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Abstract

Background

Self-injurious behavior (SIB) is a clinically challenging problem within both the general population and
several clinical disorders. However, the precise molecular mechanism of SIB is still confused, and few
animal models exist. Here, we systematic investigated the genesis and development of SIB based on
behavioral and pathophysiology study in mink (Neovison vison) models.

Method

We used night-vision video to observe the mink behavior for four weeks,HE stain was performed to
characteristic the pathology change of brain. We performed IHC assay to detect the protein level of Iba-10
p-CREB ICBP and p300 in the brain tissues. Elisa assay used to examined the levels of NfL and NfH in
serum and CSF of mink. gRT-PCR assay was mused to detected the expression of Bcl2, NOR1, FoxO4lc-
FOSICBP and p300 in brain tissues. Western blot was used to detect the protein levels of p-CREBICBP
and p300 in brain tissues. We also used Evans Blue as a tracer to detect whether the blood brain barrier
was impaired in the brain of mink.

Rusult

First we combine behavioral testing, histopathological and molecular biology experiments found that
CBP was related with SIB. Mechanism analysis showed that the dysregulation of CBP in brain activated
CREB signaling, resulting in nerve damage of brain and SIB symptoms in minks. Importantly, the CBP-
CREB interaction inhibitor helped to relieve SIB and nerve damage in brain tissues.

Conclusion

Our results illustrate an induction of CBP and an activation of CREB, as a novel mechanism in the genesis
of SIB. These finding indicate that CBP-CREB axis is critical for SIB and demonstrate the efficacy of the
CBP-CREB interaction inhibitor in treating these behaviors.

Background

Self-injurious behavior (SIB) is a significant health problem associated with psychiatric conditions,
genetic diseases, and profound intellectual disabilities. Although SIB is expressed in various forms of
behaviors differ between individual, biting is typical. In humans, SIB is a serious psychiatric disorder, with
outcomes ranging from social ostracism to severe physical injuries or death [1]. It is a common symptom
of autism spectrum disorder (ASD) [2], post-traumatic stress disorder (PTSD) [3-5], Fragile X syndrome
[6], psychiatric disorders [7], Lesch-Nyhan syndrome [8], Prader-Willi syndrome [9, 10], and major
depressive disorder (MDD) [11].The prevalence of SIB is as high as 40% of humans with learning
disabilities living in hospitals [12]. Thus, it is urgently needed to further reveal the underlying molecular
mechanisms of SIB pathogenicity and to develop new prevention and therapeutic strategies.
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Several prior studies focus on environmental factors that reinforce SIB in minks and show that episodes
of SIB often serve to reduce tension, anxiety, or other dysphoric states [13]. Recent studies have used
animal models to investigate biological mechanisms of SIB. For example, relocation is a significant
stressor for rhesus macaques, and that this stressor triggers an increase in self-biting behavior as well as
sleep disturbance in monkeys [13]. Domestic dogs and cats with separation anxiety syndrome typically
exhibit self-injurious denuding of the fur and mutilation of the skin [14]. In addition, SAPAP3 [15], Slitrk5
[16], and Shank3 [17] mutant mice exhibit SIB that results in tissue injury. However, the underlying
mechanism of SIB is still confused, and few animal models exist.

The American mink (Neovison vison), which is a semiaquatic species of mustelid [18], is the most
common farmed animal for fur, exceeding the silver fox, sable, marten, and skunk in economic
importance. Minks are known to be susceptible to SIB, which seriously hinders the development of the fur
industry of minks. The behaviors seen in minks range from repeating wheel to severe tail biting, that
occasionally results in self-wounding. Unlike other rodent models of SIB, the pathology arises
spontaneously without the need for pharmacological manipulations in minks. Meanwhile, SIB in minks is
always accompanied by wounds. Thus, mink may serve as animal model to investigate the underlying
biological mechanisms of SIB pathogenicity.

