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Abstract
Celiac Disease (CD) is a primary malabsorption syndrome resulting from the interplay of genetic,
immune, and dietary factors. CD negatively impacts daily activities and may lead to conditions such as
osteoporosis, malignancies in the small intestine, ulcerative jejunitis, and enteritis, ultimately causing
severe malnutrition. Therefore, an effective and rapid differentiation between healthy individuals and
those with celiac disease is crucial for early diagnosis and treatment. This study utilizes Raman
spectroscopy combined with deep learning models to achieve a non-invasive, rapid, and accurate
diagnostic method for celiac disease and healthy controls.A total of 59 plasma samples, comprising 29
celiac disease cases and 30 healthy controls, were collected for experimental purposes. Convolutional
Neural Network (CNN), Multi-Scale Convolutional Neural Network (MCNN), Residual Network (ResNet),
and Deep Residual Shrinkage Network (DRSN) classi�cation models were employed. The accuracy rates
for these models were found to be 86.67%, 90.76%, 86.67% and 95.00%, respectively. Comparative
validation results revealed that the DRSN model exhibited the best performance, with an AUC value and
accuracy of 97.60% and 95%, respectively. This con�rms the superiority of Raman spectroscopy
combined with deep learning in the diagnosis of celiac disease.

1. Introduction
Celiac Disease (CD) is an autoimmune digestive system disorder characterized by impaired fat digestion
or absorption, resulting in the excretion of substantial amounts of fat and giving stools a milky
appearance [1]. Under normal circumstances, the digestive system e�ciently breaks down fats, allowing
for absorption and transportation into the body. However, in CD patients, this process is disrupted,
preventing adequate fat absorption. The presence of large amounts of unabsorbed fats in the intestines
can lead to irritation, potentially causing diarrhea. Additionally, the loss of essential nutrients such as
fats, proteins, and fat-soluble vitamins may result in malnutrition, leading to various health issues [2]. CD
can impact growth and development and compromise the immune system, increasing the risk of
infections and other diseases. Individuals with CD commonly experience gastrointestinal symptoms such
as diarrhea, abdominal pain, and bloating, signi�cantly affecting their quality of life [3].

Research indicates that early diagnosis and treatment of the disease can effectively slow down its
progression. Therefore, establishing a rapid and accurate diagnostic method is of paramount importance
for achieving early detection of CD and reducing associated damages [4]. Currently, the diagnosis and
classi�cation of CD depend on factors such as patient medical history, physical examinations, laboratory
�ndings, and radiological evidence [5]. Diagnostic methods often involve examining fecal fat content [6]
and conducting blood and intestinal mucosal biopsies [7]. However, diagnosing CD remains challenging
due to its symptoms being subtle or mistaken for other gastrointestinal issues. The most common
reasons for CD screening include abdominal bloating and diarrhea, but these symptoms may not always
be evident. This di�culty in diagnosis can lead to delayed or incorrect treatment, exacerbated by
signi�cant variations in the course of CD among patients. Some may exhibit mild symptoms, while others
experience noticeable clinical manifestations, adding complexity to accurate diagnosis [8][36]. Early
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detection of CD is crucial, as timely intervention and treatment can signi�cantly improve patients' quality
of life and slow down disease progression.

As a rapid spectral analysis technique, Raman spectroscopy (RS) can measure various biomolecules
present in plasma samples, including proteins, nucleic acids, carbohydrates, and lipids [9]. Intensity
differences between Raman peaks are primarily attributed to nucleic acids, amino acids, and lipids, which
play crucial roles in biochemical reactions such as biological transformations, immune process
monitoring, signal transduction, and nutrient metabolism. Raman spectroscopy's ability to capture a
wealth of information from multiple peaks, each representing speci�c substances and their intensities
and positions, makes it the "biological �ngerprint" region of sample Raman spectra [10].

Despite the signi�cant achievements of Raman spectroscopy combined with machine learning models in
disease diagnosis [11], the technique has limitations, such as a low signal-to-noise ratio [10]. This
limitation may hinder the intuitive identi�cation of differences between spectra, potentially resulting in
lower diagnostic performance. Therefore, exploring spectral differences through intelligent methods holds
substantial signi�cance.

Various chemometric techniques, including Principal Component Analysis (PCA), Support Vector Machine
(SVM), and K-Nearest Neighbors (KNN), have been extensively applied in spectral analysis [14–15].
However, for extracting more features and achieving diagnostic requirements, more complex deep
learning models are needed. Convolutional Neural Network (CNN) is one of the most popular
foundational deep learning frameworks, reducing parameter numbers and improving feature extraction
quality through local connections and parameter sharing. Traditional CNN models have demonstrated
high performance and robustness in processing raw spectral data.

