriptome (microarray), and DNA methylation data (Supplementary Table 2). The participants
included in the study met the following criteria (N = 151): age at diagnosis > = 18 yearsold (mean of 60.3 
± 10.7), reviewed diagnosis of primary ccRCC by pathologists following the guidelines from the
International Cancer Genome Consortium, and no history of cancer treatment. The exclusion criteria were
the non-availability of informed consent or suitable samples according to the protocol requirements.
More details in Senkin et al., (2023). Validation sets. The IARC ccRCC validation cohort was composed of
two IARC-led cohort studies, the K2 study and the NCI/IARC study in Central Europe and was used for the
validation of transcriptome findings. Both hospital-based studies had transcriptome data available for
ccRCC tumoural (N = 462) and normal adjacent kidney tissue samples (N = 256), with the same inclusion
and exclusion criteria as the discovery set (Supplementary Table 2) and described elsewhere (Laskar et
al., 2021). The TCGA cohort was used to validate the genomic findings of DNA methylation and related to
somatic cancer driver mutations. IARC-ccRCC datasets with available transcriptome data based on
microarray technology were used for validation of gene expression. The molecular and clinical
information regarding the participants of TCGA cohorts is publicly available at
https://portal.gdc.cancer.gov/ and DNA methylation data (normalized beta values), including primary
tumours and matched normal adjacent tissues were obtained using TCGAbiolinks R package (version
2.22.3) (Colaprico et al., 2016).

DNA mutational signatures and cancer driver mutations
DNA mutational signatures and cancer driver mutations were obtained from WGS data from the
Mutographs project, as described elsewhere (Senkin et al, 2023.). Briefly, WGS was conducted on Illumina
HiSeqX platform (Ilumina, San Diego, CA, USA) with a target coverage of 40X and sequence reads were
aligned to GRCh38 human reference genome. Somatic variant calling was performed using the standard
Wellcome Sanger Institute’s analysis pipeline (https://github.com/cancerit). The mutational matrices
were generated by SigProfilerMatrixGenerator
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(https://github.com/AlexandrovLab/SigProfilerMatrixGenerator), DNA mutational signatures were
extracted using the default options of SigProfilerExtractor
(https://github.com/AlexandrovLab/SigProfilerExtractor) (Islam et al., 2022), and activities of each DNA
mutational signature were attributed along with the confidence intervals using the MSA tool
(https://gitlab.com/s.senkin/MSA) (Senkin, 2021). For the identification of cancer driver mutations, dNdS
approach restricting to a panel of known cancer genes (Martincorena et al., 2017) followed by a
consensus annotation of candidate driver mutations using Cancer Gene Census
(https://cancer.sanger.ac.uk/censu) and Cancer Genome Interpreter
(https://www.cancergenomeinterpreter.org) tools were used. Downsampling of WGS sequenced samples
to whole-exome was performed using SigProfilerMatrixGenerator by applying the 'exome' option, which
downsamples mutational matrices to the exome regions of the genome to explore the relationship
between latent factors and DNA mutational signatures in TCGA cohorts.

Transcriptome data
Processed transcriptome data of normal adjacent kidney and ccRCC tumour samples used for both
discovery and IARC validation series were derived from previous studies (Laskar et al., 2021). Briefly, gene
expression analysis was performed using Illumina HumanHT-12 v4 expression BeadChips (Ilumina, San
Diego, CA, USA), restricting to samples with RNA integrity > 5. Raw probe intensities with signal-to-noise
ratio > 9.5 were further processed via variance-stabilizing transformation and quantile normalization
using lumi package in R (v2.5). The probe sequences were aligned to the hg19 human reference genome.
For downstream analyses, only probes with detection rate (quality metric) > 5% in both paired normal and
tumour samples were considered. Whenever multiple probes were mapped to a single gene, the probe
with the highest detection rate was considered.

