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Abstract
Artificial Intelligence (AI), particularly AI-Generated Imagery, holds the capability to transform medical and
patient education. This research explores the use of AI-generated imagery, from text-to-images, in medical
education, focusing on congenital heart diseases (CHD). Utilizing ChatGPT's DALL·E 3, the research aims
to assess the accuracy and educational value of AI-created images for 20 common CHDs. The study
involved generating a total of 110 images for normal human heart and 20 common CHDs through
DALL·E 3. Then, 33 healthcare professionals systematically assessed these AI-generated images by
variable levels of healthcare professionals (HCPs) using a developed framework to individually assess
each image anatomical accuracy, in-picture text usefulness, image appeal to medical professionals and
the potential to use the image in medical presentations. Each item was assessed on a Likert scale of
three. The assessments produced a total of 3630 images’ assessments. Most AI-generated cardiac
images were rated poorly as follows: 80.8% of images were rated as anatomically incorrect or fabricated,
85.2% rated to have incorrect text labels, 78.1% rated as not usable for medical education. The nurses
and medical interns were found to have a more positive perception about the AI-generated cardiac
images compared to the faculty members, pediatricians, and cardiology experts. Complex congenital
anomalies were found to be significantly more predicted to anatomical fabrication compared to simple
cardiac anomalies. There were significant challenges identified in image generation. These findings
suggest adopting a cautious approach in integrating AI imagery in medical education, emphasizing the
need for rigorous validation and interdisciplinary collaboration. The study advocates for future AI-models
to be fine-tuned with accurate medical data, enhancing their reliability and educational utility.

Introduction
Illustrations and images are powerful methods to convey rich information and are widely used in medical
practice [1]. The saying "a picture is worth a thousand words" appropriately highlights the value of
medical illustrations in effectively conveying information to healthcare professionals and patients. This
principle emphasizes the role of visual aids in simplifying complex medical concepts, making them more
understandable and impactful. In instructional design, it is established that images enhance learning, a
concept supported by literature [2–4]. This enhancement is supported by the mental model theory, which
advocates that text and pictures facilitate the creation of both verbal (propositional) and visual mental
models [5–7]. These models are then integrated into the learner's working memory as an aid in
understanding and smooth future retrieval.[6] Images are generally considered less cognitively
demanding than text. Text needs to be interpreted into concepts and then into a mental model, whereas
images directly assist in creating a mental model due to their visual nature [8].

AI-powered text-to-image generators (AI-TIG) hold promise for medical illustrations, optimizing the self-
learning principles like self-determination theory, adult learning theory, and the experiential learning cycle
[9, 10]. These tools cater to learners' motivation and autonomy, aligning with adult learning's self-directed
nature and experiential learning's emphasis on a four-stage cycle, namely the concrete experience,
reflective observation, abstract conceptualization, and active experimentation, which can be perfectly
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applied to the AI-TIG medical images and scenarios for training [11, 12]. AI-TIG can also create realistic
and interactive simulations of medical situations, such as surgeries, emergencies, or clinical scenarios,
that can help students and practitioners to learn and practice their skills and knowledge [13].

OpenAI announced DALL·E, a deep learning model, on January 5, 2021 [14]. It is a transformer-based
model trained to generate images from text prompts. In 2023, AI-TIG applications, like DALL·E 3 and
Midjourney, had significant advancement, creating better-detailed images [15, 16]. DALL·E 3, more
detailed than its predecessor DALL·E 2, translates words into vibrant images and integrates with
ChatGPT-4 [16, 17].

In medicine, previous AI-TIG models, like DALL·E 2, have shown potential, such as in the field of radiology
[17]. These tools generated “realistic” x-ray images from text prompts and were seen as promising for
image augmentation and manipulation in healthcare. However, their capabilities in generating specific
images, such as CT, MRI, or ultrasound, or the abilities for generating images with pathological
abnormalities, like fractures or tumors, remained limited [17]. There is a growing interest in exploring how
these tools can be fine-tuned and adapted for medical applications [18, 19].​​​​

While previous studies investigated using deep learning, specifically neural network, to model cardiac
anatomies representing the various types of Congenital Heart Diseases (CHD) and heart shape variations
in cardiac disease, however, none of previous studies had in-depth evaluation about the educational value
of the widely-available deep learning AI-TAG of DALL·E 3 [20–26]. We aimed to investigate the
effectiveness and perfection of DALL·E 3 in producing educational illustrations for medical education,
with a focus on CHD.