Studies by Yang et al. [16] and Wu et al. [17] showcase the effectiveness of one-dimensional CNNs in
accurately classifying plasma lesions of tongue squamous cell carcinoma and rapidly diagnosing
sparganosis using plasma Raman spectra, achieving accuracies of 94.90%. However, traditional CNN
models can only extract local features at one scale, and the spectral measurement process is often
susceptible to strong noise interference, making high-quality feature extraction more challenging.
Additionally, differences arising from noise between training and testing sets may decrease spectral
classi�cation accuracy.

To address these challenges, this study constructs and adopts four different neural network models: CNN,
Multi-Scale Convolutional Neural Network (MCNN), Residual Network (ResNet), and Deep Residual
Shrinkage Network (DRSN). These models are trained end-to-end, eliminating the tedious process of
manually extracting features. The models can automatically learn critical features from spectral data,
enhancing generalization capabilities. By extracting features at different scales, the models effectively
capture local information within the spectra, crucial for diagnosing celiac disease. Moreover, these
models reduce noise interference during spectral measurement, further enhancing the neural network
models' generalization capabilities and diagnostic accuracy for celiac disease.



Page 5/19

2. Materials and methods

2.1 Experimental Materials
In this study, we employed a pipette to collect 50 µL of plasma samples on tin foil-coated slides. After
drying in the air at room temperature (22°C), data were collected using a high-resolution confocal Raman
spectrometer (Gora Raman Spectroscopy, Ideaoptics, China). The excitation wavelength was 785nm from
a YAG laser, 15-second integration time, and laser power of 160 mW. Continuous acquisition mode was
set to measure the Raman spectra of plasma samples in the range of 500–2500 cm-1. The laser beam
was focused on the sample surface through a 50X lens, and three Raman spectra data were measured
for each individual sample. Other spectral measurement conditions included an 8-second integration
time, three integrations, �ve iterations, and 64 baseline points. The study included 30 healthy control
samples and 29 celiac disease samples, each measured three times, resulting in a total of 90 spectra for
the control group and 87 for celiac disease. All samples were provided by the Autonomous Region
People's Hospital. The research protocol was approved by the Ethics Committee of the Autonomous
Region People's Hospital (Approval Number: [ (KY2023968173)]), and pathological examination of
plasma con�rmed the presence of Celiac Disease.

2.2 Data preprocessing
The airPLS algorithm was applied to remove background signals from the Raman spectra [18], followed
by the implementation of the Smoothing algorithm for noise elimination [19]. In the Smoothing algorithm,
a window length of 5 and a polynomial order of 2 were utilized. Before normalization, to eliminate noise
in the spectrum, we employed Fourier transformation for low-frequency �ltering to remove the low-
frequency components.

The train_test_split() method from the sklearn standard library was employed to partition the
preprocessed Raman spectroscopy data into a training set and a testing set, with a ratio of 7:3. The
training set consisted of 40 spectral data, while the testing set comprised 19 spectral data. Five-fold
cross-validation was performed on the classi�cation model, and the testing set results were used as the
�nal evaluation metrics.

2.3 Model evaluation metrics
This study comprehensively assessed the performance of each model in the celiac disease classi�cation
diagnosis task using four parameters: accuracy, speci�city, sensitivity, and precision. Accuracy represents
the percentage of correctly predicted samples out of the total sample count, and the accuracy formula is
as follows:

Where TP represents the count of samples correctly classi�ed as positive in the positive sample class. TN
represents the count of samples correctly classi�ed as negative in the negative sample class. FP

Accuracy = (TP + TN) / (TP + TN + FP + FN) (1)
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represents the count of samples incorrectly classi�ed as positive in the negative sample class. FN
represents the count of samples incorrectly classi�ed as negative in the positive sample class. The
formula for speci�city is as follows:

The formula for sensitivity is as follows:

The precision formula is as follows:

AUC (Area Under the Curve) is a commonly used metric for assessing the performance of binary
classi�cation models. The AUC value represents the area between the True Positive Rate (also known as
sensitivity or recall) and the False Positive Rate at different thresholds. It measures the model's ability to
correctly distinguish between positive and negative instances at various classi�cation thresholds. The
typical AUC curve is the Receiver Operating Characteristic (ROC) curve, which plots the True Positive Rate
against the False Positive Rate, illustrating the model's performance across different classi�cation
thresholds. A higher AUC value, closer to 1, indicates better classi�cation performance, while a value
close to 0.5 suggests that the model's performance is similar to random guessing.The basic structure of
the confusion matrix is shown in Table 1.