DNA methylation profiling
The DNA methylation analyses of new 121 ccRCC tumour samples were sequenced using Infinium
Methylation EPIC (850K) Bead-Chip (Ilumina, San Diego, CA, USA) for the current study, as recently
described elsewhere (Talukdar et al., 2021). Briefly, the DNA of samples underwent pre-processing steps
as follows: bisulfite-conversion, whole-genome amplification, fragmentation, and hybridization with
complementary probe sequences on Bead-Chip. The images of the arrays were captured by iScan system
scanner (Ilumina, San Diego, CA, USA) and probe intensities were obtained by GenomeStudio Software
(Ilumina, San Diego, CA, USA). The processing steps of probes were performed using the implemented
functions in methylkey R package (https://github.com/IARCbioinfo/methylkey). DNA methylation status
was estimated by the β value - signal from the methylated probe divided by the overall signal intensity.
The methylation levels of CpG sites were described as a continuous β value range between 0 (no
methylation) and 1 (full methylation). Sample-specific quality controls were performed interrogating DNA
methylation predicted sex and sample clustering based on the overall signal intensity median of the
methylated and unmethylated channels. One low-quality sample was excluded from further analyses. β
values were normalized using functional normalization (FunNorm), and probes with missing rate > 20% or
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flagged as ‘crossReactive’, ‘SNP’, and ‘XY’ were removed. SVA package was used to remove potential
batch effects (v3.35.2). For regression purposes, β-values were converted to M-values. DNA methylation
sites were annotated with the information provided by Illumina and the University of California Santa
Cruz (UCSC) database (hg19).

Multi-Omics Factor Analysis (MOFA) and inference of latent
factors
MOFA was performed to integrate the different omic layers (DNA methylome, transcriptome, and somatic
mutational profile from WGS) of overlapping ccRCC tumour samples (R package MOFA2, v1.10.0). DNA
methylation data were missing for 31 out of the 151 tumour samples (discovery set) and they were
imputed by MOFA, as previously described (Argelaguet et al., 2018). As recommended by the software
due to computational limitations, we selected the 5,000 most variable features across samples for DNA
methylome (CpG sites) and transcriptome data (gene expression levels) as continuous variables
(Supplementary Table 3). The somatic mutational profile derived from previous WGS (Senkin et al., 2013)
was summarized as binary variables (presence or absence) of both ccRCC driver genes and DNA
mutational signatures in different mutation contexts (SBS96, DBS72, ID83, CN48, and SV32), restricting
to variables with more than five events in the discovery set. MOFA generated ten independent continuous
latent factors that explained important sources of variance across omic layers of ccRCC tumours
(Supplementary Fig. 2). Of note, we further analyzed latent factors 1 to 6 since no additional associations
between latent factors 7 to 10 and epidemiological data were observed in the discovery set
(Supplementary Table 13). Elbow statistic additionally supported the selection of the first six latent
factors (Supplementary Fig. 2D).

To infer an approximation of the latent factors in the validation sets, we selected the most informative
features within the overrepresented omic layer for each latent factor in the discovery set (Supplementary
Table 1). Since more than 90% of the variance in DNA methylome and transcriptome layers were
explained by latent factors, we used these omic layers to generate latent factor signatures. The features
correlated with each latent factor (FDR < 0.05 for 30,000 tests) were selected as variables for the LASSO
regression models. The LASSO tune parameters were chosen by resampling the discovery set using the
tidymodels metapackage in R (v1.0.0; wrapper of glmnet) that by default sets to ten the minimum
number of features when the most stringent penalty is applied (Table S1). The ten features selected by
LASSO models were used to generate signatures that represented an approximation of each latent factor
by adding up the scaled values of the normalized m-values (DNA methylation) or log2-transcripts per
million (transcriptome) of each feature multiplied by the respective LASSO regression coefficients. These
signatures were then used to infer the latent factors across TCGA cohorts, IARC normal, and tumour
ccRCC samples (validation sets). Of note, the gene expression signatures for factors 2–5, calculated
initially using transcriptome data (microarray), could also be applied to voom-transformed RNA-
sequencing data (Law et al., 2014).