The study evaluated the accuracy and educational value of AI-TIG images for 20 common CHDs.
Additionally, we explored the medical professionals' and students' perceptions of the utility and visual
appeal of these AI-generated images in an educational context.

Methodology

Study design:
Our model evaluation study investigated the tendency of DALL·E 3 to generate scientifically accurate
versus fictional images of common heart lesions. We conducted the text-to-pictures generative
experiments with prompts designed to resemble a hypothetical potential usage by medical students or
general healthcare providers of DALL·E 3 within clinical and medical education applications, taking the
examples of CHDs (Appendix-1).

Selection of CHDs:
In the first phase of our study, we identified the most relevant CHDs for educational purposes. This was
achieved through the expertise of two proficient pediatric cardiology experts (Drs. AAH and MAG). They
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compiled a comprehensive list of top 20 CHDs that they frequently discussed in their educational
sessions. This list (Appendix-1) served as the foundation for the subsequent AI-TIG process.

Prompt Optimization and Selection Strategy:
This phase focused on choosing the most effective prompts for generating illustrative images of CHDs,
to ensure the reproducibility and educational relevance of the AI-generated images. It involved:

1. Pilot Testing of Various Prompts: We experimented with different prompt structures to ensure these
prompts produced similar images. Examples of the prompts we tried:

a. “Draw a 2D accurate illustration of [CHD] to simplify it for medical students, with text in the
image to clarify the illustration.”

b. “Draw an accurate 3D illustration of [CHD] to simplify it for medical students, with text in the
image to clarify the illustration.”

c. “Draw an accurate illustration of [CHD] like those in the Congenital Heart Disease: A
Diagrammatic Atlas by Mullins and Mayer.” [27]

d. “Draw a black and white accurate illustration of [CHD] to simplify it for medical students, with
text in the image to clarify the illustration.”

2. A unique 'reverse engineering' approach was also employed. Here, we uploaded actual CHD
illustrations into DALL·E 3, allowing the AI-TIG to describe them. The same text was then used to
generate new images of the same CHD. This method helped in enhancing the prompt strategy by
optimizing its text to match DALL·E 3 expectations and algorithm as much as possible.

3. Expert Panel Evaluation: A panel of medical experts reviewed the images from these various
prompts.

4. Consistency Analysis: We assessed visual similarities of images produced from different prompts.

5. Final Prompt Selection: The chosen prompt template (as described below) was chosen by the expert
panel as those that would be more likely used by medical students, healthcare providers or
laypersons seeking illustration of CHD in AI-TIG (DALL·E 3).

Generation of Illustrative Images:
The creation of illustrative images was conducted using ChatGPT-4 integrated with DALL·E 3, under the
supervision of the principal investigator, Dr. MHT. Over the course of three consecutive days, from
November 29 to December 1, 2023, a series of prompts were issued to generate “accurate and
educationally useful” illustrations based on the above-described methodology. MHT used the prompts in
ChatGPT-4 as follows: “Draw an accurate illustration of ]CHD[ to simplify it for medical students, with text
in the image to clarify the illustration” (Appendix-1). The aim was to produce a range of visual
representations for each CHD, with five repetitions for each. Ten images of a normal heart were also
generated to establish baseline for comparison, with the following prompt “Draw an accurate illustration
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of a normal human heart to simplify it for medical students, with text supported image to clarify the
illustration.”

Development of the Image Assessment Framework:
A key component of our study was the development of a robust systemic framework for assessing the
generated images. To accomplish this, an interdisciplinary expert panel was assembled, including two
pediatric cardiologists (AAH, MAG), a cardiac surgeon (RN), an anatomist (MB), a medical educator
(MAM), and two pediatricians (MHT, AAE). The panel developed a concise yet comprehensive evaluation
tool, focusing on four key parameters: anatomical accuracy, value of integrated image-text, visual appeal
to medical professionals, and usefulness for educational usage. Each image was assessed against the
following criteria:

Image Accuracy (accurate (score 3), midway (score 2), fabricated (score 1)) compared to a
predefined criteria of each CHD and a “gold standard image”, described below.