Table 1
RS and SERS peak positions and vibrational mode assignments

  Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

3. Results and Analysis

3.1 Raman spectroscopy
The Raman spectra of plasma from patients with celiac disease (CD) are shown in Fig. 1, where the
Raman characteristic peaks represent substances rich in lipids, proteins, nucleic acids, and amino acids
in the tissue. Previous studies have indicated that changes in Raman peaks of proteins and nucleic acids
may be observed in the plasma of diseased individuals, re�ecting abnormal expression of cellular nucleic
acids and proteins [19]. Additionally, CD patients exhibit higher levels of high-sensitivity C-reactive protein
in their plasma, and in terms of the lipoprotein spectrum, CD patients show lower levels of high-density
lipoprotein cholesterol (HDL-C) [33]. The serum of CD patients is characterized by lower levels of various
metabolites (such as amino acids, lipids, ketones, and choline) (P < 0.01) [34]. Comparative experiments

Specificity = TN/ (TN + FN) (2)

Sensitivity = TP/ (TP + FN) (3)

Precision = TP/ (TP + FP) (4)
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have revealed that, in terms of lipids, the main differences between celiac disease patients and the
control group are a decrease in cholesterol and phospholipids in both high-density lipoprotein and low-
density lipoprotein in the former. These differences persist after treatment, and a lower level of cholesterol
in very-low-density lipoprotein (VLDL) has also been observed [35]. Table 1 lists the major characteristic
peaks of plasma in celiac disease, along with the assignment of each feature peak. Patients with celiac
disease exhibit Raman peaks at 1398 cm -1, 1510 cm -1, 1546 cm -1, 1596 cm -1, 1648 cm -1, 1726 cm -1,
1775 cm -1, and 1895 cm -1 in their plasma, which are higher than those in normal controls. However, the
peak at 1445 cm -1 is lower than in normal controls. Signi�cant differences exist between celiac disease
patients and healthy controls in terms of functionality, tissue structure, and surface features in plasma.
Speci�cally, the notable Raman peak difference at 1398 cm -1 re�ects differences in lipid metabolism
between the two groups, indicating potential abnormal lipid metabolism in celiac disease patients, such
as damage to adipose tissue due to malabsorption of fat [37]. As shown in Table 2, The Raman peak at
1445 cm -1 re�ects protein and lipid characteristics in the patient's plasma, exhibiting signi�cant changes
compared to healthy plasma [38]. Celiac disease is an immune-related disease that may involve an
abnormal immune response to proteins in the intestines. This may lead to observed Raman peak
differences in celiac disease patients, re�ecting changes in protein structure or composition. In celiac
patients, changes in lipid and protein composition are related to alterations in cell membrane structure
and function due to damage to the intestinal mucosa. Additionally, celiac disease is often accompanied
by in�ammation and the formation of immune complexes. These biological processes may cause
changes in the intra- and extracellular environment, including the distribution and structure of lipids and
proteins. The Raman peak difference at 1510 cm -1 is attributed to differences in cytosine content. In
celiac patients, the impact on nucleotides, including changes in concentration or structure, may occur due
to intestinal damage. The Raman peak difference at 1596 cm -1 indicates the signi�cant role of cytosine
in immune regulation in the human body. The expression level changes of phenylalanine are re�ected in
the Raman peak at 1546 cm -1, indicating the metabolic status, redox balance, and regulation of some
physiological functions. Random coil at 1648 cm -1 is usually a conformation of protein structure
involving the folding and arrangement of amino acids, forming structural domains with speci�c
functions. Differences in the Raman spectrum of C = O vibration at 1726 cm -1 and 1775 cm -1 are lipid-
related, as celiac disease is a malabsorption disease. Therefore, if signi�cant differences in C = O
vibration are detected in celiac patients, it implies abnormal lipid metabolism or changes in lipid
composition, which are related to the absorption and metabolism of fat in the intestines [37].
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Table 2
The major Raman bands and their corresponding assignments[21]

Wavenumber,

(cm− 1)

Corresponding substance RS

1398 C = O symmetric stretch

CH2 deformation

√

1402 Bending modes of methyl groups √

1445 δ(CH2), δ(CH3), collagen (protein assignment)

δ(CH2), δ(CH3), scissoring, phospholipids (lipid assignment)

CH2CH3 bending modes of collagen and phospholipids

CH2 scissoring

CH2 bending mode of proteins and lipids being of diagnostic signi�cance

CH2 bending and scissoring modes of collagen and phospholipids

Methylene bending mode (a combination of proteins and phospholipids)