Dopaminergic dysfunction is a common feature in disorders in which SIB is exhibited, suggesting that
dopamine (DA) may play an important role in SIB [19]. Recent studies have shown that DA may enhance
the transcriptional activity of the cyclic adenosine monophosphate response-element-binding protein
(CREB) which is a significant transcriptional activator in nervous diseases [20-25]. CREB comprises 341
amino acid residues, which are specifically expressed in brain tissues[26—-28]. Activation of CREB is
mediated by phosphorylation at a specific serine residue, serine 133 (Ser133). The phosphorylation levels
of CREB markedly up-regulated in rats with SIB [29], indicating that CREB signaling may play a significant
role in SIB development. The phosphorylation of CREB in Ser133 promotes the association of CREB with
the CREB-binding protein (CBP), a co-activator protein that aids in the assembly of an active transcription
complex enabling target gene activation [30, 31]. Therefore, CBP may involve in the regulation of SIB
development by CREB. Although CBP is associated with multitude of neurological disease processes [32,
33], there is no published data on the relationship between CBP and changes in the incidence of SIB. Here,
we have made several novel observations and suggest that they are mechanistically and diagnostically
indicative of SIB. In addition, we clarified the roles of CBP in the development of SIB.

Methods
Minks

The subjects were single-housed female American minks ranging in age from 5-6 months of age and
maintained in standard cages. All minks were collected between September and October of 2017 from
the Institute of Special Economic Animal and Plant Science of the Chinese Academy of Agricultural
Sciences (Jilin, China). Standard mink chow was available ad libitum [34]. The minks had wounded
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themselves at least once (SIB Group) with sufficient severity to require veterinary treatment, whereas the
healthy minks constituted a control group. Our works were approved by the Animal Care Committee of the
Institute of Special Economic Animal and Plant Science of the Chinese Academy of Agricultural Sciences
(CAAS), and were conducted in accordance with the CAAS Guide for the Care and Use of Laboratory
Animals. After behavior testing, all minks were euthanized via carbon dioxide, and all efforts were made
to minimize suffering. A completed ARRIVE guidelines checklist is included in Checklist S1.

Mice

C57BL/6 female mice were purchased from Liaoning Changsheng Biological Technology Company
(Liaoning, China) and maintained in Special Economic Animal and Plant Science of CAAS Institutions
animal care facilities for at least 10 days before experiment, aged 7—8 weeks were used in this work. Our
works were approved by the Animal Care Committee of the Institute of Special Economic Animal and
Plant Science of CAAS, and were conducted in accordance with the CAAS Guide for the Care and Use of
Laboratory Animals. Mice were killed by CO,, and all efforts were made to minimize suffering. A

completed ARRIVE guidelines checklist is included in Checklist S1.
Groups

The experimental minks were divided into three independent cohorts in this study. Cohort 1: 1) Healthy
minks (Control, n = 10), 2) Minks with SIB (SIB, n = 10). Cohort 2: 1) Healthy minks injected with PBS
(Control + PBS, n = 10), 2) Healthy minks injected with CBP-CREB interaction inhibitor (hereafter called
Inhibitor. Control + Inhibitor, n = 10), 3) Minks with SIB that injected with PBS (SIB + PBS, n = 15), 4) Minks
with SIB were injected with Inhibitor (SIB + Inhibitor, n = 15). Cohort 3: 1) Healthy minks injected with PBS,
after 30 minutes injected with Mixture (PBS + Mixture, n = 7. Both PBS and Mixture are at daily intervals.),
2) Healthy minks injected with Inhibitor, 30 minutes later, injected with Mixture (Inhibitor + Mixture, n =7.
Both Inhibitor and Mixture are at daily intervals.), 3) Healthy minks injected with PBS, then injected with
() Bay K 8644 after half an hour (PBS + 8644, n = 7. Both PBS and (t) Bay K 8644 are at daily intervals.),
4) Healthy minks injected with Inhibitor, half an hour later injected with (x) Bay K 8644 (Inhibitor + 8644, n
= 7. Both Inhibitor and (t) Bay K 8644 are at daily intervals.).

The mice were divided into four groups and detailed information in the Supplemental Materials,
Supplemental Table 1.