Image-text usefulness (useful (score 3), midway (score 2), useless (score 1))

Attractiveness to medical professionals (attractive (score 3), midway (score 2), not attractive (score
1))

Suitability for medical education (as is (score 3), after modification (score 2), not useful (score 1))

Overall image perfection score: calculated by summing the 4 above criteria items, which ranges
between 4 and 12.

Validation of the Assessment Tool:
Prior to its application, the assessment tool described above underwent a thorough review process
involving all co-authors of the study. This was essential to ensure the clarity and face validity of the tool
to all team members.

Images Review and Assessments:
For the review and assessment phase, an online interface was set up on SurveyMonkey (Appendix 1).
This platform hosted the collection of 110 colored images (10 normal heart and 100 CHDs). The
assessment criteria (Appendix 1) were also embedded in the data collection tool [28, 29]. Alongside each
image, the assessment scale was provided. The assessors were granted one-time access to this data-
assessment portal, where they employed the agreed-upon assessment tool to evaluate each image. This
method facilitated efficient and systematic data collection.

Ethical Considerations:
The Institutional Review Board (IRB) granted the approval of the proposal (Ref. No. 23/0155/IRB), and
informed consent was obtained from the evaluators before their voluntary participation.

Statistical Analysis:
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The mean and standard deviation were used to describe continuous variables and the frequencies and/
percentages for the categorically measured variables. The ratings of images were transformed from long
data into wide data to account image sequence in the analysis, the resulted data matrix was equal to
(110 image ratings*33 raters = 3630 image rating lines). The Cronbach's alpha test was applied to assess
the internal consistency of the four measured cardiac image ratings or perceptions. The chi-squared test
of association was used to assess the associations between categorically measured variables and the
Spearman's (rho) correlations test was used to assess correlations between ordinal measured variables.
The Spearman's Rho correlations test was used to assess the correlations between metric variables. A
total relevance score for the AI generated images was computed via summing up the four indicators that
characterized the images quality. These include following the four domains: anatomical accuracy, text
usefulness, attractivity and usability for medical purposes.

The Generalized Liner Mixed Modelling with Gamma regression and Loglink was applied to evaluators
mean overall AI-generated cardiac anomalies images perfection via regressing it against rater’s
demographic and professional characteristics with CHD complexity classifications. The association
between the predictor variables with the dependent outcome variable in the GLMixed modelling was
expressed as a multivariate adjusted Risk Rate (exponentiated beta coefficient) with its associated 95%
confidence intervals. The SPSS IBM statistical software version #28 was used for the statistical data
analysis and alpha significance level was considered at 0.050 level.

Results
In the study, 33 HCPs evaluated 110 cardiac images produced by DALL·E 3. The group consisted of
diverse medical experts: eight (24.2%) cardiology experts, including a cardiac surgeon, three pediatric
cardiology consultants, three fellows, and an anatomy consultant. Others included seven pediatricians,
four non-pediatric faculty members, ten trainees (three medical students, four interns, three pediatric
residents), and four pediatric nurses. Using an online data collection tool, this varied cohort completed
3630 individual image assessments, providing a comprehensive analysis of the AI-generated imagery.
The evaluators also rated each cardiac anomaly; whether it was considered as simple or complex (Figure-
1).

Evaluators’ Overall Rating of AI-TIG CHD Images:
The evaluators’ overall ratings for the AI-TIG cardiac images (N = 3630 ratings) are shown in Figure-2.
Very few of the images (2.5%) were considered anatomically accurate, 16.7% as midway, and the majority
(80.8%) were assessed as fabricated. In the evaluation of images’ text label, 85.2% were rated as useless,
only 1.2% were considered useful, and 13.6% fell into a mid-range of usefulness.

