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Abstract
Although rare non-coding variants (RVs) play crucial roles in human complex traits and diseases,
understanding their functional mechanisms and identifying those most closely associated with diseases
continue to be major challenges. Here, we constructed the �rst comprehensive atlas of alternative
polyadenylation (APA) outliers (aOutliers) from 15,201 samples across 49 human tissues. Strikingly,
these aOutliers exhibit unique characteristics markedly distinct from those of outliers based on
transcriptional abundance or splicing. This is evidenced by a pronounced enrichment of RVs speci�cally
within aOutliers. Mechanistically, aOutlier RVs frequently alter poly(A) signals and splicing sites, and
experimental perturbation of these RVs indeed triggers APA events. Furthermore, we developed a
Bayesian-based APA RV prediction model, which successfully pinpointed a speci�c set of RVs with
signi�cantly large effect sizes on complex traits or diseases. A particularly intriguing discovery was the
observed convergence effect on APA between rare and common cancer variants, exempli�ed by the
combinatorial regulation of APA in the DDX18 gene. Together, this study introduces a novel APA-enhanced
framework for individual genome annotation and underscores the importance of APA in uncovering
previously unrecognized functional non-coding RVs linked to human complex traits and diseases.

Introduction
The human genome harbors numerous rare genetic variants1, each with a minor allele frequency (MAF)
of less than 1%. Many of these rare variants strongly contribute to human diseases2–5. While exome
sequencing of large population cohorts has identi�ed numerous rare protein-coding variants associated
with both common and rare diseases6, the vast majority of rare variants (RVs) are located in non-coding
regions. These non-coding RVs do not function through altering the protein sequences, thereby posing a
signi�cant challenge in interpreting their functions. To address this challenge, analysis of population-
scale transcriptomic data has been used to uncover functional rare non-coding variants affecting gene
expression or splicing outliers7–10. Despite these efforts, a signi�cant portion of disease-associated RVs
remain uncharacterized.

Alternative polyadenylation (APA) of mRNA is a widespread post-transcriptional regulatory mechanism
observed across various species. By employing different polyadenylation sites within 3′untranslated
regions (3′ UTRs), genes can produce various mRNA isoforms with either shortened or extended 3′ UTRs.
These 3′ UTRs contain many regulatory elements that modulate the abundance or localization of the
mRNA and protein11–15. Moreover, APA can also occur in intronic regions, leading to truncated mRNA or
proteins 16,17. Accordingly, disruptions in APA events have been increasingly implicated in many human
diseases17–19. For example, altered APA leading to 3′ UTR shortening of competing-endogenous RNAs for
tumor suppressor genes can result in the release of microRNAs, inhibiting tumor suppressor genes and
potentially leading to tumorigenesis20. Moreover, recent studies have reported the ubiquitous genetic
regulation of APA, highlighting its importance in the functional interpretation of disease-associated non-
coding variants21–23. A notable example is a single-nucleotide polymorphism (SNP; rs10954213) within
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the 3′ UTR of interferon regulatory factor 5 (IRF5), which can alter the length and stability of its 3′ UTR,
thereby contributing to systemic lupus erythematosus susceptibility24. In our previous study, we built an
atlas of human 3′ UTR APA quantitative trait loci (3′aQTLs) across human tissues, identifying
approximately 0.4 million common SNPs associated with interindividual APA changes, which colocalize
with 16.1% of trait-associated genetic variants25. Yet, these studies mainly focus on assessing the APA
regulation of common variants. To our knowledge, the effect of RVs on APA has not been explored.

Here, to better understand the impact of RVs on APA, we systematically analyzed aberrant APA events
across 49 human tissues from the Genotype-Tissue Expression Project (GTEx). We identi�ed 1,534 multi-
tissue APA outliers (aOutliers) from European individuals. Intriguingly, 74.2% of these aOutliers are
associated with genes not previously identi�ed in outlier analysis of other molecular phenotypes (e.g.,
expression or splicing). These aOutliers exhibit distinct characteristics, such as unique 3′ UTR length and
GC-contents, setting them apart from other types of molecular outliers. Moreover, a signi�cant enrichment
of deleterious RVs was observed in regions proximal to these aOutliers. To prioritize functional RVs
impacting APA, we developed a Bayesian hierarchical model and identi�ed a distinct set of RVs with large
effect sizes on human complex traits and disease phenotypes. Intriguingly, we observed and
demonstrated strong convergence effects between prioritized RVs and common variants in regulating 3′
UTR APA, exempli�ed by the combinatorial regulation of APA in DDX18. Lastly, to facilitate broad access
to aOutliers-associated RVs, we have constructed a user-friendly portal at
http://bioinfo.szbl.ac.cn/rareAPA/index.php. Collectively, our �ndings indicate that APA highlights a
speci�c set of RVs with signi�cant impacts on human traits and diseases, providing a new avenue for
interpreting rare human non-coding genetic variants.

Results

The landscape of APA outliers across 49 human tissues
We �rst conducted a comprehensive identi�cation of 3′ UTR and intronic APA events in 15,201 GTEx RNA-
seq samples from 49 human tissues of 838 individuals (Fig. 1a) using our Dapars225,26 and IPAFinder18

algorithms, respectively (see Materials and Methods) (Supplementary Fig. 1). Considering the potential
in�uence of many known and unknown technical confounders on APA usage among samples, we
regressed out these confounders, such as age, sex, sequencing platform, and other hidden confounders
inferred by using probabilistic estimation of expression residuals (PEER) factors (Supplementary Fig. 2).
We then calculated Z-scores for the PEER-adjusted 3′ UTR and intronic APA usage in each tissue to
identify individuals with aberrant APA usage for a speci�c gene, which we refer to as APA outliers
(aOutliers) with an absolute Z-score > 3. The individuals and genes were designated as “aOutlier
individuals” and “aOutlier genes”, respectively. Importantly, a single gene could be associated with
multiple outlier individuals, and conversely, one individual could be an aOutlier individual for multiple
genes. Our analysis of these aOutliers revealed that, on average, 68.5% of all transcripts per tissue were
present in at least one outlier individual (Supplementary Fig. 3a). The number of aOutlier genes strongly
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correlated (Spearman’s correlation rho = 0.91, P < 2.2 × 10‒16) with sample size across tissues
(Supplementary Fig. 3b), suggesting that additional aOutlier genes might be discovered as more RNA-seq
samples become available. This strong sample size correlation was further con�rmed by down-sampling
analyses in representative tissues (Supplementary Fig. 3c). Moreover, we noticed that the incidence of an
aOutlier identi�ed in one tissue being replicated in another was as low as 14.3% (Supplementary Fig. 4),
indicating a signi�cant degree of tissue-speci�city among these single-tissue aOutliers.

We further de�ned multi-tissue aOutliers based on aberrant APA usage across �ve or more tissues (see
Materials and Methods). From this analysis, we identi�ed a total of 2,147 multi-tissue aOutliers,
comprising 1,930 3′ UTR aOutliers and 217 intronic aOutliers based on the genomic location of the APA
event. Focusing speci�cally on the 715 European individuals, in whom we detected 1,534 multi-tissue
aOutliers, including 1,334 3′ UTR and 200 intronic aOutliers (Fig. 1b and Supplementary Figs. 5 and 6). In
our further investigation into the distribution of multi-tissue aOutliers across different tissues, we found
that intronic aOutliers exhibited a broader replication pattern than 3′ UTR aOutliers (one-sided Wilcoxon
rank–sum test P = 3.35 × 10‒14; Fig. 1c, d). Notably, among these aOutliers, several signi�cant genes
were identi�ed (Fig. 1e–g and Supplementary Fig. 7a–f), including SUGP1, known for its crucial role in
mRNA splicing regulation in cancer27,28. In certain outlier individual(s), EIF2A, FLYWCH, TP53RK, and
SUGP1 exhibited increased usage of distal poly(A) sites, whereas genes such as UNC5A, RAB31, and LSS
preferentially use proximal poly(A) sites. Additionally, genes like COL4A2 (Fig. 1g), ADCY4, and HMGCL
(Supplementary Figs. 7g, h) were found to utilize intronic poly(A) sites in outlier individuals. Altogether,
the single and multi-tissue aOutliers we identi�ed represent the �rst comprehensive atlas of aberrant APA
events across 49 human tissues.

aOutliers represent a unique gene set with characteristics
distinct from other molecular outliers
To determine the extent of sharing between aOutliers genes and those identi�ed as expression outlier or
splicing outlier genes (i.e., eOutliers and sOutliers, respectively), we conducted a comparative analysis
using the same datasets. Remarkably, we found that 74.2% of multi-tissue aOutlier genes were not
detected by analysis of multi-tissue eOutliers or sOutliers (Fig. 2a and Supplementary Fig. 8a). For
example, TRIT1, a human tRNA isopentenyl transferase 1 gene, is an aOutlier-only gene that preferentially
utilizes a distal poly(A) site in outlier individuals across multiple tissues (median Z-score > 11) (Fig. 2b).
This �nding suggests that multi-tissue aOutliers represent a novel set of aberrant genes not detectable by
traditional eOutlier and sOutlier analyses.