CH2 bending modes

CH2 deformation

CH2 bending mode

√

1510 Cytosine √

1546 Bound and free NADH 76

Tryptophan

√

1596 C = N and C C stretching in quinoid ring √

1648 Random coils √

1726 C = O lipids √

1775 C = O √

Note: √ : Presence of related substances;

3.2 Model Evaluation

3.2.1.Convolutional Neural Network (CNN) Model
Evaluation
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Convolutional Neural Network (CNN) is a deep feedforward neural network with features such as local
connections and weight sharing. As one of the representative algorithms of deep learning, CNN has
signi�cant advantages in complex machine learning problems such as image classi�cation, computer
vision, natural language processing [22–25], making it one of the most widely used models. The
components of CNN include basic input and output layers, as well as convolutional layers, pooling layers,
and fully connected layers [26]. The convolutional layer is used to extract different features of the input
data, which may only be able to extract some low-level features. Most convolution operations can
iteratively extract more complex features from low-level features. Then, the pooling layer is used to reduce
the dimensionality of the features, achieving feature invariance. As is shown in Fig. 2(a) ,after multiple
convolution and pooling operations, all local features are combined into global features in the fully
connected layer. In this experiment, the CNN model mainly includes four Conv1D layers with 32, 64, 64,
and 32 �lters, as well as 2 neurons. A Dropout layer is added after each Dense layer to prevent the
problem of model over�tting.

The ROC curve of the CNN is shown in Fig. 3. Compared to machine learning models, CNN shows
improvement in classi�cation accuracy, speci�city, and sensitivity. However, CNN still makes errors in
recognizing a considerable number of samples.

3.2.2. Multi-Scale Convolutional Neural Network (MCNN)
Evaluation
MCNN is a simple yet effective multi-scale convolutional neural network that can map the input to its
corresponding density map [30]. MCNN has stronger universality for input information. By using �lters of
different sizes with different receptive �elds, the features learned by convolutional neural networks at
different scales have stronger adaptability due to the perspective effect. The MCNN used in this
experiment consists of Conv1d layers, LeakyReLu layers, pooling layers, and Conv1d layers. As is shown
in Fig. 2(b),three convolutional layers are used, with 16, 32, and 64 �lters, and kernel sizes of 4, 8, and 16,
respectively. The stride is 1, and "same" padding is used. MCNN outperforms the CNN model in accuracy,
and the model's runtime is similar to CNN. The ROC curve of MCNN is shown in Fig. 3. From the
confusion matrix, it can be seen that MCNN is more powerful in classifying positive samples, which is
crucial for the diagnosis of celiac disease.1.

3.2.3. Evaluation of Deep Residual Network (ResNet)
ResNet, as a powerful deep neural network structure, has been widely applied to disease assessment
tasks [31]. Its design of residual learning makes the network easier to train and enables deeper feature
exploration in images. In disease assessment, ResNet can learn complex features and patterns in medical
images, thereby improving the accuracy and robustness in disease diagnosis. The ResNet used in this
experiment consists of multiple convolutional blocks, each including a convolutional layer and a batch
normalization layer. It also incorporates multiple residual connection blocks, each containing two
convolutional blocks and possible convolutional layers for shortcut connections.Dropout layers are
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added after each residual connection block to prevent over�tting (Fig. 2.c). The ResNet model can capture
deep features in images and identify potential pathological information. Its structure of direct
connections between layers enables better information transmission, alleviating the vanishing gradient
problem, and reducing the risk of over�tting. However, its performance on celiac disease spectral data is
not superior to that of convolutional neural networks. The ROC curve of ResNet is shown in Fig. 3.

3.2.4. Evaluation of Deep Residual Shrinkage Network
(DRSN)
The Deep Residual Shrinkage Network (DRSN), as a deep learning model, is particularly suitable for
features related to noise. It effectively addresses noise and redundant information in spectra, enhancing
its learning and feature extraction capabilities for disease features [32]. Built upon ResNet, DRSN
introduces improvements by setting a threshold for each channel and incorporating two fully connected
layers. As is shown in Fig. 2(d), the second fully connected layer outputs neurons equal to the number of
input feature map channels, and each neuron undergoes sigmoid activation. DRSN demonstrates
signi�cant advantages in handling spectral data [43], as its residual block structure facilitates deeper
exploration of disease features in plasma spectra. Additionally, the introduced shrinkage mechanism
effectively suppresses noise in spectral data, enhancing the model's robustness.

By training on celiac disease and healthy control plasma samples, DRSN can learn spectral features
related to the disease, achieving precise extraction of potential biomarkers. The design of its network
structure allows information to �ow between different levels, enabling the model to better capture
complex relationships in plasma spectra. Moreover, DRSN's shrinkage mechanism helps reduce
redundant information, improving the signal-to-noise ratio of spectral signals. The ROC curve of DRSN is
shown in Fig. 3.

