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Abstract
A multi-method, multi-informant approach is emphasized for the evaluations of attention-
de�cit/hyperactivity disorders (ADHD) in preschool children due to the complexity and challenges of
diagnosis at this stage. Most arti�cial intelligence (AI) studies on the automated detection of ADHD used
a single type of data. This study aims to create a reliable multimodal AI-detection system for facilitating
the diagnosis of ADHD among older preschool children. 78 older preschool children were recruited; 43
(mean age: 68.07 ± 6.19 months) of them were diagnosed with ADHD and 35 (mean age: 67.40 ± 5.44
months) of them were with typical development (TD). Machine learning (ML) and deep learning (DL)
methods were adopted to develop three individual predictive models by using electroencephalography
(EEG) data recording with a wearable wireless device, scores of the computerized attention assessment
via Conners’ Kiddie Continuous Performance Test (K-CPT), and ratings of the ADHD-related symptom
scales; �nally, one ensemble model was merged. The results suggest that teacher ratings, K-CPT reaction
time, and occipital high-frequency EEG band power values are signi�cant features in identifying older
preschool children with ADHD, and the ensemble model can achieve an accuracy of 0.974. The present
study can respond to the three issues in most ADHD-related AI studies: the utility of wearable
technologies, databases derived from different types of ADHD diagnostic instruments, and appropriate
interpretability of the models. This established multimodal system can be reliable and practical in
discriminating ADHD from TD and further facilitate the clinical diagnosis of preschool ADHD.

Introduction
Arti�cial intelligence (AI) and machine learning (ML)-based approaches to analyze medical information
and biological signals have developed progressively in recent decades. In the clinical research regarding
neurodevelopmental disorders, neuroscientists have made efforts to survey the brain-mind-behavioral
relationship via the AI and ML technique pertaining to the neurobiological features of the brain [1]. Among
multimodal data such as genetic, neuroimaging, and clinical behavioral data, electroencephalography
(EEG) recording is non-invasive, easy to implement, inexpensive, more tolerant of motion artifacts
recording, and excellent in temporal resolution [2–5]. The aforementioned advantages facilitate the study
of infants and young children, particularly the neural activity during cognitive processing, which is the
most challenging for investigation.

Attention-De�cit/Hyperactivity Disorder (ADHD) is an early-onset neurobehavioral disorder and can
apparently in�uence children’s learning, social performance, and well-being from preschool age [6–8]; the
American Academy of Pediatrics, “Clinical Practice Guideline: Diagnosis and Evaluation of the Child with
ADHD” has addressed the evaluation, diagnosis, and treatment of ADHD in children from age 4 to 18
years [8]. The diagnosis standard of ADHD in preschool children requires that the core symptoms present
across more than one setting, which may be problematic to judge when the child does not undergo care
or education outside the home [9]. Normally, this information is obtained from clinical interviews with
parents, direct observation of the patient in the clinical setting, and symptom characteristics checklists
from two circumstances. Neuropsychological measures may be used to support the clinical diagnosis
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[10]. The same as school-age children, a multi-method, multi-informant approach that evaluates
behavioral functioning across multiple settings is emphasized for the evaluation and diagnosis of ADHD
in preschoolers [9, 11].

Due to the complexity and challenges of ADHD diagnosis, numerous studies considered other pathways
to improve the e�ciency of early diagnosis by using AI techniques, namely ML and deep learning (DL)
methodologies to establish and promote the accuracy of ADHD diagnosis. In the review of AI studies of
ADHD [12], the authors indicated this research lacked focus on the utility of wearable technologies for
ADHD diagnosis and proposed AI should be extended to multiple types of datasets derived from
diagnostic instruments, which enable the establishment of a robust clinical judgment assistive scheme
regarding ADHD both in and out of the clinical settings.

Most AI studies on the automated detection of ADHD used a single type of data such as MRI, EEG,
questionnaires, game-based tests, etc.…. To the best of our knowledge, few studies target preschool
children and use multiple modalities to develop their models although some recent studies started trying
to combine more than one evaluation tool to establish an AI-assisted diagnosis system regarding ADHD
[13–16]. Since the ‘gold standard’ of diagnosing ADHD is highly recommended to comprise a
combination of neuropsychological tests, behavioral rating scales from different observers, clinical
interviews, and examination of the prognosis of interventions; a multi-method, multi-informant approach
that evaluates manifestation functioning across more than one settings is optimal for the assessment of
ADHD in preschoolers [11, 17]. One single modality AI approach for ADHD diagnosis has been surveyed
widely in the past, however, a multimodal method may be more appropriate due to the heterogeneous
clinical properties of ADHD.