Regarding images’ attractiveness, evaluators rated 18.7% of images as attractive, 18.2% as midway
attractive, but most of images (63.1%) were considered as “not attractive at all”. When considering
usefulness for medical education, 78.1% were rated as “non usable”, 21.6% as usable after modifications,
while only 0.4% were evaluated as usable without modification.
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Variation of rating of AI-TIG Cardiac Images among various
evaluator groups:
The rating of images regarding the four different domains (anatomical accuracy, text usefulness,
attractivity, usefulness for medical education) were compared among different groups of evaluators
using the chi-squared test (Table 1). The medical students/interns/residents were found to be
significantly more predicted to perceive the images as anatomically accurate, the illustrative text as
useful, usable for medical educational purposes and attractive compared to the rest of evaluators (p-
value < 0.001).

Likewise, nurses perceived the images significantly more compared to others as attractive, useful for
medical education and its illustrative text as useful (p-value < 0.001). Conversely, the cardiology experts
were significantly more inclined to perceive the images as (inaccurate, not attractive, not for medical
education and their illustrative text being not useful) compared to the other evaluators.
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Table 1
Evaluators’ ratings of the AI-generated cardiac images (anatomical accuracy, text usefulness,

attractiveness, usefulness for medical education). N = 3630 image ratings.

  Cardiac Images Anatomic Accuracy

  Accurate % Midway % Fabricated % p-
value

Cardiology experts 12.3 10.1 31.2 < 
0.001

Pediatrics specialist/
consultant

0 22.9 17.8

Faculty member 12.2 12 12.1

Medical
interns/students/residents

75.5 33.5 28.3

Nurses 0 21.5 10.6

  Illustrative text usefulness for viewer

  Usefulness for
viewer %

Midway % Not useful % p-
value

Cardiology experts 7.1 3.6 31.3 < 
0.001

Pediatrics specialist/
consultant

0 18.3 18.5

Faculty member 0 4.8 13.4

Medical
interns/students/residents

50 30.5 30

Nurses 42.9 42.8 6.8

  Useability for medical education

  Useable as is % after
modification %

Not useable
%

p-
value

Cardiology experts 7.7 6 33.2 < 
0.001

Pediatricians
(specialist/consultants)

0 14.6 19.3

Faculty member 0 10.9 12.5

Medical
interns/students/residents

76.9 39.3 27.6

Nurses 15.4 29.2 7.4

  Attractivity
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  Cardiac Images Anatomic Accuracy

  Attractive % Midway % Not
attractive %

p-
value

Cardiology experts 4.1 10.4 39 < 
0.001

Pediatricians
(specialist/consultants)

8.4 19.3 20.8

Faculty member 7.7 16.3 12.2

Medical
interns/students/residents

52.8 35 22.3

Nurses 27 19 5.7

Rating AI-TIG cardiac images of normal hearts, simple and
complex CHD lesions:
The AI-TIG images of normal hearts (Figure-3) were rated poor regarding anatomic accuracy (47.9%
fabricated, 40.3% midway and only 11.8% accurate). An example of the “most fabricated images” is
shown in Figure-4a, and “least fabricated” in Figure-4b. Moreover, 83.9% of images of normal heart were
rated as having inaccurate and useless text labels. In addition, 64.2% of images of them were rated as
not useable for medical education, 34.5% can be used after modification, and only 1% thought these
images can be used without modification.

This extends to the individual rating of the AI-TIG images of the various CHDs that have been studied.
Most AI-TIG images were rated poor regarding anatomical accuracy, illustrative text usefulness and
usability for medical education 1–3%. However, generally the images were perceived as attractive in 15–
22%.

Chi-squared test (Table S1) showed that the CHD complexity correlated significantly with the evaluators’
perceived images’ anatomical accuracy. Complex CHD images were found to be significantly more
fabricated compared to normal heart or simple CHD, p-value < 0.001. While the other three evaluation
criteria (image’s text usefulness, attractiveness, or usefulness for medical education) did not significantly
correlate with CHD complexity.

Correlations between evaluators’ perceptions of the four
criteria of AI-TIG Cardiac Anomalies Images:
Table 2 highlights the bivariate correlation between the four-criterion used to assess images quality. We
found significantly positive correlation (P = 0.01) between all of them (r ranged between 0.337–0.566).
The best correlation was between image usefulness for medical education and its attractiveness.
Furthermore, the lowest correlation was between image attractiveness and its anatomic accuracy.