Calculating additional molecular variables
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Global DNA methylation levels were estimated using the mean m-values of locus-specific repetitive
elements (LINE1 and Alu) across chromosomes using REMP package in R (v 1.24.0), since these
repetitive elements were reported to be more accurate in estimating global DNA methylation levels than
averaging the methylation levels of all CpG sites from 850K/450k Ilumina arrays (Lisanti et al., 2013;
Zheng et al., 2017). DNA methylation-based clocks were calculated using methylclock (v1.6.0) and
dnaMethyAge (v0.1.0) packages in R. The inference of immune cells from tumour microenvironment of
bulk ccRCC tumour samples was performed using gene expression signatures based on the list of genes
associated with ccRCC tumour cells identified by scRNA sequencing data (Li et al., 2022). We restricted
our analyses to the cell signatures in which more than 75% of genes identified in the original study were
also present in our study after quality control. For simplicity, we additionally pruned the gene signatures
by original functional annotations, retaining independent signatures at r < 0.80 within ccRCC tumours.
The cell signatures were calculated by adding up the scaled gene expression value of each gene
belonging to a signature by sample. The DNA methylation signature for tobacco smoking status (epiTob)
was calculated by adding up the methylation levels of the 5 CpG sites (cg05575921, cg26703534,
cg23480021, cg08118908, cg00336149) that were previously associated with self-reported smoking
status (Chamberlain et al., 2022). Molecular variables from TCGA cohorts were also included in the
current study, such as the homologous recombination DNA repair deficiency score (Thorsson et al., 2018),
the copy number alteration fraction of the genome (Knijnenburg et al., 2018), and telomere length ratio
based on WGS data (Barthel et al., 2017).
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Figures

Figure 1

Overview of latent factors 1 to 6. Percentage of variance in each omic layer across tumour samples from
the discovery set (all molecular variables included in the Multi-Omics Factor Analysis) explained by latent
factors. Methylome (DNA methylation) in red, transcriptome (microarray) in blue, and somatic mutations
(cancer driver mutations and DNA mutational signatures derived from whole-genome sequencing data) in
yellow.



Page 21/26

Figure 2

Associations between latent factors and molecular features of ccRCC tumours in the discovery
set.Heatmaps showing the Z-scores (beta divided by standard error) of linear regression analyses
between latent factors (outcome) and molecular features related to the three omic layers included in the
Multi-Omics Factor Analysis (MOFA) for DNA methylome and somatic profile. (A) For the DNA methylome
layer (N=120), the average beta methylation levels of the 5,000 MOFA CpG sites by genomic annotation
related to CpG island (island, shores, shelves, and open sea), gene (proximal/TSS200 and
distal/TSS1500 promoters, UTRs, exons, and body), and other regulatory regions (open chromatin,
transcription factor binding site/TFBS, and enhancer) were used as predictors. (B) For the transcriptome
layer, pathway analysis was performed for the top 500 gene expression levels correlated with latent
factors. The top 10 biological pathways by latent factor (FDR<0.05) were then manually annotated into
functional groups (Development, CellSignalling, ImmuneSystem, ChromatinRemodelling, Metabolism,
CellPlasticity, and CellCycle), and normalized enrichment scores were represented as sum up by
functional weighted. (C) The somatic profile based on whole genome sequence (WGS, N=151) was
represented by ccRCC driver mutations (binary; presence or absence) and DNA mutational signatures
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(continuous). Regression models included age at diagnosis, sex, and country of origin as covariates.
Values represented as shades of red (Z-scores>0) and blue (Z-score<0). The associations that passed
multiple-testing correction (FDR<0.05) within each group of variables were represented. Tobacco-related
(SBS4, DBS2), clock-like (SBS1, ID1), APOBEC (SBS13), copy number (CN) and structural variation (SV)
DNA mutational signatures.

Figure 3

Relationship between latent factor 1, the mitotic-like epigenetic clock epiTOC2, and prognosis. Analyses
were performed using the residuals of the cellular mitotic age epigenetic clock epiTOC2 after adjusting by
chronological age. (A) Univariate linear regression between latent factor 1 and the age-adjusted epiTOC2
(Discovery: N=120, Validation/TCGA-KIRC: N=324) in ccRCC tumours. (B) Age-adjusted residuals of latent
factor 1 across different ccRCC tumour stages (N=322) and grades (N=320) from TCGA validation set
(N=323). Statistical comparison between multiple means was performed using Kruskal-Wallis’s test. (C)
Comparison of paired normal adjacent kidney tissues (light blue) and ccRCC tumours (dark blue) for age-
adjusted epiTOC2 (TCGA-KIRC: N=160 pairs). Lines connect matched samples. P-values from Wilcoxon
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signed-rank test that calculate differences of means between matched samples. P-values < 0.05 were
considered statically significant. Observed latent factor 1 used for the regression models in the discovery
set while the latent factor 1 signature was used for the analyses in the validation set.