Behavioral testing

Night-vision video was purchased from PINZE (Shenzhen, China) and used to assess the mink behavior
during four weeks (Cohort 1). Seven main categories (which includes self-biting frequency, drinking
frequency, sleep, sleep position, repeating wheel frequency, food intake and defecation frequency) of
behavior were recorded. The CBP-CREB interaction inhibitor was injected into minks subcutaneously for
14 days (Cohort 2). During 14 days, seven main categories were also assessed in Cohort 2. Behavioral
definitions are described in detail in the Supplemental Table 2.
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Mice and minks (Cohort 3) in both groups (PBS + Mixture, Inhibitor + Mixture, PBS + 8644 and Inhibitor +
8644) were used to record the numbers of mice and minks that exhibited self-injuries behavior of each
experimental day (The assessment was performed for 6 days.). Mice were placed singly in a custom-
made apparatus as previousl[35]. Given nifedipine subcutaneously when any tissue injury or bleeding in
mice and mink models.

Histopathology and immunohistochemistry (IHC)

The brain was used to examine the histopathological changes of minks. The brain tissue was fixed in the
4% formalin (BBI Life Sciences Corporation, China). After embedding in paraffin, tissue sections were
cuted and stained with Hematoxylin and eosin (HE. Applygen Technologies Inc., China). Three
micrographs per individual were performed. Sections were examined with NanoZoomer 2.0-RS Digital
Pathology (Hamamatsu, Japan).

The immunohistochemistry assay was used to analyze the protein expression of p-CREB, CBPR, p300 and
Iba-1. The mink brain samples were fixed in 4% paraformaldehyde and embedded in paraffin. The slides
were then incubated with 3% H,0, for 10 minutes to reduce non-specific staining. Treated slides were
placed in a citrate buffer (pH 6.0. Sigma-Aldrich, USA) and heated in a pressure cooker for 2 minutes. The
slides were then incubated for overnight at 4 °C with four primary antibodies separately. After washing,
the slides were treated by the MaxVision™ HRP-Polymer IHC Kit (MXB Biotechnologies, China). Then all
the slides were stained with 3, 3-diaminobenzidine tetra-hydrochloride (DAB). The slides were mounted
with gum for examination and capture with the Nano Zoomer 2.0-RS Digital Pathology (Hamamatsu,
Japan) for study comparison. Three micrographs per individual were performed. The information of the
antibodies was described in Supplemental Table 3.

Cerebrospinal fluid (CSF) and serum collection in mice and
minks

CSF collection of minks was similar with mice, and was done as described previously [36—38]. In Cohort
1, after 4 weeks observation, we collected the CSF immediately. In Cohort 2, after treating the CBP-CREB
interaction inhibitor for 14 days, CSF was immediately collected. Then, all CSF samples were centrifuged
at 15000 g for 1 min and stored at -80°C until use.

Blood samples were immediately obtained via the heart puncture of minks (in both Cohort 1 and Cohort
2) on an empty stomach and centrifuged at 1600 rpm for 15 min. Then the serum was aliquotted into
microcentrifuge tubes and stored at -80°C for later analysis. All blood samples were assessed
macroscopically for blood contamination before the start of the experiment.

Enzyme-linked immunosorbent assay (ELISA) for detecting neurofilament light chain (NfL) and
neurofilament heavy chain (NfH) in minks and mice

CSF and Serum in Cohort 1 and Cohort 2 of minks were used to determine NfL and NfH levels. All the
analyses were performed using ELISA kit. The information of the ELISA kits was described in
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Supplemental Table 4.
RNA extraction and quantitative real-time polymerase chain
reaction (QRT-PCR) assay

Total RNAs were extracted from mink (Cohort 1, Cohort 2 and Cohort 3) and mouse brain tissues using
TIANGEN RNA Extract kit (TIANGEN BIOTECH (BEIJING) Co., Ltd, China) according to the manufacturer’s
protocol. The cDNAs were synthesized from 500 ng of total RNAs using PrimeScript RT reagent kit
(Takara, Dalian, China) according to the manufacturer’s protocol. The gRT-PCR assays were performed in
the BioRad 1Q5 Real-Time PCR System (BioRad, Hercules, CA, USA) using KAPA SYBR® FAST gPCR
Master Mix (KAPA, Wilmington, UK). The relative expression of RNAs was calculated using the
comparative C; method. All RNA expressions were normalized to beta-actin (B-actin). The primer

sequences were described in Supplemental Table 5.