Further comparisons between the genomic lengths of multi-tissue aOutliers and eOutliers disclosed that
aOutlier genes have signi�cantly longer 3′ UTRs than eOutlier genes (one-sided Wilcoxon rank–sum test,
P = 1.4 × 10‒16) (Fig. 2c and Supplementary Fig. 8b). In contrast, aOutlier genes have only slightly longer
5′ UTRs than eOutliers (one-sided Wilcoxon rank–sum test, P = 0.004; Supplementary Fig. 8c), and no
signi�cant difference was observed in coding sequence length (two-sided Wilcoxon rank–sum test, P = 
0.19). Furthermore, aOutlier genes have a lower GC-content (Fig. 2d) in their 3′ UTR regions (one-sided
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Wilcoxon rank–sum test, P = 6.8 × 10–6) than eOutlier genes. Gene ontology enrichment analysis29 on
multi-tissue aOutliers further highlighted speci�c biological processes and signaling pathways unique to
these genes (Supplementary Fig. 9). Collectively, these data indicate that aOutliers comprise a distinct
gene set with unique molecular and functional characteristics, thereby signi�cantly distinguishing them
from other types of molecular outliers.

RVs are signi�cantly enriched among APA outliers
To assess the impact of RVs (MAF < 0.01) on aberrant APA usage, we computed odds ratios (ORs) for
RVs located within varying proximity of the gene body (window size: 1 kb, 2 kb, or 10 kb) to multi-tissue
aOutlier genes in outlier individuals compared to those in nonoutlier individuals. Our analysis revealed
strong enrichment of nearby RVs in multi-tissue aOutliers (Supplementary Fig. 10a). Interestingly, we
observed higher ORs for the enrichment of insertion and deletions (indels) than for single-nucleotide
variants (SNVs) (Supplementary Fig. 10a, b). Furthermore, the degree of enrichment became more
pronounced when we considered RVs located in closer proximity to the aOutlier genes or employed
increased Z-score thresholds (Supplementary Fig. 10b, c).

To gain further functional insights into aOutliers-associated RVs, we �rst determined the proportions of
these RVs with functional category using Variant Effect Predictor (VEP)30. A higher proportion of
aOutliers-associated RVs had function annotation than nonoutliers, increasing with higher Z-score
thresholds (Fig. 2e). The functional categories of aOutliers-associated RVs were largely distinct from
those associated with eOutliers and sOutliers. For example, aOutliers-associated RVs are strongly
enriched in the 3′ UTR region (OR = 4.6 and 10.1, respectively; Fig. 2f and Supplementary Fig. 10d).

To examine whether aOutliers-associated RVs are more likely to be deleterious and potentially
pathogenic, we further employed Combined Annotation-Dependent Depletion (CADD) scores31 to stratify
RVs into three groups: (1) lowly deleterious, CADD score 0–15; (2) moderately deleterious, CADD score ≥ 
15 but < 25; and (3) highly deleterious, CADD score ≥ 25. Highly deleterious RVs showed signi�cantly
higher enrichment (20-fold increase for singletons and 11-fold increase for RVs with MAF < 1%; Fig. 2g) in
aOutliers compared to moderately deleterious RVs (10-fold increase for singletons and 6-fold increase for
RVs with MAF < 1%) and lowly deleterious RVs (2-fold increase for singletons and RVs with MAF < 1%). In
total, we identi�ed 179 rare SNVs with CADD scores ≥ 15 near 155 aOutlier genes (two-sided Fisher’s
exact test, P = 5.2 × 10‒107; Supplementary Table 1). In two examples, the rare SNV rs557639120 in
SUGP1 (CADD score = 18.4, MAF in GTEx = 0.0056, and gnomAD = 0.0033) leads to an increase in distal
poly(A) site usage in its 3′ UTR. Similarly, the rare SNV rs759305120 in COL4A2 (CADD score = 34, MAF in
GTEx = 0.0007 and gnomAD = 0.000031) leads to preferential use of its intronic poly(A) site
(Supplementary Table 1). We also identi�ed 211 indels near 186 aOutlier genes (two-sided Fisher’s exact
test, P = 1.9 × 10‒16; Supplementary Table 2), including 49 located in 3′ UTR. For example, an indel variant
(C > CAAAT, rs112906978) at the 3′ UTR of ACSF3 introduces a canonical "AAUAAA" motif near a poly(A)
site, leading to three aOutliers (Supplementary Fig. 10e, f). Enrichment of RVs was also observed in
single-tissue aOutliers across nearly all individual tissues (including SNVs and Indels) (Fig. 2h and
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Supplementary Fig. 11). Considered collectively, our analyses reveal that a distinct class of RVs is
signi�cantly associated with aOutlier genes.

Rare APA variants frequently alter the 3′ UTR PAS, 5′ splice sites, and RNA binding proteins (RBPs)
binding sites

We next investigated the potential regulatory mechanisms of aOutliers-associated RVs on aberrant APA
usage. We �rst focused on 3′ UTR aOutliers-associated RVs and performed motif enrichment analysis to
determine the prevalence of RVs altering 3′end processing. Our results show that 3′ UTR aOutliers-
associated RVs frequently alter polyadenylation signals (PAS) and AU-rich motifs, such as "AWUAAA" and
"AAUAAA" (Fig. 3a). Additionally, by using saturation mutagenesis data32, we found that RVs associated
with aOutliers have a more signi�cant impact on poly(A) site usage than RVs associated with nonoutliers
(one-sided Wilcoxon rank–sum test P = 1.32 × 10‒23; Supplementary Fig. 12a). Notably, we observed a
signi�cant proportion of large-effect RVs (fold change, LFC > 1) associated with aOutliers compared to
nonoutliers (50.3% vs. 6.6%; one-sided Wilcoxon rank–sum test P = 6.1 × 10‒44; Supplementary Fig. 12b),
indicating their pronounced effects on 3′ UTR APA. To further experimentally validate these �ndings, we
selected four top-ranked 3′ UTR aOutlier genes by median Z-score and utilized a minigene reporter system
containing reference allele and alternative allele of four rare variants in selected genes, including MKKS
(Fig. 3b), SUGP1, TP53RK, and ATP5F1E. In all four cases, we could detect signi�cant changes in the
poly(A) site usage, which agreed well with the predicted effects of these RVs (Figs. 3c, d and
Supplementary Fig. 13a, b).