Figure 4

Association between inferred tumour microenvironment cells and factors in ccRCC. (A) Heatmap plot is
showing the statistically significant associations between latent factors 1 to 6 and the 27 representative
tumour microenvironment signatures in ccRCC tumours. The association estimates were derived from the
analyses in the validation sets (IARC ccRCC series: N=462 for latent factors 2-5; TCGA-KIRC: N=323 for
latent factors 1 and 6) after adjustments by covariates (sex, age at diagnosis, and country of origin
whenever possible), restricting to the associations that passed multiple-testing correction (false discover
rate < 0.05, 162 tests) in both discovery and validation ccRCC sets. The associations were represented as
Z-scores (beta divided by standard error; Z-scores>0 in shades of red; Z-score<0 in shades of blue). The
ccRCC tumour microenvironment signatures (CD4+ T, B, NK, endothelial, myeloid, CD8+ T, epithelial and
fibroblast cells) and kidney cancer meta programs/RCC (epithelial-to-mesenchymal transition/EMT and
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cell cycle) were derived from single-cell RNA sequencing data published by Li et al., (2022). (B) Univariate
regression lines representing the relationship between rescaled values (0 to 1) of the average DNA
methylation (dashed line) of the CpG sites (cg06392589, cg12293186) and the RNA levels (solid line) of
IL20RB gene, and latent factor 2 in the discovery and validation ccRCC tumour datasets. R2 values mean
the variance in latent factor 2 explained by DNA methylation and expression of IL20RB across samples.
(C) Forest plot representing the multivariable regression analyses between key tumour microenvironment
signatures related to latent factor 2 (outcome: cell cycle, epithelial-mesenchymal transition/EMT, and
fibronectin 1 positive tumour-associated macrophages/FN1_TAM) and the presence of BAP1 cancer
driver mutations and/or IL20RB expression levels in both discovery (red; IARC ccRCC serie; N=120) and
validation (blue; TCGA-KIRC; N=269) ccRCC tumour sets. Beta estimates were represented as an increase
in the effect of the selected features (BAP1 alone or adjusted by IL20RB, and vice-versa) per 1 unit of
standard deviation increase in ccRCC tumour microenvironment signatures. * p<0.01; ** p<0.001.

Figure 5
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Associations between latent factor 6 and molecular features related to exogenous exposures in ccRCC
tumours. Forest plot showing the results of multivariable regression analyses of latent factor 6 (outcome)
and GSTP1methylation (Average m-values of CpG sites annotated to GSTP1, DNAm, continuous) and
gene expression levels (RNA, continuous), and DNA methylation signature of tobacco smoking trained to
predict self-reported tobacco smoking status (5 CpG sites, continuous, epiTob), and total mutation burden
(whole-genome for discovery and whole-exome for validation) in both discovery (N=120 for DNA
methylation and 151 for gene expression data) and validation (TCGA-KIRC; N=324) sets. Covariates used
in the regression models were sex, age at diagnosis, and country of origin (whenever possible). For
analyses of total mutation burden, ccRCC cases from Romania (N=31) were excluded from the discovery
set. Beta estimates were represented as an increase in the effect of the selected features per 1 unit of
standard deviation increase in latent factor 6. Blue dots when discovery and red dots when validation
ccRCC tumour cohorts. P values < 0.05 were considered statically significant. Observed latent factors
used for the regression models in the discovery set while signatures for the same latent factors were used
for the analyses in the validation set.

Figure 6
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Molecular components associated with prognosis of ccRCC patients.Cox proportional-hazards models
for assessing overall survival of ccRCC patients by latent factors 1 (mitotic-like epigenetic clock
epiTOC2), 2 (related to BAP1 cancer driver mutations and pro-inflammatory immune cells), and 5 (cell
cycle) adjusting for age at diagnosis, sex (model 1; circle shape), and additionally by tumour stage and
grade (I+II vs. III+IV; model 2; square shape) in the discovery (red) and validation (blue) datasets. Hazard
ratios (HR) represented as an increase in relative mortality risk per 1 unit of standard deviation increase in
factors. Two different validation sets were used according to the factors, TCGA-KIRC (a; N=324) for latent
factor 1 and IARC series sets (b; N=462) for latent factors 2 and 5. Observed latent factors used for the
regression models in the discovery set while signatures for the same latent factors were used for the
analyses in the validation sets.
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