Western blotting analysis

The experimental minks were euthanized and the brain tissues were aseptically harvested. The brain
tissues were subsequently treated by liquid nitrogen and lysed the brain tissue in RIPA lysis buffer
(Beyotime Biotechnology, China) for 30 min. Then transferred to a centrifuge tube and centrifuged at
12,000 g for 10 min at 4°C.Then collected the supernatant and using BCA protein assay kit (Pierce, USA)
to determine protein concentration. Total proteins were separated by 10% SDS-PAGE electrophoresis and
transferred onto polyvinylidenedifluoride (PVDF) membranes (Millipore Corporation, USA). The
membranes were then blocked (4°C). Next, the membranes were incubated with the primary antibody
overnight (4°C), followed by secondary antibodies HRP-conjugated for 1.5 h (37°C). Then using PBST
washes the membranes. The protein expression of p-CREB, CBP30 and p300 were detected with the Gel
Imaging System and the Quantity One Software version 4.0 (Bio-Rad, USA). Band intensity levels were
normalized to B-actin (Sigma-Aldrich, USA). The information of the antibodies was described in
Supplemental Table 3.

Evans blue analyses

At the 14 days, administered (Cohort 2) i.p. with 3% Evans Blue (EB; Sigma-Aldrich, USA) as described
previously [39]. Four hours after post-injection, the minks were sacrificed. The brains were harvested and
fixed in 4% formalin (BBI Life Sciences Corporation, China). Frozen minks brain slabs (6 um) are kept at
cryogenic temperatures and sections were examined in OLYMPUS Digital Pathology (OLYMPUS, Japan).
“Image J” was used as the integrated density analysis tool to measure extravascular accumulations of
EB. Three micrographs per individual were performed for the photomicrographs.

Chemicals

CBP-CREB interaction inhibitor (Catalogue Number: 217505) was purchased from Merck (Germany). The
inhibitor was injected into minks at concentration of 10 mg/ml subcutaneously.
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(+) Bay K 8644 agonist (Merck-Millipore, Germany) was dissolved in ethanol, then mixed with Tween 80
(Sigma) as described previously [40]. Then diluted with distilled water and injected subcutaneously at a
final concentration of 12 mg/ml in both mice and minks.

Statistical analyses

All statistical analyses were performed using GraphPad Prism 5 software (Inc.7825 Fay Avenue, Suite
230 La Jolla, CA 92037, USA). All values are expressed as mean + SEM. Two way ANOVA with Bonferroni
post-tests and ttests were used for statistical analysis. Pvalues lower than 0.05 were considered to be
statistically significant.

Results
Behavior

Equal number of minks (Cohort 1) was used to observe the mink behavior for four weeks (Control, Fig. 1A;
SIB, Fig. 1B. Two minks were dead in SIB group at the second and fifth day during the experiment). First,
we found that the minks in control group showed no self-biting behavior throughout the course of the
study (Fig. 1C, *p<0.05). In contrast, minks with SIB exhibited severe self-biting behavior (Fig. 1C, *p<
0.05). Consistently, we achieved the same results of the frequency of repeating wheel (Fig. 1D, *p<0.05).
Moreover, the sleep posture of minks in SIB group exhibited a significant difference compared to the
control, consistent with the precious studies [13, 41]. Meanwhile, the minks with SIB exhibited a
significant reduce in sleeping time, dietary amount, drinking frequency and defecation frequency

(Figs. 1E-H, *p< 0.05, **p< 0.01). The weights of minks were also measured, and they markedly reduced
in SIB group compared to the control (Supplemental Fig. 1, **p<0.01). Collectively, our results provide a
systematic behavioral observation of minks with SIB.