Further investigation into multi-tissue intronic aOutliers revealed a higher incidence of RVs at 5′ splice
donor sites than at acceptor sites (Fig. 3e). Compared to nonoutlier RVs, aOutlier RVs are 19 to 441 times
more prevalent at donor sites, and up to 47 times more prevalent at acceptor sites. Speci�cally, aOutlier
RVs are 441 times more prevalent in the "D + 1" site and “D + 4” site and 302 times more prevalent in the
"D + 2" site relative to the nonoutlier RVs. For example, RVs that alter the �rst nucleotide of the "GT"
sequence in the intron of COL4A2 (Fig. 1h) and the intron of TXNRD2 lead to signi�cant intronic APA
events in these genes (Fig. 3f and Supplementary Fig. 13c). We also found that RVs altering the last base
of exon 11 in ADCY4 and exon 4 in HMGCL resulted in intronic APA events (Fig. 3g and Supplementary
Fig. 7e, f). Based on these �ndings, we hypothesized that RVs affecting canonical donor sites drive
intronic aOutliers. This hypothesis is also supported by our recent �nding that mutations near the donor
sites can promote IPA usage, potentially by blocking U1 small-nuclear RNP binding33. Predicting the
strength of donor sites with MAXENT34 showed a reduced strength of mutant donor sites compared to
wild type (Fig. 3h, i). We then performed intronic APA minigene reporter assays for TXNRD2 and COL4A2
with RVs at the conserved donor sites, as well as HMGCL and ADCY4 with RVs at the last base of the
exons. For these assays, we cloned fragments containing full-length intronic sequences, including the
donor sites, and upstream and downstream exons into the pcDNA3.1 vector. Results from 3′ Rapid
Ampli�cation of cDNA Ends (3′ RACE) assays indicate that all four RVs signi�cantly increase alter IPA
regulation relative to the wild-type sequence (Fig. 3j, k and Supplementary Fig. 13d, e).
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Lastly, we investigated whether aOutlier-associated RVs impact other transcriptional and
posttranscriptional regulation of target genes. DeepBind35 analysis of 927 binding motifs revealed 11
signi�cantly enriched motifs in aOutlier-associated RVs (Supplementary Fig. 14a) using randomly
shu�ed RVs as control, including known APA regulator PABPN136. Furthermore, we analyzed 166 publicly
accessible RBPs cross-linking immunoprecipitation sequencing (CLIP-seq) datasets from the
Encyclopedia of DNA Elements (ENCODE) project37. We found seven RBPs's CLIP-seq data are strongly
enriched with multi-tissue aOutlier RVs compared to nonoutlier RVs (Fig. 3l and Supplementary Fig. 14b),
including LARP4, an APA regulator identi�ed in our previous study25, and a known APA regulator CSTF2T.
Knockdown of the two RBPs resulted in widespread APA dysregulation (Supplementary Fig. 14c, d),
affecting two aOutlier genes, SREBF2 (Supplementary Fig. 14e) and TOLLIP (Fig. 3m), in which the
associated RVs were inside binding peaks of LARP4 (Supplementary Fig. 14f) and CSTF2T (Fig. 3n),
respectively. Beyond these known APA regulators, other RBPs such as TIA1, UPF1, and SAFB2 were also
identi�ed as potential new APA regulators (Supplementary Figs. 14g-i). Collectively, these results
suggested that aOutlier-associated RVs trigger aberrant APA usage through altering PAS, splice sites, or
RBP binding sites.

Inclusion of APA signi�cantly improves functional RV effect
prediction
To prioritize potentially impactful RVs for the interpretation of individual genomes, we repurposed the
traditional Watershed7 method into an APA-included version (aWatershed). This revised aWatershed
model is an unsupervised probabilistic Bayesian hierarchical graphical model incorporating three RNA
outlier signals, including aOutliers, eOutliers, and sOutliers, and annotations of a matched individual
genome (Supplementary Table 3). The aWatershed model can allow us to quantify the posterior
probability of an RV leading to a functional effect on APA usage (Supplementary Figs. 15a, b; Materials
and Methods). To evaluate the aWatershed performance on the GTEx v8 data, we used held-out
individual pairs with the same RVs as the evaluation dataset. By applying aWatershed prediction on the
�rst individual of each pair and evaluating this prediction using the outlier status of the second individual
as a label, we observed that our model signi�cantly outperforms both the RIVER (RNA-informed variant
effect on regulation) model8, a simpli�cation of the Watershed model which integrates genomic features
with aOutlier signals alone, and the GAM (genomic annotation model), a generalized logistic regression
model based on genomic features alone (Fig. 4a and Supplementary Fig. 15c). 93% of aWatershed
prioritized RVs have low posterior probabilities in the GAM (Fig. 4b), highlighting the importance of
transcriptomic aOutlier signals in functional RVs prioritization. Moreover, aWatershed successfully
captures the regulatory mechanisms underlying the effect of RVs on aOutlier signal (Fig. 4c). Strikingly,
the integrated aWatershed model can prioritize RVs associated with 73.8% of aOutliers, in contrast to only
12.4% when relying on the genomic features alone (Fig. 4d).

Next, we used the saturation mutagenesis data32 to further evaluate the e�cacy of aWatershed in
prioritizing RVs with signi�cant effects on APA regulation. In this analysis, we strati�ed RVs into two
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groups based on aWatershed APA posterior probabilities and compared poly(A) usage between them. We
found that RVs in the group with high posterior probability had signi�cantly larger effects on APA than
those in the low posterior probabilities group (Fig. 4e, f), suggesting our aWatershed model is effective in
identifying RVs with substantial APA effects. Furthermore, our analysis revealed that aWatershed
successfully identi�ed many functional RVs overlooked by the previous variant prediction model38, as
exempli�ed by two RVs in RPL13A and PAAF1, respectively (Supplementary Fig. 15d). Overall,
aWatershed prioritized 1,799 RVs predicted to impact 278 APA genes (Supplementary Table 4).
Interestingly, there was minimal overlap between RVs impacting APA and those affecting gene expression
or splicing, as only 60 of these 1,799 RVs were common to those categories. For example, the RV
rs191575428 within the 3′ UTR of MTHFD2, which exhibited a high aWatershed APA posterior probability
of 0.997 based on aOutliers, showed considerably lower posterior probabilities for expression and
splicing (0.055 and 0.008, respectively). This variant is associated with 3′ UTR lengthening in outlier
individuals without changing gene expression levels (Supplementary Fig. 15e, f). Further extending the
aWatershed model to prioritize tissue-speci�c functional RVs by integrating genomic features with single-
tissue aOutliers signals, we observed that the tissue-aWatershed model outperforms both the tissue-
RIVER model and tissue-GAM model (Supplementary Figs. 16–17). In summary, by leveraging these
aOutliers, we have implemented a robust Bayesian hierarchical variant effect prediction model
aWatershed that effectively prioritizes rare functional variants with signi�cant effects on APA regulation.

Analysis of aOutliers prioritizes RVs impacting complex
traits and diseases
To test the hypothesize that aWatershed RVs could be used to interpret the complex traits and diseases,
we �rst examined the 278 genes prioritized by aWatershed and cross-referenced with genes annotated in
the Online Mendelian Inheritance in Man (OMIM) database39. We identi�ed 21.2% of the prioritized genes
were well-known disease genes (Supplementary Fig. 18a). For example, we identi�ed a prioritized RV,
rs79940214, associated with MKKS (Supplementary Fig. 18b), which encoded a centrosome-shuttling
protein and was associated with many genetic diseases, including McKusick-Kaufman syndrome (OMIM
id: 236770)40,41 and Bardet-Biedl syndrome 6 (OMIM id: 605231)42,43. Another example is one prioritized
intronic RV, rs76984877, that is associated with gene EXT2 (Supplementary Fig. 18b), which was
associated with hereditary multiple exostosis, type 244,45. We also identi�ed �ve prioritized RVs
associated with gene BCR (Supplementary Fig. 18b), which has been frequently reported to be associated
with chronic myeloid leukemia46,47.

We further cross-referenced aWatershed-prioritized RVs with trait variants from 1,234 well-powered GWAS
summary statistics from UK Biobank (UKBB) and literature (Supplementary Table 5), resulting in 1,385
RVs associated with 171 aOutlier genes in 1,186 traits (Supplementary Table 6). We focused on the
subset of 623 traits, which also have evidence of colocalization with 3′aQTLs (Supplementary Table 7).
Notably, aOutlier prioritized RVs fell in or nearby genes had evidence of colocalization with 3′aQTLs
having larger trait effect size than the non-colocalized RVs (P = 0.0014, one-sided Wilcoxon rank–sum
test; Fig. 5a). We also conducted a permutation test to determine whether these prioritized RVs exhibit
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larger effect sizes on these complex traits and diseases. We found that the mean odds of aOutlier-
prioritized RVs had a more signi�cant effect size than non-prioritized RVs (P = 2.5 × 10‒15, one-sided and
paired Wilcoxon rank–sum test; Supplementary Fig. 19a). To exemplify the larger effect size in aOutlier-
prioritized RVs, we focused on two traits: height related traits (UKBB trait ID: 50_irnt and 20015_irnt) and
high blood pressure (UKBB trait ID: 6150_4). This analysis revealed a signi�cant shift in the odds favoring
RVs with higher aWatershed posterior probabilities over those with lower ones (P = 1.6 × 10‒9 and P = 2.3
× 10‒54, respectively; one-sided Wilcoxon rank–sum test; Fig. 5b, c; Supplementary Fig. 19b). In the case
of height related traits and high blood pressure, these aOutlier prioritized RVs had larger effect sizes on
the trait than other variants within a 1Mb of the RV, including RVs prioritized by eOutliers or sOutliers.
Notably, for the height related traits, the RV (rs112567314), located in the intron of CUL3, had a greater
effect size than other variants within 1 Mb and RVs prioritized by eOutlier or sOutlier (Fig. 5d and
Supplementary Table 6). Similarly, for high blood pressure, the RV (rs893929), located in the intron of
USP38, also had a greater effect size than 99.6% of variants within 1 Mb, including the nearest trait-
associated signi�cant variants as well as eOutlier or sOutlier RVs (Fig. 5e). Collectively, our results
demonstrate the capability of aWatershed in prioritizing RVs with large effect sizes on APA, signi�cantly
impacting complex traits and diseases.