3.3. Classi�cation Results
Validation results for the CNN, MCNN, ResNet, and DRSN models show that the CNN and MCNN models
perform well on the training and validation sets, with accuracies reaching 92.31% and 90.76%,
respectively. However, the CNN's speci�city is suboptimal at only 85.71%. ResNet exhibits the poorest
performance across all metrics, with an accuracy of only 80.23% and speci�city of only 68.57%. In
contrast, the DRSN model outperforms CNN, MCNN, and ResNet in accuracy, speci�city, sensitivity, and
precision. A crucial factor is the enhanced generalization capability of DRSN in combating noise. To
increase the credibility of the experimental results, this study calculated �ve evaluation metrics, namely
the Area Under the Curve (AUC) of the Receiver Operating Characteristic (ROC) curve, accuracy, sensitivity,
speci�city, and precision. Table 3 presents the evaluation metrics for the test sets of the four models after
�ve-fold cross-validation.
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Table 3
Raman spectral model classi�cation results

Model AUC % Accuracy% Sensitivity% Speci�city% Precision%

CNN 95.60 92.31 100 73.33 84.28

ResNet 90.20 80.23 100 73.33 84.01

DRSN 97.60 95.00 100 99.13 92.14

MCNN 96.97 90.76 100 80.00 86.67

4. Discussion
This study utilized Raman spectroscopy to acquire plasma spectra from patients with celiac disease,
revealing differences in the expression of proteins, lipids, amides, and amino acids compared to normal
plasma. These differences arise from substantial variances in cellular function and plasma structure
between celiac disease and normal plasma cells [27–28]. Leveraging these expression disparities is
advantageous for establishing models used to evaluate the extent of differences between celiac disease
plasma and true control plasma for classi�cation purposes.

The Raman spectra data used in this study consisted of normal plasma data and celiac disease data,
showcasing signi�cant differences in the characteristic peaks of celiac disease plasma compared to
normal plasma. Therefore, valuable information can be extracted from plasma Raman spectra data.
Overall, among the deep learning models, the Deep Residual Shrinkage Network (DRSN), adept at
handling noise to enhance signal-to-noise ratio, demonstrated higher accuracy. The proposed deep
learning models, in conjunction with celiac disease Raman spectra data, advance technology in the
Raman spectroscopy �eld and enrich diagnostic approaches for celiac disease.

In this study, we found that the Raman spectra of celiac disease and the healthy control group share
most common peaks. However, signi�cant differences exist in the peak intensities at 1398 cm -1 (lipids),
1445 cm -1 (proteins), 1510 cm -1 (cytosine), 1546 cm -1, 1596 cm -1, 1648 cm -1, 1726 cm -1, and 1775
cm -1. To reduce noise, we applied Fourier transform for low-frequency component removal. Additionally,
to overcome the drawbacks of low signal-to-noise ratio in Raman spectra, which can lead to low
diagnostic performance, we established a Raman spectroscopy diagnostic model based on the Deep
Residual Shrinkage Network (DRSN). CNN, ResNet, MCNN, and DRSN achieved high accuracy in disease
diagnosis by extracting multiscale features from spectral data. Through a comparative analysis of the
four deep learning models, this study observed a gradual improvement in the classi�cation e�ciency of
celiac disease and healthy control group data, from simple two-layer convolution to complex multilayer
convolution, and then to parallel multiscale convolution. The DRSN model effectively alleviated spectral
noise issues and exhibited e�cient classi�cation performance. It successfully classi�ed celiac disease
with an accuracy of 92.3%, sensitivity and speci�city both reaching 99.1%. From the analysis results,
there were no signi�cant differences in the content of proteins, fatty acids, and phospholipids in the
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plasma of celiac disease patients and the healthy control group. This may be related to the biological
behavior of the disease. Deep learning models, by extracting these differing features, provide a theoretical
basis for effective diagnostic classi�cation.

The DRSN model successfully suppressed noise in Raman spectra through the introduction of deep
residual shrinkage blocks, enhancing the model's generalization performance. Subsequently, we further
explored the impact of scaling coe�cients and soft thresholding operations in DRSN on model
performance, demonstrating the crucial role of these mechanisms in enhancing the model's robustness
and noise resistance. Moreover, there is a need for analysis on the interpretability of the model by
visualizing the activation values and feature maps of deep learning models. This would aid in
understanding the model's focus on different Raman peaks in the process of discriminating celiac
disease, providing insights for further research.