Minks with SIB exhibit serious nerve damage in brain

A prior study had shown that SIB is sometimes observed in rodents after injury to brain rather than
peripheral nerves [42], indicating that rodents with SIB may exhibit nerve injury in brain. Therefore, we
obtained the brain tissues from the minks of control group and SIB group (Cohort 1) to observe the
pathology change of brain. We found that the microglial cells diffused hyperplasia in the brain
parenchyma in SIB group (Fig. 2A. Control, n = 10; SIB, n = 8). Meanwhile, activated Iba-1 microglial cells
were increased in SIB group (Fig. 2B. Control, n = 10; SIB, n = 8). Accumulating evidence has shown that
NfL and NfH can serve as a reliable and easily accessible biomarkers reflecting the nervous diseases
progression. Thus, we examined the levels of NfL and NfH in serum and CSF of minks with SIB and
controls. Indeed, we observed increased levels of NfL and NfH in the serum and CSF of SIB minks

(Fig. 2C-F, ***p< 0.001). Taken together, our results suggest that minks with SIB exhibit serious nerve
damage in brain.
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CBP significantly up-regulated in the brain tissues of minks
with SIB

Next, we investigated the precise molecular mechanism of SIB. Previous studies showed that the
phosphorylation levels of CREB were markedly up-regulated in rats with SIB [29], suggesting CREB
signaling may play a significant role in the genesis and development of SIB. Indeed, we also found that
phosphorylation levels of CREB were significantly increased in the brain tissues of minks with SIB
compared to controls (Figs. 3A-B). In addition, we investigated whether the CREB signaling is significantly
enhanced in brain tissues of minks with SIB by detecting the direct target genes of CREB. Bcl2, NOR1 and
c-FOS, which are directly transactivated by CREB, were significant increased in brain tissues of minks with
SIB (Figs. 3C, **p<0.01, ***p<0.001). In contrast, Fox04, which is directly suppressed by CREB, was
reduced in brain tissues of minks with SIB (Figs. 3C, ***p<0.001). Collectively, these results indicate that
CREB signaling is significantly enhanced in brain of minks with SIB and may play crucial roles in genesis
and development of SIB.

CREB-binding protein (CBP) and its paralog p300, which were originally identified as the transcriptional
cofactors of CREB, may significantly enhance the transcriptional activity of phosphorylated CREB [30,
31]. Given that CREB signaling is significantly activated in brain of minks with SIB, we hypothesized that
CBP and p300 may involve in this process. To test the hypothesis, we first investigated whether the mRNA
levels of CBP and p300 were also increased in the brain tissues of minks with SIB compared to controls
(Cohort 1). Indeed, the mRNA levels of CBP exhibited a significant increase in the brain tissues of SIB
group (Fig. 3D, ***p<0.001). However, the mRNA levels of p300 showed no change (Fig. 3E, n.s.),
indicating that p300 may not affect the CREB signaling in brain tissues of minks. Consistently, the protein
levels of CBP were up-regulated in the brain tissues of SIB group, but not p300 (Fig. 3F-G). Furthermore,
immunohistochemistry results also confirmed that the level of CBP were markedly elevated in brain
tissues of SIB group (Fig. 3H-l). In summary, these results indicate that CBP is significant increased in
brain tissues of minks with SIB and thus activate CREB signaling, resulting in the genesis and
development SIB.

CBP-CREB interaction inhibitor significantly relieves SIB
symptoms

To validate the effect of CBP and CREB signaling on genesis and development SIB, we used CBP-CREB
interaction inhibitor (hereafter called Inhibitor) to inhibit the interaction between CBP and CREB in vivo
(Cohort 2). Compared to SIB + PBS group, the minks of SIB + Inhibitor group exhibited a significant reduce
in the frequency of self-biting and repeating wheel (Figs. 4A-B, *p< 0.05. Two minks in SIB + PBS group
were dead at the second day of the experiment and one mink in SIB + Inhibitor was dead at the third day
of the experiment.). Moreover, sustained administration of Inhibitor improved duration of the sleep of
minks with SIB (Fig. 4C, **p<0.01) and increased dietary amount (Fig. 4D, *p < 0.05), drinking frequency
(Fig. 4E, *p<0.05) and defecation frequency (Figure F, *p< 0.05). In addition, the Inhibitor-treated minks
with SIB gained weight over 14 days, but not PBS-treated SIB group (Supplemental Fig. 2, *p< 0.05).
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Worth to note, the Inhibitor treatment significantly promoted the wound healing (ten of the 14 minks,
71.4%) until the end of the 14-day monitoring period (Supplemental Fig. 3). These results showed that
sustained administration of Inhibitor gradually relieved the self-injury behavior.