Strong convergence between rare and common variants on DDX18 links APA regulation with cancer
susceptibility

Emerging evidence suggests potential interactions between rare and common variants in affecting the
same disease genes48–50. As expected, we also observed the strong convergence effect on 3' UTR APA
regulation between RVs and common variants (Supplementary Fig. 20). To further mechanistically
examine their convergence effects on disease, we focused on aWatershed prioritized RVs and their
associated genes. We found 126 out of the 278 aOutlier RV associated genes were also identi�ed as
susceptibility to disease risks, including cancer risks through 3′aQTLs in our gene-based association
studies51,52 (Fig. 6a). Among the top-ranked APA genes that were prioritized by both RV and 3′aQTLs
analyses (Fig. 6b), we noticed several highly constrained genes (pLI score > 0.9), and we particularly
focused on the gene DDX18, a member of the DEAD-box RNA helicase family, that was identi�ed as an
APA-mediated susceptibility gene across many cancer types53,54. Moreover, CRISPR-Cas9 based gene
essentiality screens also demonstrated that DDX18 has an essential role in cancer cell proliferation55,56

(Fig. 6c). Examining our 3′aQTLs data revealed signi�cant associations between common variants and 3′
UTR APA of DDX18 across tissues, with the most signi�cant one was found near the 3′ end (Fig. 6d and
Supplementary Fig. 21a-c). Intriguingly, an aWatershed prioritized RV, rs1680042046, located near the
distal poly(A) site of DDX18, was identi�ed in the outlier individual (Fig. 6e, f). This RV alters the hexamer
motif "AUUAAA" to "AUUAAG" (Supplementary Fig. 21b) and has a highly deleterious effect (CADD = 17.5)
(Supplementary Table 1).

To further experimentally validate the convergence effect of RVs and common variants on DDX18, we
designed minigenes introducing the APA variants by PCR-based site-directed mutagenesis in HEK293T
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and MCF7 cells (Fig. 6g). We then performed 3′ RACE to quantitatively evaluate the effect of the common
variant (rs1052628; A > G) alone, the RV (rs1680042046) alone, or their joint effect on APA. We �rst
mutate the reference A allele to the alternative G allele for either RV or the common variants. In HEK293T
cells, this mutation decreased the use of the distal poly(A) site (dPAS) for both the common variant and
RV (two-sided Student’s t-test P = 1.5 × 10‒6 and 2.3 × 10‒7; Figs. 6h, i), indicating that both variants
indeed trigger DDX18 APA regulation. A similar APA effect was also observed in MCF7 cells (Fig. 6j). To
further assess the functional roles of DDX18 APA regulation in breast cancer cells, we measured DDX18
protein level using luciferase reporter assays and assessed the effect of gene silencing on the
proliferation of MCF7 cells proliferation. We observed lower luciferase activities in the short 3′ UTR
isoform of DDX18 and the reporter containing RV or both RV and common variant (Supplementary
Fig. 21d, e). Knockdown of DDX18 in MCF7 results in inhibition of cell proliferation (Supplementary
Fig. 21f, g). Collectively, these �ndings highlight the critical role of rare variants in understanding the risk
of common diseases and offer a novel approach to linking functional rare variants to complex diseases.

Discussion
The human genome contains a plethora of rare genetic variants whose functional effects and underlying
molecular mechanisms are challenging to interpret. In this study, we introduce the aOutlier as an
emerging molecular phenotype re�ecting aberrant 3′ UTR or intronic APA usage across multiple samples.
aOutlier can be used to identify functional rare APA variants. By analyzing population-scale
transcriptomics data using our DaPars225,26 and IPA�nder algorithms18, we identi�ed 1,534 multi-tissue
aOutliers based on European individuals. These aOutlier genes exhibit unique molecular features, such as
genomic lengths and GC-content, setting them apart from other molecular outliers, such as eOutliers and
sOutliers. Importantly, aOutliers can aid in identifying a distinct class of rare functional variants. We
observed that aOutliers-associated RVs are more likely to be deleterious and are highly enriched in outlier
individuals. Mechanistically, these aOutlier-associated RVs can modulate APA usage by either altering
PAS, AU-rich elements, or splice donor sites, as con�rmed by saturation mutagenesis data and 3′ RACE
experiments.

To further enhance the utility of our aOutlier atlas, we adapted a Bayesian hierarchical prediction model
(aWatershed) by incorporating genomic features with multiple functional signals, including aOutliers,
eOutliers, and sOutliers. This integration aims to predict the probability of RV leading to aberrant APA
usage. Notably, our aWatershed model outperformed models trained only on genomic features or those
combined with aOutlier signals alone. Moreover, aWatershed-prioritized RVs exhibited more signi�cant
effects on APA regulation than non-prioritized RVs. The predictive power of aWatershed was validated
using GWAS summary data from the UKBB, showing that aWatershed-prioritized RVs had larger trait
effect sizes than non-prioritized RVs, as exempli�ed by RVs near POLR2L and ATP5F1D associated with
height and BMI, respectively.

Interestingly, we observed a signi�cant proportion of intersection between aOutlier transcripts and 3′aQTL
associated transcripts in matched tissue, suggesting the potential interplay of common variants and RV
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in APA regulation, similar to previous �ndings in gene expression studies48,49,57,58. Additionally, a rare
deletion 16p11.2 and common variants in chromosome 16p modulate downstream gene expression and
affect the risk for autism48. Moreover, using minigene reporters and 3′ RACE assays, we demonstrated the
potential additive effect of rare and common APA variants on DDX18 3′ UTR regulation. We further
demonstrated that the regulation of DDX18 3′ UTR contributes to DDX18 protein expression level, which is
tightly linked to breast cancer cell proliferation. In summary, our study identi�es a novel set of rare
functional variants that in�uence APA and connects these RVs to human trait phenotypes, providing
valuable information for the identi�cation of novel genes associated with increased disease risk.

Materials and Methods

GTEx data collection and processing
We downloaded both RNA-seq raw sequencing data and whole-genome genotype data of the v8 release
of the GTEx project from dbGAP (accession: phs000424.v7.p2). Expression outlier (eOutlier) and splicing
outlier (sOutlier) data, and the metadata of samples (�lename:
GTEx_Analysis_v8_Annotations_SampleAttributesDD.xlsx) and subjects (�lename:
GTEx_Analysis_v8_Annotations_SubjectPhenotypesDD.xlsx) were downloaded from GTEx Portal
(https://gtexportal.org/home/). The GTEx RNA-seq dataset contains 17,832 samples representing 54
biological tissues collected from 838 donors. For this study, we included data from 49 tissues, each with
at least 70 samples. Original GTEx RNA-seq reads were aligned with the human genome (hg38/GRCh38)
using STAR v.2.7.3a59, with the following alignment parameters: outSAMtype, BAM; SortedByCoordinate;
outSAMstrandField, intronMotif; outFilterMultimapNmax, 10; outFilterMultimapScoreRange, 1;
alignSJDBoverhangMin, 1; sjdbScore, 2; alignIntronMin, 20; and alignSJoverhangMin, 8. The aligned BAM
�les were sorted and further converted to bedGraph format using BEDTools v.2.27.160. The genotype data
in VCF format (�lename: GTEx_Analysis_2017-06-
05_v8_WholeGenomeSeq_838Indiv_Analysis_Freeze.vcf.gz) was processed with vcftools v.0.1.13 to
calculate MAF across all subjects and extract allele information for each variant.

3′ UTR APA and intronic APA quanti�cation
To quantify the 3′ UTR APA, we analyzed alignment �les in BAM format using the DaPars2 algorithm. We
followed the work�ow implemented in our 3′aQTL analysis25,61. Brie�y, the BAM �les were �rstly
transformed to bedGraph format with a bin size of 1, which records the read coverage of each position in
the genome. Before analyzing APA, we downloaded the gene annotation �le containing all transcripts of
genome build hg38 in RefSeq database through the UCSC Genome Browser, from which we extracted 3′
UTR region of each transcript using script "DaPars_Extract_Anno.py". The DaPars2 algorithm then detects
the proximal poly(A) site in the 3′ UTR region of each transcript and calculates the relative usage of the
distal poly(A) site by the script “Dapars2_Multi_Sample.py” for all samples in each of the 49 tissues. This
is indicated as the Percent of Distal Poly (A) site Usage Index (PDUI) only if a proximal poly(A) site is
detected. For intronic APA detection and quanti�cation, we used IPA�nder18, which is a python-based tool
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that enables de novo identi�cation and quanti�cation of intronic APA (IPA) events using RNA-seq data.
IPA�nder can identify potential IPA sites and calculate the Intronic poly(A) site Usage Index (IPUI), which
represents the proportion of total transcripts that are intronic-polyadenylated for each intronic APA
event18,33,62. BAM �les were analyzed together by IPA�nder and separated by tissues.

