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Abstract

Background
Airway remodeling, a hallmark of chronic obstructive pulmonary disease (COPD) and Mustard lung disease, is in�uenced by the Trefoil Factor 3 (TFF3).
This study sought to pinpoint a compound with minimal toxicity that can effectively suppress TFF3 expression and activity.

Methods and Results
We employed an integrative approach, combining gene expression analysis, molecular docking, and molecular dynamics simulations, to identify potential
TFF3 inhibitors. The biological safety of these compounds was ascertained using a sophisticated deep neural network model. Of the compounds
assessed, eight manifested a signi�cant reduction in TFF3 expression, with binding a�nities (ΔG) ranging from − 7 to -9.4 kcal/mol. Notably, Genistein
emerged as the frontrunner, showcasing potent TFF3 downregulation, minimal toxicity, and a robust inhibitory pro�le as evidenced by molecular dynamics
simulations.

Conclusion
Genistein holds promise as a therapeutic agent for TFF3-mediated conditions, including mustard lung disease. Its potential to address the current
therapeutic gaps is evident, but its clinical utility necessitates further in vitro and in vivo validation.

1. Introduction
Airway remodeling is a de�ning feature of respiratory diseases, notably Chronic Obstructive Pulmonary Disease (COPD) [1] and Mustard Lung (ML) [2].
This remodeling, characterized by airway wall thickening, mucous gland hypertrophy, and increased smooth muscle mass, leads to air�ow obstruction
and compromised respiratory function. The molecular underpinnings of these diseases are complex, with disruptions in speci�c pathways causing
pathological changes in the airway [3, 4]. Recent studies highlight Trefoil Factor 3 (TFF3) as a central �gure in airway remodeling and associated
pathologies [5, 6]. Elevated TFF3 levels correlate with chronic in�ammatory respiratory diseases, including COPD, ML, and various adenocarcinomas [7–
10]. Beyond respiratory contexts, TFF3 is implicated in diverse conditions such as Type 2 Diabetes Mellitus (T2DM), Non-Alcoholic Fatty Liver Disease
(NAFLD), neurodegeneration, gastric ulcers, colitis, and several malignancies [11, 12]. TFF3, part of the human TFF peptide family, is primarily found in
mucosal environments [13]. Its dimer form, more potent than its monomer counterpart, is particularly signi�cant for its anti-apoptotic properties [14, 15].
This dimerization enhances mucus thickness by interacting with soluble mucins like MUC5AC and MUC6, emphasizing its role in mucus overproduction
and airway obstruction [13]. All human TFFs, including TFF1, TFF2, and TFF3, are dual-capacity lectins recognizing the GlcNAc-α-1,4-Gal disaccharide,
crucial for their mucus-thickening ability [13, 16]. Given TFF3's broad roles, targeted therapeutic strategies are essential. Advanced techniques, including
the Library of Integrated Network-Based Cellular Signatures (LINCS) [17], molecular docking, molecular dynamics simulations, and AI algorithms, offer
avenues for drug discovery. Our research, leveraging these tools, sought a low-toxicity compound to down-regulate TFF3 expression, targeting TFF3 to
inhibit its dimerization. From our analyses, eight compounds emerged, reducing TFF3 expression by at least two-fold, with binding a�nities (ΔG values)
between − 7 and − 9.4 kcal/mol. Notably, Genistein emerged as a potential TFF3 antagonist, introducing new therapeutic possibilities for obstructive
airway diseases.

2. Materials and methods

2.1. TFF3 gene expression analysis
We aimed to identify compounds that suppress TFF3 gene expression, a critical element in airway remodeling observed in diseases such as COPD,
asthma, and ML. The LINCS database [17], which captures changes in expression for ~ 12,000 genes across various human cell lines post chemical
exposure, served as our primary resource. We focused on compounds that reduced TFF3 expression by more than twofold. All experiments utilized the
A549 cell line, a standard in vitro model for airway remodeling, derived from human lung carcinoma.