The aim of this study is to respond to the aforementioned issues by using a wearable wireless EEG device
combined with standard diagnostic tools via the continuous performance test (CPT) and the ADHD-
related symptom scoring inventory to create a reliable AI-detection system. We assumed this multimodal
system could be a practical, powerful, and clinically explainable scheme for assisting the diagnosis of
ADHD at the preschool age.

Materials and methods

Participants
This study enrolled a total of 78 older preschool children; these children were not yet in primary school at
the time of their participation in the experiment, and they were all kindergarten children. Of these, 43 of
them were diagnosed with ADHD (35 boys, mean age: 68.07 ± 6.19 months) and 35 of them were with
typical development (TD) (25 boys, mean age: 67.40 ± 5.44 months). This sample did not include children
with signi�cant neurological disorders, congenital syndromes, chromosomal and genetic disorders,
hearing or visual impairments, autism spectrum disorders, mental retardation, or any other psychiatric
disorders. All participants with ADHD were diagnosed according to the Diagnostic and Statistical Manual
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of Mental Disorders, 5th Edition (DSM-V) [6] criteria by the certi�ed child and adolescent psychiatrist in
the clinical setting.

All participating children and parents were informed with details regarding the experiment by the project
leader of the study, and written informed consent was obtained from the parents before their recruitment
into the study. The study protocol was approved by the Research Ethics Committee of the National Health
Research Institutes in Taiwan (EC1070401-F).

Clinical neuropsychological measurement

Intelligence test and ADHD-related behavioral rating scales
The Taiwanese version of the Wechsler Preschool and Primary Scale of Intelligence, Fourth Edition was
used to evaluate all participating children’s cognitive functioning by quali�ed psychologists in the clinical
setting [18]. To assess ADHD symptoms in all subjects, two versions of the Disruptive Behavior Disorder
Rating Scale (DBDRS), designed for parents and teachers, were completed by the subjects' parents and
kindergarten teachers. The DBDRS includes two major ADHD-related dimensions (a. inattention and b.
hyperactivity-impulsivity) and is appropriate for use with older preschool children [19]. The DBDRS has
been shown to be reliable and valid in preschool children across a variety of study samples [20, 21].

Conners’ Kiddie Continuous Performance Test, Second Edition.

The commercially available computerized instrument, Conners’ Kiddie Continuous Performance Test
Second Edition (K-CPT-2) [22], was used to assess the attention-related performance of the children who
participated in this study. The KCPT-2 incorporated �ve blocks (sets of trials), and one block consisted of
two sub-blocks; each sub-block included 20 trials. After a total of 200 trials, which took 7.5 minutes to
complete, nine main standardized scores were generated to allow the clinician to interpret the children's
attentional problems. As de�ned by a mean of 50 and a SD of 10, higher scores indicate poorer
performance, with the exception of hit reaction time (HRT).

In these main indices, d' (detectability) estimates the ability to discriminate between targets and non-
targets. Omissions represent the rate of missed targets, and commissions represent the rate of incorrect
responses to nontargets. Perseverations refer to anticipatory, repetitive, or random responses detected in
less than 100 ms after the stimulus. HRT calculates the mean response speed of all non-perseverative
responses for the entire test. HRT SD and variability indicate the consistency of the response speed. HRT
Block Change indicates sustained attention ability by calculating the slopes of change in reaction time
over �ve blocks of administration, and HRT Inter-stimulus Interval (ISI) Change measures the slope of
change in reaction time between two ISIs (longer or shorter) and indicates the vigilance performance of
subjects [22].

Experimental paradigm (Fig. 1)
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In the experimental procedure, the participating children were instructed to sit on a steady seat in front of
a computer screen. The assessor persuaded the children to relax, made sure they felt comfortable, and
then recorded one minute of baseline eye open (EO) resting EEG data. Next, the assessor provided the test
instructions and guided the children to practice before the required test. Finally, task EEG data was
recorded during the formal K-CPT for 7.5 minutes after practice [23–26].