Covariate correction and normalization
To avoid batch effects and unobserved confounders in each tissue, we adjusted the sample genotype
and APA usages with known covariates, such as population structure, sex, and sequencing platform.
Brie�y, for genotype data, we �rst removed sites marked as "wasSplit" from the GTEx analysis freeze
variant call format (VCF) using BCFtools v.1.10.2. We further applied the PEER model63 with sex, age,
sequencing platform, and the top �ve genotype principal components as known covariates to estimate a
set of latent covariates for PDUI or IPUI values in each tissue. The number of PEER factors was optimized
based on tissue sample size, as suggested by the GTEx Consortium; 15 PEER factors were chosen for
sample sizes < 150, 30 PEER factors were selected for sample sizes ranging from 150 to 250, and 35 peer
factors were chosen for sample sizes > 250. Before running the PEER model for inferring hidden
covariates, PDUI/IPUI values in each tissue were quantile normalized to remove batch effects.

APA outlier calling
After inferring the hidden covariates for each tissue, we calculated PDUI/IPUI residuals by regressing out
inferred PEER factors and known covariates, including population structure, sex, and sequencing
platform, using the function "PEER_getResiduals". In each individual tissue, we obtained normal-
distributed  score for each gene ( ) in the tissue ( ) by scaling the PDUI/IPUI residuals across

samples with the following equation,  denotes the residuals of PDUI/IPUI values,  and 
 represent the mean and standard deviation of the residuals across samples, respectively:

We de�ned two types of aOutliers in the current study. One is single-tissue aOutlier, which is called from a
single tissue based on the Z-score of each gene in that tissue. When the absolute Z-score of an individual
exceeds a threshold of three for a gene, then the individual is called a single-tissue aOutlier for that gene.
The other is multi-tissue aOutlier, for which we calculated a median Z-score7,8 for each APA event across
all tissues when data were available and restricted our analysis to individuals with APA measurements in
at least �ve tissues. Multi-tissue aOutliers were de�ned as those with an absolute median Z-score > 3. The
same threshold was used for eOutlier and sOutlier calling7,8. Our method allowed that one gene could
have multiple aOutlier individuals, and one individual could also be aOutliers of multiple genes. To
account for situations in which widespread aberrant APA might occur in an individual due to non-genetic
in�uences, we removed 11 individuals in which the proportion of tested genes identi�ed as multi-tissue
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aOutliers exceeded 1.5 times the interquartile range of the distribution for aOutlier gene proportion across
all individuals. These 11 individuals were marked as global outliers.

Estimation of replication rates of aOutliers
To estimate the replication rate of aOutliers between different tissues, we selected one of the 49 GTEx
tissues each as discovery tissue, and compared aOutliers detected in it with those of the other tissues.
For replication rate calculation, we only considered the shared aOutlier genes in both tissues and an
aOutlier to be replicated only when the gene and individual of the aOutlier matched between the
compared tissue pairs. For multi-tissue aOutliers replication, we used the cross-validation method
described in a previous study8 to estimate their replication rate. In brief, the 49 human tissues were
separated into two groups, one group with 39 tissues as the discovery group, the other group has the
remaining ten tissues as the replication group. Each time we randomly sampled t (t = 10, 15, 20, 25, 30)
tissues from the discovery group and called multi-tissue aOutliers in the discovery group using a Z-score
threshold of 3 in at least �ve tissues as described above. Then we estimated the replication rate as the
proportion of multi-tissue aOutliers in the discovery group with an absolute median Z-score 2 or 3 in the
replication group. We also computed the expected replication rate by randomly selecting individuals in
the discovery group with at least �ve tissues that have APA usage for the gene and determined the
replication status in the replication group. For each discovery group size (t), we repeated this process 10
times.

RV annotation
We de�ned RVs as those with MAF < 1% within the GTEx European individuals and with MAF < 1% in non-
Finnish Europeans within gnomAD64. Singletons were de�ned as RVs with minor allele only presents
once in GTEx European individuals and were extracted using vcftools. The annotation of RVs was
performed by Ensembl VEP (release 104), which assigned 36 different annotation terms to each RV,
including protein-coding gene position (e.g., "splice_donor" "splice_acceptor," "frameshift”) and regulatory
regions (e.g., "TFBS_ablation", "TF_binding_site"). Annotation terms were grouped into one of the four
classes based on predicted impact: "High", "MODERATE", "MODIFIER" and "LOW". The high-impact one
was used for variants assigned with two or more annotations. In addition to 36 VEP annotations, we
added two other annotations to each RV; "PAS region" describes variants located within 50 bp upstream
of the annotated PAS, and "PAS signal" refers to variants located at the PAS motif "AAUAAA" and its
additional 14 variants ("AUUAAA", "UAUAAA", "AGUAAA", "AAAAAA", "AACAAA", "AAGAAA", "AAUAUA",
"AAUACA", "CAUAAA", "UUUAAA", "ACUAAA", "AAUAGA" and "GAUAAA"). We also used genomic annotations
of variants extracted from CADD v.1.5 release (http://cadd.gs.washington.edu/download).

RV enrichment analysis
We examine the enrichment of Rare Variants (RVs), including single-nucleotide variants (SNV) and small
insertion and deletion (indel) near aOutlier genes. Only genes with at least one aOutlier individual were
considered, and the remaining individuals for the same genes were treated as nonoutlier controls. We �rst
counted the RVs present within 1kb, 2kb, or 10kb of the outlier genes in both outlier and control
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individuals and built a 2  2 contingency table for each of the �anking region, containing the number of
aOutliers with RVs, the number of nonoutlier controls with RVs, the number of aOutliers without RVs, and
the number of controls without RVs. We then calculated Odds Ratios (ORs), P value, and 95% con�dence
interval (CI) using Fisher’s exact test in R base package. We grouped variants into four groups based on
their MAF (0–1%, 1–5%, 5–10%, and 10–25%), and performed enrichment analysis for each group. We
also conducted enrichment for RVs that strati�ed by VEP annotations and CADD scores as described
above.

Enrichment analysis for RVs that in�uence PAS and AU-rich
motifs
To identify potential regulatory variants associated with aberrant APA events, we de�ned RVs located
within the gene body or in the 10-kb region surrounding outlier genes in outlier individuals as aOutlier
RVs. Those in nonoutlier individuals in the same region were classi�ed as nonoutlier RVs. For each
aOutlier RV and nonoutlier RV located in the 50-bp region upstream (PAS region) of the poly(A) sites
annotated in PolyA_DB V.3.265,66, we extracted its upstream and downstream 5 base pairs sequences and
examined whether it matched with one of the 15 known PAS motifs by using script "dna-pattern" in RSAT
(https://github.com/rsa-tools). We then summarized all tested RVs and conducted PAS motif enrichment
analysis using Fisher's exact test, which determined the odds ratios (ORs) and 95% con�dence intervals
(CIs) for each PAS motif. To perform enrichment analysis at the 12 known AU-rich motifs, we restricted
RVs to those within the 100 bp �anking the annotated poly(A) sites. We then counted RV enrichment
analysis for each of the AU-rich motifs using the same method as for PAS motifs.

Identi�cation of aOutlier RVs enriched RNA motifs
We focused on multi-tissue aOutlier associated RVs located within the gene body region, which spans
from 3 kb downstream of the transcription start site (TSS) to the end of the gene. We extracted the 3 base
pairs of sequences �anking each RV from both sides. Next, we used DeepBind v0.1135 to score these 7-
mer sequences using 617 pre-built models, including 515 transcription factors and 102 RNA-binding
proteins from Homo sapiens. For each 7-mer sequence, we selected the top three motifs with a DeepBind
score of at least 0.1. To validate the enrichment of RVs in predicted binding motifs, we created a control
set of RVs by randomly shu�ing the genomic locations of multi-tissue aOutlier associated RVs within the
same gene body regions. We used Fisher's exact test to estimate the level of enrichment.