In conclusion, this study provides strong empirica l support for combining Raman spectroscopy and deep
learning models for celiac disease diagnosis. Future work could expand the sample size, consider
multicenter data to verify the model's robustness, and delve deeper into exploring the interpretation and
discovery of potential biomarkers by deep learning models for celiac disease. This is crucial for
advancing the translational application of spectroscopic diagnostic technology in clinical settings.

5. Conclusion
In the face of the limited information extracted from conventional plasma assays, the challenges of
effectively distinguishing the highly similar spectra exhibited by celiac disease, which are di�cult for the
human eye to discern, and the presence of noise interference in spectral data, this study further con�rmed
the high e�ciency of deep learning networks for extracting multi-scale features. Speci�cally, comparing
the classi�cation performance of four deep learning models on plasma Raman spectra of celiac disease
patients and healthy control groups, this study demonstrates the effectiveness of deep learning networks
for feature extraction.

For the DRSN model, its end-to-end learning approach allows direct learning of feature representations
from raw spectral data without the need for manually designing feature extractors. This reduces the need
for feature engineering and enhances the model's automation. The network structure of DRSN allows
information to �ow between different levels, enabling the model to learn multi-scale features. This is
crucial for capturing spectral information at different levels and aids in comprehensive understanding
and extraction of disease-related biomarkers. Through extracting multi-scale and multi-level features
from spectral data, DRSN achieves non-invasive, rapid, and low-cost identi�cation of celiac disease
patients and healthy control group data.

Ultimately, our research results indicate that DRSN has achieved signi�cant success in the classi�cation
and diagnosis of celiac disease and healthy controls. By comparing the performance of different models,
our conclusion is that adopting DRSN can effectively improve the accuracy and robustness of disease
diagnosis. Furthermore, due to its e�ciency in handling spectral noise, DRSN excels in spectral data



Page 13/19

processing and disease monitoring tasks. It serves as a powerful tool for accurately and e�ciently
extracting disease features and conducting spectral data analysis. This valuable experience and
guidance contribute to future research in celiac disease classi�cation within the spectroscopy
measurement �eld.

Declarations
All experiments in this study were performed in strict accordance with relevant principles, regulations, and
guidelines. All samples were provided by the People's Hospital of the Autonomous Region. The research
protocol received approval from the Ethics Committee of the People's Hospital of the Autonomous Region
(Approval Number: (KY2023968173)).This study con�rmed that informed consent was obtained from all
subjects and/or their legal guardians.

Author contributions 
Jiahe Li, Tian shi, Feng Gao and Xiaoyi Lv designed the study. Tian shi, Jiahe Li and Cheng Chen
analyzed the data and wrote the original draft. Chen Chen, Shenglong Xue and Chenjie Chang designed
the substrate. Weidong Liu and Ainur Maimaiti Reyim edited the draft. Feng Gao, Xiaoyi Lv was
responsible for supervision, project management, and fund acquisition. All authors have read and agreed
to the published version of the manuscript.

Funding 
This work was supported by The Central Leading Local Science and Technology Development Special
Fund Project (Autonomous Region Science and Technology Department) ( ZYYD2022A06).

Data availability

The datasets generated and analyzed during the current study are not publicly available due to data
privacy laws, but are available from corresponding author on reasonable request.

References
1. Caio G, Volta U, Sapone A, et al. Celiac disease: a comprehensive current review[J]. BMC medicine,

2019, 17: 1–20.

2. Volta U, Caio G, Stanghellini V, et al. The changing clinical pro�le of celiac disease: a 15-year
experience (1998–2012) in an Italian referral center[J]. BMC gastroenterology, 2014, 14(1): 1–8.

3. Ferretti G, Bacchetti T, Masciangelo S, et al. Celiac disease, in�ammation and oxidative damage: a
nutrigenetic approach[J]. Nutrients, 2012, 4(4): 243–257.



Page 14/19

4. Laurikka P, Nurminen S, Kivelä L, et al. Extraintestinal manifestations of celiac disease: early
detection for better long-term outcomes[J]. Nutrients, 2018, 10(8): 1015.

5. Lomoschitz F, Schima W, Schober E, et al. Enteroclysis in adult celiac disease: diagnostic value of
speci�c radiographic features[J]. European radiology, 2003, 13: 890–896.

�. Comino I, Fernández-Bañares F, Esteve M, et al. Fecal gluten peptides reveal limitations of serological
tests and food questionnaires for monitoring gluten-free diet in celiac disease patients[J]. The
American journal of gastroenterology, 2016, 111(10): 1456.