Page 11/23

Usefulness for medical education overall had the best correlation with all the other three criteria (r ranged
between 0.441–0.566).

Table 2
Bivariate Spearman’s Correlations between evaluator’s perceptions of the AI generated cardiac anomalies

images.

  Anatomic
Accuracy

Text labels
Usefulness

Image
Attractiveness

Anatomic Accuracy      

Text labels Usefulness .394**    

Image Attractiveness .337** .388**  

Useability For Medical
Education

.497** .441** .566**

** Correlation is significant at the 0.01 level (2-tailed).

Multivariable Analysis of evaluators perceived overall
perfection score of AI-TIG Cardiac Images:
We ran multivariable generalized linear regression for the overall mean perfection score of the AI-TIG
cardiac anomalies images in comparison to cardiology experts mean perfection score. Nurses had
significantly the highest perfection score compared to cardiology experts (34.1% times higher p < 0.001),
followed by medical students/interns/residents (26.6% times higher p < 0.001), then faculty
staff/academician (15.5% higher p < 0.001). Pediatric consultant/specialist had higher perfection score
by 14.5% times higher p < 0.001).

Taking cardiac anomaly complexity into consideration (Table 3), complex ones were evaluated
significantly less perfect compared to simple ones in overall by all evaluators (6% times less p < 0.001).
For example, certain anomalies, like the coarctation of Aorta, Interruption of aortic, Aorto-left ventricular
tunnel, were perceived significantly less perfect by all evaluators (4.4%-11% less perfect) as compared to
other CHD images.
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Table 3
Multivariable Generalized Linear Regression (GLM) analysis of evaluators perceived Overall Relevance of

AI generated cardiac images score .
Model Term Multivariate adjusted

Risk Rate (RR)
95% CI for RR  

  Lower Upper p-
value

(Intercept) 5.844 5.722 5.969 < 
0.001

Clinical role = Nurses 1.341 1.306 1.378 < 
0.001

Clinical role = Medical
student/intern/residents

1.266 1.244 1.289 < 
0.001

Clinical role = Faculty staff/Academician 1.155 1.128 1.183 < 
0.001

Clinical orle = Pediatric consultant/specialist 1.145 1.122 1.170 < 
0.001

Cardiac anomaly image complexity level = 
Complex

0.940 0.926 0.955 < 
0.001

Cardiac anomaly image = Hypoplastic left
heart syndrome (HLHS)

1.058 1.024 1.093 0.001

Cardiac anomaly image = Ebstein syndrome 0.969 0.938 1.002 0.067

Cardiac anomaly image = Coarctation of
Aorta

0.889 0.860 0.919 < 
0.001

Cardiac anomaly image = Interruption of
aortic arch (IAA)

0.912 0.882 0.943 < 
0.001

Cardiac anomaly image = AP window 0.956 0.925 0.988 0.008

Cardiac anomaly image= ⁠Aorto-left
ventricular tunnel

0.933 0.903 0.965 < 
0.001

Dependent Variable: Healthcare professional’s mean perceived overall relevance of images score
(sum of the 4 rating aspects)

Discussion
DALL·E 3 is an AI-TIG model that generates images from text descriptions through transformative
language models like GPT-3 [16, 30]. It can produce a variety of images, from realistic to abstract art, and
can creatively combine elements from different ideas to create novel visuals. Despite its potential in
areas like education and art, DALL·E faced challenges, such as generating coherent images from complex
texts, maintaining image quality, addressing biases from training data, and managing computational
demands [31].
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AI-TIG models have shown proficiency in generating images with correct style and content for some
medical applications, such as histopathology and scientific illustrations [32]. Some potential benefits of
these technologies include educational applications without copyright limitations, tailored educational
experience, data anonymization, and discovery of new morphological associations. Conversely, they have
potential limitations that lie in their current inability to accurately generate complex medical images​.