2.2. Preparation of 3D structures
Compound 3D structures were initiated by extracting PubChem IDs (CID) from the LINCS dataset API service [18]. These structures were then sourced
from the PubChem database (https://pubchem.ncbi.nlm.nih.gov). Concurrently, the 3D structure of the TFF3 protein was retrieved from the Protein Data
Bank (https://www.rcsb.org).

2.3. Phytochemical compound analysis
We sourced 2,845 phytochemical compounds from the PubChem database. Their druglike properties were assessed using the SwissADME service
(http://www.swissadme.ch) that operates with the SMILES format.

2.4. Molecular docking analysis
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We employed molecular docking to estimate the binding a�nity between ligands and the TFF3 protein, speci�cally at the interface between the two
monomers of its dimeric form (1PE3) structure. Preparation involved removing water molecules and the co-crystal ligand. Both TFF3 and compound
structures were converted to PDBQT format, with added Gasteiger partial charges [19] for docking analyses. Docking simulations utilized AutoDock Vina
[20] on an 192-core processor.

2.5. Toxicity assessment of compounds
Using Python (v3.10), TensorFlow (v2.21), and DeepChem (v2.7.1) [21], we assessed the toxicity of identi�ed compounds. The Tox21 dataset guided the
training, validation, and testing of the Graph Convolutional Network (GCN) architecture.

2.5.1. Dataset
Tox21 encompasses 7,831 chemicals and 12 toxicological endpoints. These include �ve stress responses (SR-ARE, SR-ATAD5, SR-HSE, SR-MMP, SR-p53)
and seven nuclear receptor signals (e.g., NR-AR, NR-ER). Chemicals, in SMILES format, have binary toxicity labels. To prevent over�tting, scaffold splitting
clustered compounds by molecular �ngerprints. DeepChem's butina splitter method partitioned the dataset.

2.5.2. Graph convolutional network
While CNNs excel with Euclidean data, they falter with non-Euclidean data like chemical structures [22, 23]. GCNs, designed for non-Euclidean data [24],
represent compounds as graphs: atoms as nodes and bonds as edges. Convolutional and pooling layers extract molecular patterns. DeepChem's
GraphConv featurizer prepared chemical features. Training parameters included 7 hidden layer units, a 0.4 dropout rate, a 0.0007 learning rate, and 100
epochs. Given dataset imbalance, ROC-AUC was the primary metric. Training used a Linux OS with GPU support, with SMILES representations as input.

2.5.3. Feature importance in Tox21
We gauged the contribution of each Tox21 task to toxicity predictions using feature importance. Both Random Forest and Permutation methods
calculated scores. By contrasting both methods' importances, we assessed each task's AUC impact.

2.6. Comprehensive bio-evaluation through integrated analyses
We amalgamated data from gene expression, molecular docking, and toxicity assessments to pinpoint chemicals that: i) reduce TFF3 gene expression (Z-
score < -2), ii) hinder TFF3 dimerization (ΔG < -7), and iii) exhibit low toxicity. While many chemicals affecting TFF3 also in�uence other genes, certain
ones show heightened selectivity. Using the Signature Strength (SS) of the LINCS dataset, we discerned molecules with pronounced speci�city to the TFF3
gene. SS is gauged by the tally of genes with an absolute Z-score ≥ 2.

2.7. Molecular dynamics simulation
To determine the optimal binding conformation of the compound with 1PE3, we employed molecular dynamics simulations using GROMACS (v5.1) on a
Linux server. Force �eld parameters were de�ned using the Charmm27 force �eld. SwissParam (https://www.swissparam.ch/) generated coordinate and
topology �les. The complex was solvated in a TIP3P water cubic box, ensuring a 1.0 nm distance from each edge, and neutralized with sodium chloride.
Energy minimization and system equilibration were achieved using appropriate algorithms, NVT and NPT ensembles, over 100 ps at 300 Kelvin and 1
atm. Simulations used the Ewald (PME) method and lincs algorithm constraints, running for 100 ns. RMSD assessed protein atom stability. Ligand
binding conformation was analyzed using Chimera, and binding energies were computed via the MM-PBSA method.