EEG recording via wearable technology (Fig. 1)
In this study, a wearable wireless 8-channel system [25, 27] (Mindo BR8, the Brain Research Center of
National Chiao Tung University, Hsinchu, Taiwan) was applied to receive the EEG data (one-minute EO
resting and 7.5 minutes task) from all participating children. The raw EEG signal was received from eight
electrode sites on the scalp (Fp1, Fp2, Fz, C3, C4, Pz, O1, and O2). The impedance was set below 100
κOhms; the EEG data was recorded at a rate of 1000 samples per second and referenced to linked
earlobes [25, 27]. This comfortable and easy-to-use device has been shown to be highly applicable for
clinical use in young children [23–25].

EEG Signals Processing (Fig. 1)

Artefact removal
To improve signal quality, the EEG experts in the study used two approaches [23–25]. First, the raw signal
was �ltered using basic FIR �lters (0.5–50 Hz); then all trials were visually inspected and segments
containing electrical, muscular, or eye movement artifacts were identi�ed and manually rejected using
Independent Component Analysis (ICA). ICA is a widely used blind source separation method and can
divide multivariate signals into those in the region of interest and those with artifacts [28]. Since the
defective components related to artifacts were eliminated after the ICA treatment, the remaining
components were back-projected and these artifact-free data were used for further analysis.

Datasets for input
According to the conditions of data recording, one minute of resting power and 7.5 minutes of the task,
namely K-CPT power, were separately inputted for further computation.

Fast Fourier Transform (FFT)
To convert the raw time domain signal into the frequency band domains ranging from 0–50 Hertz (Hz),
the Welch function of FFT was adopted in this study. Five different frequency bands were de�ned as
follows: delta (1–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz), and low gamma (30–50)
band.

Normalization of the input data
Min-max normalization was applied to the absolute power of data.

EEG-based classi�cation model to identify ADHD
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Deep learning model
To explore the most optimal model for analyzing the data, bidirectional LSTM (Long Short-Term Memory)
was implemented, which is a type of recurrent neural network architecture that extends the traditional
LSTM model by processing input sequences in both forward and backward directions. In a regular LSTM,
information �ows from the past to the future, sequentially processing the input sequence. However, a
bidirectional LSTM allows the network to capture dependencies from both past and future contexts [29].

The bidirectional LSTM consists of two LSTM layers: one processes the input sequence from left to right
(forward LSTM), and the other processes the sequence in the reverse direction (backward LSTM). Each
LSTM layer contains multiple memory cells or units that maintain a hidden state representing the
previous information seen in the sequence. These hidden states are updated based on the current input
and the previous hidden state using a set of learned weights.

After processing the input sequence in both directions, the output of the bidirectional LSTM is typically
obtained by concatenating the forward and backward hidden states at each time step. This combined
representation captures information from both past and future contexts and can be used for further tasks
such as classi�cation, sequence labeling, or sequence generation.

Bidirectional LSTMs are particularly useful in tasks where the current prediction depends on not only the
past but also future context, such as natural language processing tasks like machine translation,
sentiment analysis, speech recognition, and named entity recognition. By leveraging both forward and
backward information, bidirectional LSTMs enhance the model's ability to capture complex patterns and
dependencies in sequential data.

In this present study, the EEG datasets of each participating child are analyzed separately since the
proposed LSTM network is trained to identify ADHD in a patient-speci�c approach. The EEG features
used for signal analysis are extracted from every 0.001-sec long EEG segment (i.e. 60,000 resting and
450,000 task EEG data samples) to be used as input to the LSTM classi�er. (Supplementary Fig. 1)

Hyperparameter tuning
Based on the process of grid search for hyperparameter tuning, we selected the most optimal pattern as
our training model with a hyperparameter setting. (Supplementary Fig. 2)

Validation method
To evaluate the quality of the predictive EEG-based model, we use 70% of the data as training and 30% as
testing. In validation, we use 90% as training and 10% as validation.

The classi�ers for neuropsychological measurement
Regarding clinical neuropsychological measures (DBDRS and K-CPT-2 scores), the decision tree (DT) and
random forest (RF) classi�ers were used for the study.
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Performance evaluation and feature analysis of models
To evaluate the performance of the prediction models, we use precision, recall, and F1 score to display
the result corresponding to the three individual and the ensemble model.

For clinical neuropsychological and EEG data, we want to clarify which features are most important for
differentiation. Using permutation methods, we determined the ranks of important features from the inner
loop in the individual models.