7. Bascuñán K A, Pérez-Bravo F, Gaudioso G, et al. A miRNA-based blood and mucosal approach for
detecting and monitoring celiac disease[J]. Digestive diseases and sciences, 2020, 65: 1982–1991.

�. Rewers M. Epidemiology of celiac disease: what are the prevalence, incidence, and progression of
celiac disease?[J]. Gastroenterology, 2005, 128(4): S47-S51.

9. Parachalil D R, McIntyre J, Byrne H J. Potential of Raman spectroscopy for the analysis of
plasma/serum in the liquid state: recent advances[J]. Analytical and Bioanalytical Chemistry, 2020,
412: 1993–2007.

10. Wang, X., et al., Fundamental understanding and applications of plasmon-enhanced Raman
spectroscopy. Nature Reviews Physics, 2020. 2(5): p. 253–271.

11. Ralbovsky N M, Lednev I K. Towards development of a novel universal medical diagnostic method:
Raman spectroscopy and machine learning[J]. Chemical Society Reviews, 2020, 49(20): 7428–7453.

12. Stone N, Matousek P. Advanced transmission Raman spectroscopy: a promising tool for breast
disease diagnosis[J]. Cancer Research, 2008, 68(11): 4424–4430.

13. Shao L, Zhang A, Rong Z, et al. Fast and non-invasive serum detection technology based on surface-
enhanced Raman spectroscopy and multivariate statistical analysis for liver disease[J].
Nanomedicine: Nanotechnology, Biology and Medicine, 2018, 14(2): 451–459.

14. Kaznowska E, Depciuch J, Łach K, Kołodziej M, Koziorowska A, Vongsvivut J, Zawlik I, Cholewa M,
Cebulski J. The classi�cation of lung cancers and their degree of malignancy by FTIR, PCA-LDA
analysis, and a physics-based computational model. Talanta. 2018;186:337–345. doi:
10.1016/j.talanta.2018.04.083. Epub 2018 Apr 27. PMID: 29784370.

15. M. G. K, S. Barzegari, P. Hajian, H. Zham, H. R. Mirzaei, and F. H. Shirazi, “Diagnosis of normal and
malignant human gastric tissue samples by FTIR spectra combined with mathematical models,”
Journal of Molecular Structure, vol. 1229, p. 129493, Apr. 2021, doi:
10.1016/j.molstruc.2020.129493.

1�. Yan H, Yu M, Xia J, et al. Diverse region-based CNN for tongue squamous cell carcinoma
classi�cation with Raman spectroscopy[J]. IEEE Access, 2020, 8: 127313–127328.

17. Wu G, Chen P, Zheng X, et al. Serum Raman spectroscopy combined with convolutional neural
network for label-free detection of echinococcosis[J]. Journal of Raman Spectroscopy, 2022, 53(2):
182–190.

1�. He, S., et al., Investigation of a genetic algorithm based cubic spline smoothing for baseline
correction of Raman spectra. Chemometrics and Intelligent Laboratory Systems, 2016. 152: p. 1–9.



Page 15/19

[18] W.-H. Chen, S.-H. Hsu, and H.-P. Shen,

19. Barton S J, Ward T E, Hennelly B M. Algorithm for optimal denoising of Raman spectra[J]. Analytical
methods, 2018, 10(30): 3759–3769.

20. Raja P, Aruna P, Koteeswaran D, et al. Characterization of blood plasma of normal and cervical cancer
patients using NIR raman spectroscopy[J]. Vibrational Spectroscopy, 2019, 102: 1–7.

21. Chundayil Madathil, G., et al., A novel surface enhanced Raman catheter for rapid detection,
classi�cation, and grading of oral cancer. Advanced healthcare materials, 2019. 8(13): p. 1801557.

22. Zhou, W, Wang, H, Wan, Z. Ore Image Classi�cation Based on Improved CNN COMPUT ELECTR ENG.
2022; 99 107819. doi: 10.1016/j.compelece ng.202 2.107819

23. Y. Xie, J. Zhang, C. Shen, and Y. Xia, “CoTr: E�ciently Bridging CNN and Transformer for 3D Medical
Image Segmentation,” in Medical Image Computing and Computer Assisted Intervention – MICCAI
2021, Springer, Cham, 2021, pp. 171–180. doi: 10.1007/978-3-030-87199-4_16.

24. Bhatt, D, Patel, C, Talsania, H, et al. CNN Variants for Computer Vision: History, Architecture,
Application, Challenges and Future Scope Electronics (Basel). 2021; 10 (20): 2470. doi:
10.3390/electronics10202470

25. P. N. Yeboah and H. B. Baz Musah, “NLP Technique for Malware Detection Using 1D CNN Fusion
Model,” Security and Communication Networks, vol. 2022, p. e2957203, Jun. 2022, doi:
10.1155/2022/2957203.