Next, we examined whether the CREB signaling was inhibited after consecutive injection of Inhibitor. To
this end, we used qRT-PCR assay to detect the target genes of CREB. We found that Inhibitor treatment
efficiently decreased the expression of Bcl2, NOR1 and c-FOS (Fig. 4G, *p<0.05, **p< 0.01), while the
expression of FoxO4 was increased upon the Inhibitor treatment (Fig. 4G, *p< 0.05). Importantly, we also
found that the expression of CBP was significantly increased in the SIB mice and mink models induced
by () Bay K 8644 agonist (Supplemental Fig. 4, **p<0.01). Meanwhile, the Inhibitor also relieved the self-
injury behavior in the induced SIB mice and mink models (Supplemental Tables 6 and 7). These results
suggest that CBP-CREB interaction inhibitor significantly suppress CREB signaling and thereby relieve the
self-injury behavior.

Pathological change after treatment with CBP-CREB
interaction inhibitor

Given that CBP-CREB interaction inhibitor may relieve the self-injury behavior, we hypothesized that it may
rescue the nerve damage in brain tissues of minks with SIB. Indeed, the hyperplasia of microglial cells
was relieved by Inhibitor in brain parenchyma of minks with SIB (Fig. 5A). Compared to SIB + PBS group,
activated Iba-1 microglial cells were decreased in brain tissues of SIB + Inhibitor group (Fig. 5B). We used
Evans Blue as a tracer to detect whether the blood brain barrier was impaired in the brain of mink with
SIB, the results showed that the blood brain barrier was impaired in the brain of mink with SIB and
Inhibitor may relieve the injury (Figs. 5C-D, *p<0.05). In addition, the levels of NfL and NfH in the serum
and CSF of minks with SIB were also decreased upon Inhibitor treatment (Fig. 5E, ***p< 0.001). These
results indicate that CBP-CREB interaction inhibitor markedly relieved the nerve damage in brain tissues,
and offers the intriguing possibility that CBP-CREB axis may serve as novel and accessible markers of
SIB disease progression.

Discussion

In the present study, we provided a systematic behavioral analysis of SIB in minks for the first time.
Meanwhile, we observed that minks with SIB exhibit serious nerve damage in brain tissues.
Mechanistically, CBP was significantly increased and in turn activated CREB signaling in the brain tissues
of the minks with SIB, indicating the significant roles of CBP-CREB axis in the elicitation of SIB.
Furthermore, an important finding was that inhibitors of CBP improve behavioral and physiological
disorders of minks with SIB in vivo, suggesting that CBP is a critical molecular for SIB and it is potentially
an effective target for SIB therapy.

SIB occurs in a number of neurological and neuropsychiatric conditions. However, the neuropathology of

SIB has not been systematically explored. Because of the ethical difficulties in carrying out study in

human subjects, experimental animal models were used to investigate SIB. Several animal models of SIB
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have been described [13, 29]. For examples, Matthew et al investigated the relationship between SIB with
stress in rhesus monkey model of self injury [13]. In a rat model, Yuan et alilluminated the role of anxiety
in vulnerability for self-injurious behavior [43]. Here, we used for the first time mink as the animal model
to investigate the genesis and development of SIB and made several main behavioral observations and
suggest that they are mechanistically and diagnostically indicative of SIB. SIB in minks arises
spontaneously and is always accompanied by wounds, indicating the advantage of mink as the models
of SIB. First, we confirmed that the frequency of self-biting and repeating wheel is significantly increased
in the minks that spontaneously develop SIB. Meanwhile, our data showed that the sleeping time, dietary
amount, drinking frequency, defecation frequency and body weight markedly reduced in SIB group.