Identi�cation of aOutlier RVs enriched RBPs
We obtained CLIP-seq data for 166 RNA-binding proteins (RBPs) from the Encyclopedia of DNA Elements
(ENCODE) data portal for HepG2 and K562 cells. We only considered signi�cant binding peaks with P-
values < 0.01, shared by two biological replicates for each RBP. To assess the enrichment of aOutlier RVs
in RBP binding peaks, we selected RVs associated with multi-tissue aOutliers within gene body regions
representing the region of 3 kb downstream of the transcription start site (TSS) to the end of the gene. We
created a control RV set by randomly shu�ing the genomic locations of multi-tissue aOutlier associated

×
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RV set within the same gene body regions. We then counted the RVs in binding peaks of each RBP using
bedtools. Finally, we compared the RVs between the two sets using Fisher's exact test to determine the
enrichment.

Development of a Bayesian prediction model that integrates
APA outlier signals
To prioritize rare functional variants with signi�cant impact, we improved the Watershed Bayesian
hierarchical model by incorporating APA outlier signals with other layers of transcriptomic outlier signals
and genomic annotations. The improved model called aWatershed, includes a layer of genomic
annotation features (G) which denotes the 40 observed genomic features aggregated over all RVs in the
outlier individual that are within 10 kb region of the gene, a fully connected conditional random �eld
(CRF) layer (Z) represent the unobserved regulatory variables for each of the three transcriptomic outlier
signals (APA, mRNA expression, and splicing), and a layer of variables (E) representing the observed
outlier status of each transcriptomic data type. The three layers were linked by the following conditional
distributions:

Where  represents the three outlier signals (APA, Expression, and Splice),  are parameters de�ning the
contribution of the 40 genomic features to the CRF of the three outlier signals,  de�nes the intercept of
the CRF for each outlier signal,  represent parameters de�ning the edge weights between pairs of the
three outlier signals,  are the paramters denoting the categorical distributions of each of the three
outlier signal, and  and  are hyper-parameters.

To train and evaluate aWatershed, we utilized all gene-individual pairs that have at least one of the three
multi-tissue outlier signals, which are de�ned as the absolute value of Z-score greater than 3 or P-value
less than 0.0027 for splicing outliers, measured in GTEx v8 data. We also used a set of 38 binary and
continuous genomic annotation features aggregated across all rare variants within the 10-kb region,
�anking each gene. We then trained aWatershed to learn edge weights connecting the three
transcriptomic outlier signals, weights representing the contribution of each genomic annotation for each
type of outlier signal, and other parameters, as described previously7,8.

To evaluate aWatershed, we selected pairs of individuals with the same set of rare variants associated
with the same gene (known as "N2pair") from the training dataset. We estimated the posterior probability
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of a functional rare variant in the �rst individual of the pair and used the outlier status of the second
individual as a label for evaluation. We also trained and evaluated the genomic annotation model on
each layer of the three transcriptomic signals to determine whether the integration of transcriptomic
outlier signals contributes to the prediction of rare functional variants. We compared the results to those
obtained from the aWatershed model. After evaluation, we utilized the aWatershed prediction model to
calculate posterior probabilities.

3′aQTL mapping across 49 GTEx tissues
Genetic associations between GTEx common variants within 1 Mb of each gene and PEER-corrected APA
usage were mapped by Matrix eQTL67, as described in our previous study25. Known covariates, including
sex, RNA integrity number, platform, top �ve genotype principal components, and unobserved covariates
inferred from PEER, were used during 3′aQTL mapping with Matrix eQTL. The number of PEER covariates
for each tissue was used as suggested by the GTEx Consortium. We performed 1,000 rounds of
permutation to obtain empirical P-values for each gene, which were then adjusted using the R package
qvalue.

Colocalization analysis between GWAS summary statistics
and 3′aQTL
We conducted colocalization analysis comparing GWAS summary statistics from the UKBB and literature
and 3′aQTL summary data from 49 human tissues using the coloc v.5.1.0.1 package in R68. Only GWAS
summary data for traits with at least 10,000 cases (binary traits) or 50,000 participates (continuous trait)
and with at least 10 SNPs overlapped with aOutlier-associated RVs were kept, which resulted in 1,186
well-powered traits. We extracted the sentinel SNPs for each GWAS trait, de�ned as GWAS SNPs with P < 
5 × 10‒8, located at least 1 Mb away from more signi�cant variants. We then searched for colocalizing
signals within the 1-Mb region surrounding each sentinel SNP. The coordinates from 3′aQTL summary
data were converted from human genome build 38 (hg38) to build 37 (hg19) by CrossMap software69 to
match the version used in all GWAS summary statistics. As de�ned by the coloc method, �ve posterior
probabilities under �ve different null hypotheses were calculated. In detail, PP0 represents the null model
of no association. PP1 and PP2 represent the probability that causal genetic variants are associated with
disease signals or 3′aQTL only. PP3 represents the probability that the genetic effects of trait signals and
3′aQTL are independent, and PP4 represents the probability that trait signals and 3′aQTL data share
causal SNPs. The current study classi�ed colocalized events as those with PP4 > 0.75.

3′ UTR APA transcriptome-wide association study (3′aTWAS) analysis

We used APA quantitative data that was previously used for 3′aQTL mapping25,52,61 and genotype data
of individual genomes from whole genome sequencing (WGS) of GTEx consortia to construct 3′aTWAS
model using FUSION70 for each of the 49 human tissues. To avoid the effects of confounders, well-
established factors used in 3′aQTL mapping, including gender, sequencing platform, and other covariates,
were incorporated to adjust APA usages. To build the TWAS model, four different models embedded in
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FUSION were used for weight calculation, including best linear unbiased predictor (blup), elastic-net
regression (enet), lasso regression (lasso), and single best eQTL (top1). Subsequently, the cross-
validation approach was employed to choose the optimal 3′aTWAS model for each gene. Of note, only
genes exhibiting signi�cant heritability estimates (cis-h2) (Bonferroni-corrected P < 0.05) were retained for
subsequent analysis. The built models were then applied to GWAS summary statistics for gene-based
association analysis, and a signi�cant association was de�ned by the FDR < 0.05. The disease risk genes
identi�ed by 3′aTWAS in two or more tissues were used for further analysis.

Prioritization of trait-associated RVs
To determine the frequency with which randomly selected aWatershed-prioritized RVs exhibit larger
GWAS effect sizes than matched non-prioritized RVs, we conducted a random sampling test (n = 1000)
on all RVs using posterior probabilities obtained from the aWatershed prediction model and effect sizes
from UKBB GWAS summary statistics. We used aWatershed-prioritized RVs based on aOutlier signals,
matched non-prioritized RVs, as well as GWAS effect sizes, gene IDs, and prioritized scores as input data.
We de�ned matched non-prioritized RVs as those with a posterior probability of < 0.1 and MAF within ± 
0.001 of the selected prioritized RVs in the UKBB cohort.

For each gene in each trait, we randomly selected one prioritized RV and one matched non-prioritized RV
and then identi�ed the one with the largest absolute GWAS effect size in the pair. By summarizing all
genes in the trait, we computed the odds of observing a prioritized RV with a larger absolute effect size
than a non-prioritized RV across all genes. To generate a null distribution of odds, we repeated this
process for matched non-prioritized variants only and randomly selected and compared two non-
prioritized RVs for each gene.

Cell culture
HEK293T and MCF7 cells were purchased from the Cell Bank of the Type Culture Collection at the
Shanghai Institute of Biochemistry & Cell Biology, Chinese Academy of Science. Cells were maintained in
Dulbecco's modi�ed Eagle medium (DMEM; Invitrogen, #11960044) supplemented with 10% fetal bovine
serum (Gibco), 100-µg/ml streptomycin, and 100-units/ml penicillin at 37°C in a humidi�ed incubator
with 5% CO2.

Plasmid construction
All primers used in this study are listed in Supplementary Table 8. For intronic APA (IPA) minigenes, the
candidate intron and its �anking exons were ampli�ed from genomic DNA as wild-type fragments. For 3′
UTR APA minigenes, the 3′ UTR of each gene was ampli�ed from genomic DNA as wild-type fragments,
and mutations were introduced by PCR-based site-directed mutagenesis. In short, genomic DNA from
HEK293T and MCF7 cells was ampli�ed by PCR using primers to generate two 20–25 bp overlapping
fragments containing a mutant site. The IPA wild-type and mutant fragments were subcloned into the
EcoRI and BamHI sites of the pcDNA3.1 vector, while 3′ UTR APA wild-type and mutant fragments were
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subcloned into the XhoI and PmeI sites of the mpCHECK2 vector by the One Step Cloning Kit (Vazyme).
Two sets of predesigned shRNAs from Sigma against DDX18 were used to clone into pLKO.1-puro vector.