2�. Alzubaidi, L, Zhang, J, Humaidi, AJ, et al. Review of deep learning: concepts, CNN architectures,
challenges, applications, future directions. J Big Data. 2021; 8 (1): 53. doi: 10.1186/s40537-021-
00444-8

27. Calam J, Ellis A, Dockray G J. Identi�cation and measurement of molecular variants of
cholecystokinin in duodenal mucosa and plasma. Diminished concentrations in patients with celiac
disease[J]. The Journal of clinical investigation, 1982, 69(1): 218–225.

2�. Douglas A P, Crabbé P A, Hobbs J R. Immunochemical studies of the serum, intestinal secretions and
intestional mucosa in patients with adult celiac disease and other forms of the celiac syndrome[J].
Gastroenterology, 1970, 59(3): 414–425.

29. Jaiswal S, Ayyannan S R. Anticancer Potential of Small-Molecule Inhibitors of Fatty Acid Amide
Hydrolase and Monoacylglycerol Lipase[J]. ChemMedChem, 2021, 16(14): 2172–2187.

30. An F, Li X, Ma X. Medical image classi�cation algorithm based on visual attention mechanism-
MCNN[J]. Oxidative Medicine and Cellular Longevity, 2021, 2021: 1–12.

31. Wu Z, Shen C, Van Den Hengel A. Wider or deeper: Revisiting the resnet model for visual
recognition[J]. Pattern Recognition, 2019, 90: 119–133.

32. Zhao M, Zhong S, Fu X, et al. Deep residual shrinkage networks for fault diagnosis[J]. IEEE
Transactions on Industrial Informatics, 2019, 16(7): 4681–4690.

33. Tetzlaff W F, Meroño T, Menafra M, et al. Markers of in�ammation and cardiovascular disease in
recently diagnosed celiac disease patients[J]. World journal of cardiology, 2017, 9(5): 448.



Page 16/19

34. Bertini I, Calabro A, De Carli V, et al. The metabonomic signature of celiac disease[J]. Journal of
proteome research, 2009, 8(1): 170–177.

35. Mediene S, Hakem S, Bard J M, et al. Serum lipoprotein pro�le in Algerian patients with celiac
disease[J]. Clinica chimica acta, 1995, 235(2): 189–196.

3�. Catassi C, Kryszak D, Louis-Jacques O, et al. Detection of celiac disease in primary care: a
multicenter case-�nding study in North America[J]. O�cial journal of the American College of
Gastroenterology| ACG, 2007, 102(7): 1454–1460.

37. Sen P, Carlsson C, Virtanen S M, et al. Persistent alterations in plasma lipid pro�les before
introduction of gluten in the diet associated with progression to celiac disease[J]. Clinical and
translational gastroenterology, 2019, 10(5).

3�. Singh A, Pramanik A, Acharya P, et al. Non-invasive biomarkers for celiac disease[J]. Journal of
Clinical Medicine, 2019, 8(6): 885.

39. Ruiz-Chica A J, Medina M A, Sánchez‐Jiménez F, et al. Characterization by Raman spectroscopy of
conformational changes on guanine–cytosine and adenine–thymine oligonucleotides induced by
aminooxy analogues of spermidine[J]. Journal of Raman spectroscopy, 2004, 35(2): 93–100.

40. Borek-Dorosz A, Nowakowska A M, Leszczenko P, et al. Raman-based spectrophenotyping of the
most important cells of the immune system[J]. Journal of Advanced Research, 2022, 41: 191–203.

41. Mallakpour S, Abdolmaleki A, Borandeh S. Covalently functionalized graphene sheets with
biocompatible natural amino acids[J]. Applied Surface Science, 2014, 307: 533–542.

42. Khodursky A B, Peter B J, Cozzarelli N R, et al. DNA microarray analysis of gene expression in
response to physiological and genetic changes that affect tryptophan metabolism in Escherichia
coli[J]. Proceedings of the National Academy of Sciences, 2000, 97(22): 12170–12175.

43. Gong Z, Chen C, Chen C, et al. RamanCMP: A Raman spectral classi�cation acceleration method
based on lightweight model and model compression techniques[J]. Analytica Chimica Acta, 2023,
1278: 341758.

Figures



Page 17/19

Figure 1

Average Raman spectra of Celiac Disease and healthy controls
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Figure 2

Structure of (a) CNN ;(b) MCNN; (c) ResNet; (d) DRSN
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Figure 3

ROC curve of CNN MCNN ResNet DRSN