Furthermore, we investigated the pathological change of SIB in mink brain. Our data showed that the
microglial cells diffused hyperplasia in the brain parenchyma in minks with SIB, but not found in healthy
minks. Meanwhile, activated Iba-1 microglial cells were increased in the brain parenchyma in SIB group.
In addition, we examined the levels of NfL and NfH, in the CSF and serum of mink with or without SIB. We
observed increased levels of NfL and NfH in the CSF and serum of minks with SIB. Taken together, these
findings suggest that minks with SIB exhibited strong neurological illness signs.

llluminating the molecular mechanism of SIB is significant to develop new prevention and therapeutic
strategies for SIB. However, most research has focused on environmental factors that reinforce SIB, and
only a few studies have investigated the underlying biological mechanism of SIB. For examples, Subbiah
et al found that SIB is associated with an induction of a MAPK signaling pathway and an activation of
the transcription factor CREB in rats with L-DOPA-induced SIB, suggesting that the induction of CREB
transcription may be associated with elicitation of SIB [29].

Cyclic-AMP response element (CRE) binding protein (CREB) belongs to a large family of basic leucine
zipper (bZIP)-containing transcription factors [44—-46], which has long been known to be important for the
formation of memories [47, 48]. Recent study have shown that CREB signaling is dysfunctional in mouse
and human with Alzheimer's disease (AD), a disease characterized by cognitive decline and memory
impairments[25, 49]. In our study, we observed that the phosphorylation levels of CREB were significantly
increased in the brain tissues of minks with SIB, consistent with the precious study [29]. Furthermore, we
found for the first time that the CREB signaling is indeed activated in the brain tissues of minks with SIB
by detecting the mRNA levels of CREB target genes, including Bcl2, NOR1, FoxO4 and c-FOS.

It is well-known that the phosphorylated CREB (p-CREB) binds the CBP [30, 31, 44]. This binding event will
further enhance the transcriptional activity of p-CREB and thereby activate the transcription of CREB
target genes. Given that the significant roles of CREB in SIB development, we assumed that CBP is also
associated with SIB development in minks. Indeed, CBP markedly up-regulated in the brain tissues of
minks with SIB, indicating the significant roles in elicitation of SIB. Consistently, we also found that the
expression is increased in the SIB mice and mink models induced by (+) Bay K 8644 agonist. And to our
best knowledge, this is the first time to prove that CBP participates in SIB. However the molecular
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mechanism that CBP expression increases in the brain tissues of minks with SIB deserved to further
investigate.

Small molecules that target protein—protein interactions are important research technologies for
dissecting the biological functions of protein-protein interactions and potential therapeutics for many
diseases [44]. To validate the effect of CBP and CREB signaling on SIB development, we used CBP-CREB
interaction inhibitor to inhibit the interaction between CBP and CREB in vivo. Our results showed that
sustained administration of CBP-CREB interaction inhibitor significantly reduced the expression of CREB
target genes and relieved the nerve damage in brain tissues of minks with SIB, which in turn gradually
relieved the self-injury behavior and promoted the wound healing. Consistently, we also achieved the
same results in mice models. Taken together, our findings shed light on the critical role of CBP in the
genesis and development of SIB.

In summary, the present study used a mink model of SIB to investigate underlying mechanism involved in
the genesis of SIB. Our results illustrated an induction of CBP and an activation of CREB signaling, as a
novel mechanism in the genesis of SIB. Importantly, CBP-CREB interaction inhibitor markedly relieved the
SIB severity in vivo, supplying an effective strategy for SIB therapy. These findings are also important
supplements for the full understanding of SIB.

Conclusion

An induction of CBP and an activation of CREB, as a novel mechanism in the genesis of SIB, is a critical
for SIB and may be potentially an effective target for SIB therap.
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Abbreviations  Full name
SIB Self-injurious behavior
ASD Autism spectrum disorder
PTSD Post-traumatic stress disorder
MDD Major depressive disorder
CREB Cyclic adenosine monophosphate response-element-binding protein
CBP CREB-binding protein
IHC Histopathology and immunohistochemistry
DA Dopamine
NfL Neurofilament light chain
NfH Neurofilament heavy chain
p-CREB Phosphorylated CREB
AD Alzheimer's disease
HE Hematoxylin and eosin
bZIP Basic leucine zipper
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Figure 1