Transient transfection
For transient transfection, HEK293T and MCF7 cells were plated in a 2-ml culture medium at 6 × 105

cells/well in six-well plates. After 24 h of culture, cells were transfected with 2 µg of wild-type or mutant
minigene plasmid using Lipofectamine 2000 (Invitrogen), according to the manufacturer's instructions.
The culture medium was replaced at 6 h post-transfection, and cells were harvested for RNA extraction at
48 h post-transfection. Total RNA was extracted using TRIzol reagent (Invitrogen), according to the
manufacturer's instructions, and cDNA was synthesized using the FastKing RT Kit (Tiangen, KR116) with
the S-CDS primer. All cDNA was diluted 4-fold in nuclease-free double-distilled H2O for further use.

3′ RACE
The total length of 3′ UTR was identi�ed and ampli�ed from the total RNA of NCI-H1299 cells by 3′ RACE
using the HiScript-TS 5′/3′ RACE Kit (Vazyme, RA101) following the manufacturer’s protocol. 3′ RACE was
performed using the S-PCR primer and pcDNA3.1-F or mpCHECK2-F primer to distinguish minigene RNA
from endogenous RNA, respectively. The 3′ RACE PCR products were separated by gel electrophoresis,
and excised bands were puri�ed for Sanger sequencing using the Zymoclean Gel DNA Extraction kit.
Cleaned DNA fragments were cloned into the PCE2 vector using the 5 min TA/Blunt-Zero Cloning Kit
(Vazyme, C601) and bidirectionally sequenced with M13 forward and reverse primers. At least �ve
colonies were sequenced for every gel product that was puri�ed. Primer sequences are listed in
Supplementary Table 8.

Dual-luciferase reporter assay
MCF-7 cells were seeded 1 day prior to transfection. The Renilla luciferase in the mpCHECK-2 vector was
transfected into cells using Lipofectamine 3000 Transfection Reagent (Invitrogen, cat#: L3000015)
according to the manufacturer′s instructions. Forty-eight hours post-transfection, �re�y, and renilla
luciferase activities were measured by Dual-Luciferase Assay System (Promega, #E1980) on a BioTek
Synergy H1 plate reader with full waveband. Each assay was measured in three independent replicates.

Cell viability and proliferation assays for shRNA-mediated
knockdown
shRNA-expressing lentivirus was produced with the third-generation packaging system in human
embryonic kidney (HEK) 293T cells. For lentivirus infection, target cells (MCF7) were seeded in a 6-well
plate 16–18 h before infection and were grown to 70–80% con�uency upon transduction. The culture
medium was removed, and cells were incubated with virus supernatant along with 8 µg/ml polybrene.
Puromycin was applied to kill non-infected cells 2days after infection. After two days of selection, when
non-infected control cells were all dead, surviving cells were split and maintained with the same
concentration of puromycin. Cells were trypsinized, resuspended at 1 × 104 cells/ml, and seeded in 96-
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Declarations
Code availability

DaPars2 is available at https://github.com/3UTR/DaPars2, and IPAFinder can be accessed through
https://github.com/ZhaozzReal/IPAFinder. The codes for mapping 3′aQTL are available at
https://github.com/3UTR/3aQTL-pipe. The custom scripts and source codes for data analysis relevant to
this study are available, under the MIT license, at Github repository: https://github.com/Xu-Dong/rareAPA
and Zenodo: https://doi.org/10.5281/zenodo.10576656.

Data availability

The raw data of whole transcriptome and genome sequencing data from the GTEx project V8 are
available at the database of Genotypes and Phenotypes (dbGaP) under the accession
number: phs000424.v7.p2 [https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?
study_id=phs000424.v7.p2]71. All processed GTEx data, including gene expression outlier (eOutlier) and
splicing outlier (sOutlier), are available via the GTEx portal (http://gtexportal.org). GWAS summary

well plates, with each well containing 100ul medium of 1 × 103 cells. Cell viability and proliferation were
determined using CCK8 assays (Yeasen, cat#: 40203ES76) at designated time points (day 1, day 3, day 5,
and day 7) by measuring the absorbance at 450 nm, following the manufacturer′s instructions. Values
were obtained from three replicate wells for each treatment and time point. Results were representative of
three independent experiments.

The comprehensive data portal for aOutliers
We have established a database along with a web interface called rareAPA
(http://bioinfo.szbl.ac.cn/rareAPA/index.php) on a standard LAMP (Linux + Apache + MySQL + PHP)
system, which serves as a comprehensive resource presenting detailed and comprehensive information
on rare APA events and their associated RVs. All these data in the rareAPA were stored in MySQL
(www.mysql.com). The interactive web pages were implemented using HTML, CSS, JavaScript, and PHP
languages (www.php.net), with several JavaScript libraries (JQuery.js, DataTable.js, and IGV.js) and
Bootstrap framework (a popular framework for developing interactive websites) on Red Hat Linux
powered by an Apache server (www.apache.org). This data portal is valuable for exploring aOutliers and
their associated functional rare variants. With rareAPA, users can search, browse, and visualize important
information on aOutliers in 49 human tissues. Users can search by gene or tissue name and scrutinize
rare APA events among individuals in each tissue. Additionally, users can also visualize aOutliers using a
scatter plot or explore them through a genome browser. Furthermore, rareAPA provides a curated list of
prioritized RVs using the aWatershed algorithm, allowing users to examine rare variants and their
aWatershed posterior scores. Additionally, rareAPA offers batch downloading of all single-tissue aOutliers
and multi-tissue aOutliers. The rareAPA is freely available online without registration or login
requirements.
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statistics used in this study were obtained from UK Biobank GWAS (https://www.nealelab.is/uk-biobank),
Finn Gen (https://www.�nngen.�/en), and JENGER (http://jenger.riken.jp). The details about the GWAS
summary statistics are listed in Supplementary Table 5. Genomic and functional annotations of rare
variants are available via the Combined Annotation Dependent Depletion (CADD v1.5,
https://cadd.gs.washington.edu/), and gnomAD v3.1(https://gnomad.broadinstitute.org/). The
crosslinking and immunoprecipitation (CLIP) assay data for RNA binding proteins used in this study are
available at The Encyclopedia of DNA Elements (ENCODE, https://www.encodeproject.org/). The data
described in this study are freely available for querying, visualizing, and downloading at
http://bioinfo.szbl.ac.cn/rareAPA/index.php, a website portal dedicated to rare APA.
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Figure 1

Atlas of human alternative polyadenylation (APA) outliers (aOutliers). a. Schematic illustrating the overall
design of this study. b. Distribution of 3′ untranslated region (UTR; blue) and intronic (red) aOutliers
across the human genome. Genes with the highest (for positive median Z-scores) or lowest (for negative
median Z-scores) Z-score at each chromosome region were labeled. c.Distribution of the number of
tissues in which 3′ UTR aOutliers (deep blue) and intronic aOutliers (red) were detected. d. Comparison of
average tissue counts of 3′ UTR aOutliers (deep blue; n=603 genes) and intronic aOutliers (red; n=100
genes). Box plots show the median and �rst and third quartiles, and whiskers extend up to 1.5 times the
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interquartile range. e. RNA sequencing (RNA-seq) read coverage of the SUGP1 gene 3′ UTR in outlier
individuals (red) and nonoutlier individuals (gray) in the Lung and Brain hippocampus. f. Median Z-score
distribution of the SUGP1 and COL4A2 genes across individuals. Outliers are highlighted with red dots. g.
RNA-seq read coverage of the COL4A2 gene at the region of “exon5-intron-exon6” in outlier individuals
(red) and nonoutlier individuals (gray). For the data shown in this �gure, signi�cance was calculated
using the single-tailed Wilcoxon rank–sum test.
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Figure 2