While offering innovative visual learning AI-tools, AI-TIG’s integration in education requires careful
balance and validation for accuracy and reliability, similar to Large Language Models (LLMs) [18, 33, 34].
We demonstrated that AI-TIG, like LLMs, is liable to generate inaccuracies ('hallucinations' or
'confabulation'), posing risks in medical contexts. Consequently, one recommended approach for AI-TIG
use is the 'sandwich technique': experts input text, AI-TIG generates the image, and then the expert
evaluates and edits it for accuracy, ensuring safer application in the educational process [35].

Our study explored the current state of DALL·E 3 in the field of medical illustrations, particularly CHDs. We
discovered that while this technology opens novel avenues for visualizations, it also poses significant
challenges. Like the “hallucinations” in LLMs, the tendency of DALL·E 3 to introduce inaccuracies and
'artifacts' in images was significant, raising concerns about its current suitability for medical illustrations
[36]. These insights emphasize the need for rigorous validation before employing AI-TIG imagery in
complex areas like medical education, patient’s education, or decision-making.

Our study found that the majority of 3630 evaluations rated DALL·E 3's AI-generated cardiac images as
anatomically inaccurate and educationally limited. These shortcomings may stem from the model's
training and its 'Zero-Shot' ability, which inconsistently adapts to untrained text prompts [14, 37].
However, other research on AI has shown promise in enhancing medical imaging quality and
interpretability in cardiology [1]. Despite DALL·E 3's current limitations, ongoing research and
developments may improve AI-TIG medical images’ accuracy.

Another concern in our study was the erroneous AI-generated images text-labels, that were mostly
misspelled or misplaced, rendering them “useless”. For enhanced medical illustrations, future AI-TIG
models should be developed to meticulously produce accurate medical images labeling [1]. Specialized
or fine-tuned GPT models could be trained to more accurately recognize medical structures and enhance
their labeling [38]. As these AI-TIGs undergo more medically-oriented training, their accuracy may improve,
providing a better learning and personalized medical tool for healthcare professionals, patients, and
educators [39].

Interestingly, 18% images in our sample were thought of as having “attractive appearance” for medical
professionals, as was also noted by other studies describing DALL·E 3 images as more realistic [15].
Nurses and junior trainees in our group had more positive perception about AI-TIG cardiac images;
perceiving more images as anatomically “accurate,” finding the illustrative text as more useful and usable
for medical educational purposes and seeing more attractive images than the other evaluators. While
these could be a positive signal for future medical curriculum adaptation of more accurate AI models,
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these findings may indicate a risk of persuading non-expert medical professionals or laypersons to be
influenced by the vibrant artistic appearance of such images.

In our study, AI-TIG cardiac images, including those of normal hearts and simple lesions, were frequently
rated poorly in terms of anatomical accuracy. This issue may be attributed to inherent challenges in
DALL·E's capabilities, including difficulties in image coherence, quality, and biases in training datasets
[31]. Moreover, while complex congenital anomalies were more prone to anatomical fabrication, the
complexity of cardiac disease did not significantly impact the perceived educational value of these
images. Notably, there was a positive correlation between the perceived anatomical accuracy and
educational usefulness of the images, emphasizing the importance of accuracy for medical education
purposes.

The expert panel also observed additional inaccuracies in the AI-generated images, such as the depiction
of non-existent blood vessels in the heart images and a notable lack of cardiac valves. In addition, the AI-
model apparently did not seem to identify the various structures of the heart (e.g. aorta, pulmonary valve,
atrial or ventricular septum), therefore, it could not draw the abnormalities of these structures neither link
these structures to correct text labels. This is like several errors that were reported in the illustrations of
the heart by three AI-TIGs: Microsoft Bing/DALL·E, Stable Diffusion and Craiyon [40]. The investigator
used the prompt to draw “detailed and accurate anatomy illustration of the human heart” on the three
platforms on May 30, 2023, and found that they failed to show accurate coronary artery origins, the
branching of the aorta and pulmonary trunk.

The inaccuracy issues may stem from DALL·E 3 possibly being trained on unrepresentative data, leading
to a risk of overfitting to inaccurate disease images from automation bias.[41] Sharing such flawed
images and illustrations to non-cardiac experts, like medical students, nurses, or laypersons, could
unintentionally generate or intensify misinformation, a concern exacerbated by automation biases. This
highlights the need for caution in using AI-tools for didactic purposes, particularly in sensitive fields like
healthcare education [42–47].