Ensemble of classi�ers (Fig. 2)
To obtain a merging single classi�cation system, we established an ensemble of classi�ers by combining
the diverse predictive models generated earlier. More speci�cally, we trained three different classi�ers with
independent datasets, and further derived three independent predictive models, namely the “Predictive
model #1” trained on DBRS features, the “Predictive model #2” trained on K-CPT features, and the
“Predictive model #3” trained on EEG features.

Figure 2 shows the ensemble model proposed in this research. The ensemble model consists of 3 basic
classi�ers, they are DT, RF and bidirectional LSTM model.

Where, is an aggregate function of the ensemble models, and  are the predicted outputs for

each model. In this experiment, we use the same weight for each model. To predict the target label class,
we use an aggregator function where the threshold value is 0.5. If the value of  is greater than 0.5

then the predicted value is 1, and vice versa.

Statistical analysis
Demographic and clinical measures were compared between the two groups using independent t-tests,
and comparative analysis of categorical variables (e.g., sex) was performed using a chi-squared test.

Results

Demographic and clinical measurement data
Table 1 revealed the comparison of the demographic and clinical measurements between the two groups.
There were no signi�cant differences regarding the mean age, sex distribution, full-scale intelligence
quotient, and the verbal comprehensive index between the two groups.

f(x) = x1 + x2 + x3
1

3

1

3

1

3

f(x) x1, x2, x3

f(x)

ŷ = {
1, iff(x) ≥ 0.5

0, otherwise



Page 8/19

Table 1
Comparison of demographic characteristics and clinical measures for total sample, ADHD, and TD

Mean (SD) ADHD TD P-value

  n = 43 n = 35  

Age-months 68.07 (6.19) 67.40 (5.44) 0.617

Gender (male/female) 35/8 25/10 0.418

FSIQ 94.49 (14.03) 96.45 (3.96) 0.546

VCI 98.05 (12.83) 96.79 (3.18) 0.676

DBDRS-P-i 13.86 (4.41) 9.57 (4.92) < 0.001**

DBDRS-P-h 13.14 (5.90) 8.11(5.21) < 0.001**

DBDRS-T-i 15.58 (5.18) 8.79 (6.07) < 0.001**

DBDRS-T-h 13.35 (5.85) 6.71 (7.20) < 0.001**

d' 51.74 (7.46) 48.77 (6.50) 0.068

Omission 51.09 (8.00) 48.09 (7.61) 0.096

Commission 50.16 (8.85) 47.66 (8.83) 0.217

Perseveration 49.07 (6.23) 47.83 (6.99) 0.41

HRT 58.28 (8.24) 55.17 (6.62) 0.075

HRT SD 52.05 (8.45) 47.94 (6.49) 0.021*

Variability 51.72 (9.51) 48.00 (6.49) 0.052

HRT block change 50.53 (8.51) 48.74 (5.63) 0.288

HRT ISI change 52.44 (8.89) 47.69 (8.62) 0.020*

** P < 0.01, * P < 0.05; ADHD: attention-de�cit/hyperactivity disorder, TD: typical development, SD:
standard deviation, FSIQ: full-scale intelligence quotient, VCI: verbal comprehension index, DBDRS-P-i:
Disruptive Behavior Disorder Rating Scale parent version inattentiveness dimension, DBDRS-P-h:
Disruptive Behavior Disorder Rating Scale parent version hyperactivity dimension, DBDRS-T-i:
Disruptive Behavior Disorder Rating Scale teacher version inattentiveness dimension, DBDRS-T-h:
Disruptive Behavior Disorder Rating Scale teacher version hyperactivity dimension, d’ detectability,
HRT: hit reaction time, ISI: inter-stimulus interval.

In term of the clinical measurement, signi�cant differences were observed in speci�c DBDRS and the K-
CPT2 scores between two groups; the group with ADHD were rated higher scores than TD in DBDRS-
inattentive dimension by both parents (13.86 ± 4.41 versus 9.57 ± 4.92, p < 0.001) and teachers (15.58 ± 
5.18 versus 8.79 ± 6.07, p < 0.001) and DBDRS-hyperactive dimension by both parents (13.14 ± 5.90
versus 8.11 ± 5.21, p < 0.001) and teachers (13.35 ± 5.85 versus 6.71 ± 7.20, p < 0.001). In respect of the K-
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CPT2, the group with ADHD underperformed (scoring higher) than TD in HRT SD (52.05 ± 8.45 versus
47.94 ± 6.49, p = 0.021) and HRT ISI change (52.44 ± 8.89 versus 47.69 ± 8.62, p = 0.020) (Table 1).