Outliers are distinct from other molecular outliers. a. Number of aOutlier genes also detected by analysis
of expression outliers (eOutliers) and splicing outliers (sOutlier) in the same dataset. b. Example of an
aOutlier-only gene, not detected by eOutlier and sOutlier analysis. c. Analysis of 5¢ UTR length, coding
sequence (CDS) length, and 3¢ UTR length in aOutlier genes (n=562 genes) compared to eOutlier genes
(n=1,833 genes). P-values were calculated using the one-sided Wilcoxon rank–sum test. Box plots show
the median and �rst and third quartiles, and whiskers extend up to 1.5 times the interquartile range. d.
Analysis of GC-content in 3¢ UTR regions of aOutlier (n=562) and eOutlier genes (n=1,833). P-values were
calculated using the one-sided Wilcoxon rank–sum test. Box plots show the median and �rst and third
quartiles, and whiskers extend up to 1.5 times the interquartile range. e. The proportion of aOutliers with
nearby RVs of different categories. aOutliers were strati�ed by absolute median Z-score thresholds: Z < 1
(nonoutlier), Z > 3, Z > 4, Z > 5, and Z > 10. RV categories were assigned by VEP (v.104), and some were
manually merged. Terms are de�ned as follows: "Splice" includes RVs at the splice donor site, splice
acceptor site, and splice region; "Stop" includes RVs resulting in stop gained, stop lost, and start lost;
"Coding" includes missense variant, stop retained variant; "otherCoding" includes CDS and synonymous
variant; and "other noncoding" includes downstream gene variant, upstream gene variant, and non-coding
transcript exon variant. f. Enrichment of RVs of different categories in aOutliers (red), eOutliers (green),
and sOutliers (blue). "PAS50bp" represents the 50 base pairs upstream of the annotated poly(A) site.
"Conserved" RVs are de�ned by mammalian phaseCons score > 0.9. Data are presented as log2 odds
ratios (OR) and 95% con�dence intervals (CI). g. Enrichment of deleterious single-nucleotide variants
(SNVs) in aOutliers; variants within 1 kb of aOutlier genes were counted. Data are presented as ORs and
95% CIs. h. Enrichment of RVs in single-tissue aOutliers. Data are presented as odds ratio and 95% CI (y-
axis) for each tissue (x-axis).
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Figure 3

Functional rare variants (RVs) and RBPs associated with aOutliers. a. Enrichment of aOutlier-associated
RVs in poly(A) signal (PAS) and AU-rich motifs. Central dots show the log transformed odds ratio, and
lines show 95% con�dence intervals. b. The aOutlier of gene MKKS. Data are presented as median Z
score (y-axis) and samples (x-axis) ranked by median Z score. The outlier individual was represented as a
red dot. c-d. The minigenes and 3′ RACE assays for the 3′ UTRs of MKKS (c) and SUGP1 (d) in HEK293
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and HeLa cells. The structures of each minigene reporter are shown at the top, and PCR priming data for
both long and short isoforms are presented below. Tested RVs that alter PAS motifs are indicated with red
asterisks. GAPDH was used as a reference in all assays. e. Enrichment of intronic aOutlier-associated RVs
that disrupt splice sites compared with RVs associated with nonoutliers. The splice site was de�ned as
nine bp (indicated as "D-3" to "D+6") for the donor site and six bp (indicated as "A-3" to "A+3") for the
acceptor site. Enrichments are presented as ORs and 95% CIs. f-g. aOutliers in gene TXNRD2 (f) and
HMGCL (g). h. Consensus donor site sequences in outlier and nonoutlier individuals. i. Strength of donor
splice sites in intronic aOutlier individuals (MUT) and controls (WT). The center horizontal lines represent
the median values; boxes span from the 25th to 75th percentile, and whiskers extend to 1.5 × interquartile
range. Signi�cance was calculated using the single-tailed Wilcoxon rank–sum test. j-k. Minigenes and 3′
RACE assays for the intronic APA of TXNRD2 (j) and HMGCL (k) in HEK293 and HeLa cells. The
structures of each minigene reporter are shown at the top, and PCR priming data for both long and short
isoforms are presented below. Tested RVs that alter PAS motifs are indicated with red asterisks. GAPDH
was used as a reference in all assays. l. Enrichment of RNA-binding protein (RBP) binding regions in
aOutlier-associated RVs compared to nonoutlier RVs. Data are presented as -log10(P) (y-axis) and odds
ratio (dot size). m. The scatter plot shows aOutlier in gene TOLLIP. n. One rare variant in aOutlier
individual of gene TOLLIP was identi�ed located at the binding regions of CSTF2T. The RNA-seq reads
coverage of the aOutlier and three nonoutlier individuals in the 3′ UTR region were presented, and the
binding peaks of the CSTF2T regulator by eCLIP assay were presented below. The rare variant was
presented in red.
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Figure 4

Development and evaluation of the APA-based Watershed (aWatershed) model. a. Performance of the
aWatershed model (red) compared to the RIVER model (blue) and the genomic annotation model
(orange). Data are presented as the area under the precision–recall curve (AUC-PR). b. The correlation
between aWatershed predicted posteriors and GAM predicted posteriors. RVs with posteriors > 0.5 in
either group were �lled with red. c. Edge weights connecting top genomic annotation features to latent
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regulatory variables in aOutlier signal (red), eOutlier signal (green), and sOutlier signal (blue), ranked by
weight in decreasing order. The top three most in�uential genomic features are highlighted in bold font. d.
The proportion of RVs leading to aOutliers. RVs were strati�ed based on aWatershed (red) and GAM
(orange) posterior probability for APA signal. e, f. Evaluation of aWatershed-prioritized RVs using the data
estimated from a published massively parallel reporter assay. RVs were strati�ed into two groups based
on aWatershed APA posterior probabilities (i.e., probabilities > 0.5 (red) and £ 0.5 (blue)), and poly(A) site
usage change was compared for reference and alternative alleles in each group (e), and proportion of
large-effect (absolute log Fold change > 1) was compared between the two groups (f). Box plots show the
median and �rst and third quartiles, and whiskers extend up to 1.5 times the interquartile range. P-values
were calculated using the one-sided Wilcoxon rank–sum test.
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Figure 5

Trait effect sizes for aOutlier RVs prioritized by aWatershed. a. Comparison of the trait effect size of
aOutlier prioritized RV (red) nearby genes with evidence of colocalization to non-prioritized RVs (gray)
nearby the same genes. Box plots show the median and �rst and third quartiles, and whiskers extend up
to 1.5 times the interquartile range. Pvalue was calculated using the one-sided Wilcoxon rank–sum test (n
= 77,388). b,c.Distribution (red) of odds estimated from permutation test assessing how often randomly
drawn aWatershed-prioritized RVs have larger effect sizes in GWAS of height (b) or high blood pressure
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(c) than matched non-prioritized RVs across genes. The null distribution (in gray) of odds was obtained
from a permutation test by randomly drawning two RVs from a non-prioritized RV set only. P value was
calculated from the one-sided Wilcoxon rank‒sum test. d. Manhattan plot (left) across 20 Mb in
chromosome 2 for GWAS signals of height (50_irnt) in the UKBB. The aOutlier prioritized RV rs112567314
in the colocalized region was highlighted by the red triangle, and the GWAS lead SNP is indicated by a
blue diamond. The blue square denotes RVs prioritized by eOutliers or sOutliers in the same region. UKBB
MAF vs. effect size for all variants within 1Mb of the aOutlier prioritized RV was shown on the right. e.
Manhattan plot (left) across 20 Mb in chromosome 4 for GWAS signals of high blood pressure (6150_4)
in the UKBB, and the scatter plot (right) shows the UKBB MAF vs. effect size for all variants in a 2Mb
region cross the aOutleir prioritized RV (rs149094812). The red triangle highlights the aOutlier prioritized
RV, and the blue diamond highlights the GWAS lead SNP.

Figure 6
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The convergence effect of rare and common variants links APA to human diseases. a. Intersection of
disease risk genes identi�ed by 3′aQTLs using gene-based methods, including colocalization and
transcriptome-wide association study and genes associated with aWatershed-prioritized functional APA
RVs. 278 genes associated with RVs having aWatershed posterior score > 0.5 were involved. b. The top
20 intersected genes are ranked by aWatershed posterior score. c. Distribution of dependency scores
estimated from CRISPR-Cas9 essentiality screening assays in cancer cells for genes associated with RVs
prioritizing by aWatershed and also identi�ed as cancer risk genes by 3′aQTLs analysis. d. Boxplot shows
the association between the common variant (rs1052628) and 3′ UTR APA of DDX18. The outlier
individual with the rare variant was labeled. e. aOutliers (left) and eOutliers (right) of gene DDX18. Data
are presented as median Z-score (y-axis), and individuals (x-axis) are ranked by median Z-score. Outliers
are highlighted with red dots. f. RNA-seq reads coverage of DDX18 3′ UTR region and the last second exon
in the outlier individual (red) and non-outlier (control) individual (gray). g. Minigenes of DDX18 3′ UTR
containing the common APA variant and the rare APA variant. h. 3′ RACE assays with DDX18 minigenes
containing only the RV or only the common variant, or both the RV and the common variant. Assays were
performed in HEK293T cells. i. The bar plot shows the usage of dPAS in each minigene measured
through image J. Error bar represents the standard deviation and a two-sided student t-test was used to
test the difference (n=6 independent experimental replicates). j. The 3′ RACE assays of DDX18 minigenes
in MCF7 cells. GAPDH was used as the loading control.
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