Systematic behavioral observation of minks with SIB. (A) Representative images of Mink in Control Group
(n =10). (B) Representative images of Mink in SIB Group (n = 10). (C and D) Frequency scores for self-
biting and repeating whirl during 4 week period (data are expressed as mean + SEM; *p < 0.05. Control, n
=10; SIB, n = 8). (E-H) Scores for sleeping time, dietary amount, drinking frequency and defecation
frequency during 4 weeks (data shown represent the mean + SEM; *p < 0.05, **p < 0.01. Control, n = 10;
SIB,n = 8)
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Figure 2

Minks with SIB exhibit serious nerve damage in brain tissues. (A) Microglial cells diffused hyperplasia in
the brain parenchyma in SIB. Representative HE staining in the brain tissues, Scale bars, 25 pm. (B)
Activated Iba-1 microglial cells were increased in SIB group. Representative IHC stains of Iba-1 in the
brain tissues. Scale bars, 25 pm. IHC, Immunohistochemistry. Ten mink brain tissues in Control group,
eight mink brain tissues in SIB group and three micrographs per individual were performed for the
photomicrographs. (C-F) The levels of NfL and NfH in control and SIB group. Each symbol represents the
serum and CSF cytokine levels (pg/ml) in one mink. Data shown represent the mean + SEM; Control, n =
10; SIB, n = 8. *** p < 0.001.
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Figure 3

CBP and p-CREB are significantly increased in Mink brain. (A) The protein levels of p-CREB in brain

tissues, assayed by western blot. (B) Representative IHC stains of p-CREB in the brain tissues. Scale bars,

25 ym. Three micrographs per individual were performed for the photomicrographs. (C) The mRNA levels

of Bcl2, NOR1, Fox04 and c-FOS in brain tissues, assayed by qRT-PCR. (D) The mRNA levels of CBP in
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brain tissues, assayed by qRT-PCR. (E) The mRNA levels of p300 in brain tissues, assayed by qRT-PCR. (F)
The protein levels of CBP in brain tissues, assayed by western blot. (G) The protein levels of p300 in brain
tissues, assayed by western blot. (H) Representative IHC stains of CBP in the brain tissues. Scale bars, 25
pum. Three micrographs per individual were performed for the photomicrographs. (I) Representative IHC
stains of p300 in the brain tissues. Scale bars, 25 pm. Three micrographs per individual were performed
for the photomicrographs. Data shown represent the mean + SEM; Control, n = 10; SIB, n = 8. *p < 0.05,
**p < 0.01, ***p < 0.001, n.s., no significance.
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Figure 4

CBP inhibitor significantly relieves SIB symptoms. (A and B) Frequency scores for self-biting and
repeating whirl during 14 days. (C-F) Frequency scores for sleeping time, dietary amount, drinking
frequency and defecation frequency during 14 days. g The mRNA levels of Bcl2, NOR1, Fox04 and c-FOS
in brain tissues after 14 days treatment with inhibitor or PBS, assayed by qRT-PCR. Data shown represent
the mean + SEM; Control + PBS, n = 10; Control + inhibitor,n = 10; SIB + PBS, n = 13; SIB + inhibitor, n =
14.*p < 0.05, **p < 0.01, n.s., no significance.
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Figure 5

CBP inhibitor markedly relieves the nerve damage in brain tissues. (A) The hyperplasia of microglial cells
was relieved by inhibitor. Representative HE staining in the brain tissues. Scale bars, 25 pm. Three
micrographs per individual were performed for the photomicrographs. (B) Activated Iba-1 microglial cells
were decreased in SIB + CBP30 group. Representative IHC stains of Iba-1 in the brain tissues. Scale bars,
25 ym. Three micrographs per individual were performed for the photomicrographs. (C) Representative
images of Evans Blue levels. Scale bars, 50 um. Three micrographs per individual were performed for the
photomicrographs. (D) Quantifications of Evans Blue levels. e The levels of NfL and NfH in both four
groups. Each symbol represents the serum and CSF cytokine levels (pg/ml) in one mink. Data shown
represent the mean + SEM; Control + PBS, n = 10; Control + inhibitor,n = 10; SIB+ PBS,n=13;SIB +
inhibitor, n = 14.*p < 0.05, **p < 0.01, ***p < 0.001, n.s., no significance.
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