To mitigate some risks of AI-TIG medical imagery, it is important to educate HCPs and patients on proper
use of AI tools, such as appropriate prompts that are more specific and at higher levels of medical literacy
to produce higher-quality images [48]. Also, careful interpretation of the medical images still requires
experts’ oversight, to ensure images are not misinforming users [35, 42]. One capability of AI-models is
their ability to acquire knowledge and improve performance through increased exposure to data,
therefore, IT experts could enhance current and future AI-models’ training, emphasizing variety of
accurate medical images datasets and improving algorithms to enhance generated image’s reliability and
usefulness in medical education [49, 50].

Medical digital twins, serving as virtual representations of medical conditions, could improve merging the
physical and virtual medical realms [51]. Recently, digital twin technology, especially in cardiac modeling,
witnessed substantial progress [52]. However, challenges of the variability of human heart parameters
and their implications on patient response to treatments persist, and personalized digital twins that
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mimic specific heart pathologies demand significant computational resources [51]. Therefore, AI-TIG may
offer new opportunities, provided these models are both accurate, widely accessible, and easily editable,
thus improving the personalized healthcare provision and medical education experience, in various
medical fields [53, 54].

Study Limitations and Future Potentials:
Our study focused on one category of anatomical lesions (CHDs) at specific time on one AI-TIG (DALL·E
3). Therefore, future research of AI-TIG images for other health-related conditions or other AI-TIG models
may produce variable outcomes. Our research is among the first to explore AI-TIG images potentials of
DALL·E 3 in CHD, and it may pave the way for more medical-specific AI-training for future models.

Future research on AI-TIG may address other shortcomings, such as the 'black-box' nature of the models,
the requirement for extensive medical-data training effects, better transparency of image standardization,
or improved filtering of inaccuracies during training [55]. The optimal use of AI-TIG images in medical
education or individualized healthcare with digital twin models requires further collaboration between
healthcare professionals and computer scientists. This includes defining clear objectives, choosing the
optimal deep learning algorithms and datasets, and interpreting image results with a balanced, human-
supervised perspective.

Conclusion
This study explored the integration of AI-TIG technology in medical illustrations, particularly for
visualizing CHDs, highlighting a novel approach. Despite experts identifying errors and questioning the
medical utility of AI-generated images, non-experts like medical students and nurses viewed them more
positively. These results point out the need for caution among AI-TIG users and healthcare professionals,
emphasizing vigilance in their application. Additionally, there is an opportunity for computer scientists
and AI stakeholders to refine AI-TIG models with more realistic medical images. Importantly, text in the AI-
TIG generated images should clearly indicate potential inaccuracies in both visuals and descriptions.
Further research into other healthcare imaging techniques using generative AI is warranted.
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Figure 1

The evaluators’ prior perceptions of the complexity of studied CHD anomalies, (CHD: Congenital Heart
Disease)
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Figure 2

The Evaluators’ overall rating of the AI-generated congenital cardiac anomalies images (N=3630 ratings)

Figure 3

Evaluators’ ratings for the AI-TIG Cardiac Images for Normal Heart
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Figure 4

A: Example of the experts’ rated “mostly fabricated” of the CHD image (coarctation of the aorta) as
generated by DALL·E 3, Figure 4 B: Example of the experts’ rated least fabricated rating of the “normal
heart” as generated by DALL·E 3 (Compare to actual illustrations of coarctation of the aorta and normal
heart in the CDC website: https://www.cdc.gov/ncbddd/heartdefects/coarctationofaorta.html accessed
January 5th, 2024)

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

Appendix1.docx

SupplementaryTable1.docx

CHDDALLE.pdfCorrected.pdf

https://www.cdc.gov/ncbddd/heartdefects/coarctationofaorta.html
https://assets.researchsquare.com/files/rs-3895175/v1/24cb45a8ca10121f6aed66b1.docx
https://assets.researchsquare.com/files/rs-3895175/v1/969681ae4cc87f2fcf65ff2e.docx
https://assets.researchsquare.com/files/rs-3895175/v1/bb6f769a4cb4d9802cdb5a34.pdf