Performance evaluation of models
Supplementary Fig. 3 shows the training results of model 3 generated by EEG data. Our model can
achieve a maximum training accuracy of 0.9472 (94.72%) and a maximum validation accuracy of
87.68%. Epochs are represented 10 times for each scale in supplementary Fig. 3, which means that our
model achieves maximum and stable accuracy after 120 epochs. Furthermore, for the testing phase, we
used 5-fold cross-validation to ensure the robustness of the results, we found that our model can achieve
0.95 (95%) of accuracy (Table 2).

Table 2
Performance evaluators of the ADHD and TD classi�cation models
Model # Precision Recall F1-Score Accuracy

1. Decision Tree 0.912 0.909 0.909 0.909

2. Random Forest 0.923 0.922 0.922 0.922

3. Bi-Direct. LSTM 0.950 0.940 0.950 0.950

Ensemble Model       0.974

With respect to model 1 & 2, the precision, the recall and the F1 score are listed in Table 2.

Ensemble model performance
It is noteworthy that the accuracy of the �nal ensemble model is 0.974 (Table 2).

Signi�cant features analysis
Figure 3a shows that the most important feature from the dataset of model #1 is DBRShT, which shows
the effect of a decrease in precision of about 0.25 with about plus minus 0.05. DBRSiT follows with the
effect of a decreased precision value of about 0.13 with about plus minus 0.01.

Figure 3b shows that the most important feature from model #2 is HRT, which has the effect of
decreasing the precision value by about 0.12 with approximately plus minus 0.02. ISI change follows with
the effect of decreasing the precision value by 0.06 with approximately plus minus 0.02. Block change
follows in third place with the effect of decreasing precision by 0.05 with approximately plus minus 0.02.
The rest of the feature values are shown in Fig. 3b.

Figure 3c shows that the most important features from the data set of model #3 are O2 low-gamma, O2
beta, and O2 alpha, which have the effect of decreasing the precision values around 0.14, 0.12, and 0.07,
respectively, in order.
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Discussion
This study combined behavioral scales, computerized attention tests, and wireless EEG data to create a
multimodal system, which can provide clinicians with a reliable, diverse perspective, and clinically
explainable scheme for assisting the diagnosis of ADHD at the older preschool age. In this ensemble
model, the DBDRS provides a subjective observation summary within a period from main caregivers, the
K-CPT scores provide objective behavioral quanti�cation, and the EEG recording indicates brain signals
related to attention. These three dimensions of datasets represent different aspects of assessment
approaches, which are consistent with the clinical guideline of multi-methods regarding preschool ADHD
diagnosis. Our results can answer the three objectives in most ADHD-related AI studies: usability of
wearable technologies, databases derived from different types of ADHD diagnostic instruments, and
adequate interpretability of our ML and DL models.

Among numerous ADHD-related research, in the neuroimaging category, brain MRI data are mainly used
to develop the AI models [1, 12]; in terms of physiological signals, EEG is the most widely studied
instrument for surveying automated ADHD diagnostic systems, which also had favorable performances
(accuracy results above 80–90% via ML or DL) [30–40]. Other biological data have attempted to identify
genetic biomarkers of ADHD using methods of ML and DL [12]. Externalizing symptom and behavior
measures using survey forms [41], performance tests [42], or motion data [43] were studied regarding
ADHD classi�cation among children. In general, all these studies focus on a single form of dataset;
however, it’s well known that the diagnosis of preschool ADHD should be based on multiple assessment
approaches.

Few in the literature have made efforts to incorporate multiple data sets from different modalities [13–
15]; Crippa et al. [13] investigated the capability of multi-domain pro�les including blood fatty acid
testing, neuropsychological assessments, and near-infrared spectroscopy measures, to correctly identify
school-aged children with ADHD. Two studies by Yoo et al. [15] and Kautzky et al. [14] analyzed
neuroimaging and genetic data to propose multivariate classi�cation models for ADHD and healthy
controls. Due to the invasive nature of blood testing and the less naturalistic experimental setting of MRI,
these procedures may raise concerns about clinical practicality and compliance in preschool children.
The present study overcomes these drawbacks by using the wireless EEG-integrated game-like test.

In our results, signi�cant features from 3 different models consisted of scores of DBDRS rated by
teachers and HRT in K-CPT, as well as EEG O2 low-gamma band power; these �ndings are clinically
interpretable and compatible with previous literature. Tandon & Pergjika [44] indicated an increased
judgment con�dence in the improper behaviors of preschoolers if teachers reported the presence of
symptoms. Rather than parents’ feedback, the children in the present study were all educated in
kindergarten, where the teacher can make more accurate comparisons with their peers without ADHD-
related behaviors and then provide more valuable information. The results of our model #1 are
compatible with previous literature supporting that teacher ratings may be superior to parent ratings [45,
46]. Regarding the reaction time, children with ADHD are typically less accurate, slower, and have more



Page 11/19

variable reaction times compared to their age-matched peers in the review articles [47, 48]. The results of
our model #2 are consistent with this �nding, indicating that HRT is the most signi�cant feature.

The EEG feature analysis in model #3 observed that the resting band power of low-gamma and beta are
the most important indicators. Most ADHD-related EEG literature has examined the power of theta and
the theta-beta ratio [2, 3, 49–51]; few studies surveyed the gamma power for the small amplitude, and the
importance of high-frequency EEG oscillations in cognitive function and neurodevelopmental disorders is
often underestimated compared to low-frequency oscillations [52, 53]. Herrmann and Demiralp [52]
mentioned that the hyperactive behavior of ADHD patients results from a neuronal hyper-excitation
re�ected by enhanced gamma activity. In terms of beta power, Clarke et al. [54, 55] found that a subgroup
of children with ADHD had signi�cantly excessive beta oscillations and they were further determined to
be the combined type of ADHD in boys than girls. In the same cases with gamma response, this EEG
pro�le of excess beta activity was viewed as hyper-arousal. Our results in feature analysis can be in line
with previous conclusions. Additionally, to interpret the context of resting condition and occipital brain
region, we speculated that it's related to the eye open and visual stimulation status during the baseline of
the experiment.

We have tried to make the features of our predictive models well-explainable since the process of ML and
DL algorithm is so complex, and clinicians usually consider these models like a “black box”, which is
di�cult to comprehend and utilize. In case of some variations of biomarkers and features existing
between investigations of studies, it should be realized that these approaches used for establishing the AI
models are multivariate analysis methods, and can offer the pro�ts of identifying complicated patterns of
differences that univariate statistical methods cannot e�ciently differentiate [13].

In this present study, wearable technology is employed to record the biological signal; rather than the
lengthy procedure of preparing traditional wet electrode EEG systems, the design of this device features
convenience to use, which promotes the acceptance of some impatient and agitated children. Moreover,
most of the child participants reacted comfortably and with little restraint during the measurements. In
conclusion, this technology allows monitoring the brain dynamics of child subjects during task
performance via enhancing cooperation and naturalistic situations, and we proposed that this wireless
semidry-electrode EEG recording system can be appropriate as a data acquisition device, especially for
young children; furthermore, to establish a robust AI-facilitating clinical decision system to identify ADHD
both in and out of clinical settings.

Despite overcoming the challenge and di�culty of collecting task-related brain signals in young children,
we analyzed the data of moderate sample size, there are some limitations regarding the present study.
First, the relatively small sample size of the participating groups of children is still the main concern.
Second, the �ndings of this work may be somewhat speci�c to the age group used in our sample (i.e., 5-7-
year-old children with ADHD), so the present predictive models could not be extended and applied to all
preschool children.
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Conclusion
This present study is the scarce investigation focusing on older preschool children; a reliable model is
established using non-invasive and wearable instruments to obtain multi-method datasets, and further
reveals characteristic features for assisting ADHD diagnosis and interpreting underlying brain-behavior
relationships. The �ndings suggest that teacher rating scores, HRT in K-CPT, and occipital high-frequency
EEG band power are signi�cant features to predict abnormality, and the ensemble model can achieve an
accuracy of 0.974. In summary, this established multimodal system demonstrated the potential utility of
multiple perspective assessment in discriminating ADHD from TD and explaining possible neural
behavioral mechanisms associated with preschool ADHD.
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Figure 1

Graphical display of wireless EEG data collection and dataset generation.

Figure 2
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The ensemble model proposed in this research. The ensemble model consists of 3 basic classi�ers:
decision tree, random forest, and bidirectional LSTM models.

Figure 3

The ranks of important features in predictive model #1 - trained by decision tree (a), in predictive model
#2 - trained by random forest (b), in predictive model #3 - trained by bidirectional LSTM.
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