3. Results

3.1. TFF3 Gene expression modulation by chemicals
From the LINCS database, 15,300 experimental conditions indicated TFF3 downregulation. Of these, 6,001 matched compounds in the PubChem
database, �tting our criteria. Focusing on the A549 cell line, 798 experiments were pertinent. These formed our analysis foundation. Table 1 lists the top
10 experiments.

The Z-score in Table 1 quanti�es gene expression deviation from a reference group mean:

Where x is the gene expression, µ is the reference mean, and σ is the standard deviation. In LINCS, the Z-score standardizes gene expression comparisons,
minimizing technical and batch effect variations.

Z =

x − μ

σ
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Table 1
Leading chemicals down-regulating TFF3 in A549 cells. The dose is presented in µM and the time is indicated in hours (h).

# Signature ID CID Name Dose Time Z-score

1 DOS041_A549_24H:BRD-K36747900-001-01-8:5.01 54638598 BRD-K36747900 5 24 -3.9

2 CPC016_A549_6H:BRD-K82731415-001-05-4:10 4592 Olomoucine 10 6 -3.8

3 PCLB002_A549_24H:BRD-A70731303:10 73707610 Avrainvillamide-analog-5 10 24 -3.8

4 CPC010_A549_24H:BRD-K39462424-050-07-2:10 33036 Dexchlorpheniramine 10 24 -2.9

5 CPC010_A549_6H:BRD-A72180425-001-10-6:10 3689416 K784-3188 10 6 -2.9

6 CPC015_A549_6H:BRD-A84174393-236-03-0:10 10291556 Meloxicam 10 6 -2.8

7 CPC016_A549_6H:BRD-K33396764-001-02-0:10 5280934 Alpha-linolenic-acid 10 6 -2.8

8 CPC015_A549_6H:BRD-A78391468-001-01-0:10 9847023 Prednisolone-hemisuccinate 10 6 -2.7

9 CPC010_A549_24H:BRD-A66435872-050-04-0:10 124846 HTMT 10 24 -2.6

10 DOS042_A549_24H:BRD-K49434056-001-01-0:4.94 54645999 BRD-K49434056 5 24 -2.6

3.2. Phytochemicals as potential drug candidates
Following Lipinski's rule via SWISSADME (http://www.swissadme.ch), 2,223 phytochemicals exhibited drug-like characteristics. Cross-referencing with
PubChem IDs identi�ed 101 as genuine phytochemicals. Notably, 13 from this subset were relevant to A549 cell line experiments.

3.3. Compound interactions with TFF3 dimer
Docking studies targeting the TFF3 dimer interface assessed compound binding a�nities. The top 10 compounds exhibited ΔG values between − 8.6 to
-9.4 (Table 2). A negative ΔG suggests spontaneous, energetically favorable binding, with larger negative values indicating stronger a�nities.

Table 2
Leading molecular docking scores for TFF3, expressed

as ΔG values (kcal/mol).
# CID Name ΔG

1 124846 HTMT -9.4

2 118221163 BRD-K26510616 -9

3 54654640 SA-1472514 -9

4 409805 NSC-23766 -8.8

5 44142121 BRD-K11611839 -8.8

6 73707542 BG-1024 -8.7

7 54654197 BRD-K18511213 -8.7

8 15301607 VU-0415012 -8.7

9 73707610 Avrainvillamide-analog-5 -8.6

10 7217941 BRD-K55186349 -8.6

3.4. Model performance
Figure 2 Evaluation of model performance using AUC metrics. (A) PR-AUC curve for each of the 12 toxicological tasks, sorted by their respective AUC
values with the highest at the top. The curve illustrates the trade-off between precision and recall for different threshold values. (B) ROC-AUC curve for
each task, depicting the true positive rate against the false positive rate. Tasks are ranked by their AUC values, with the most predictive ones at the top.
The overall performance of the model across all tasks is represented by the green dotted line.

3.5. Feature importance in Tox21 dataset: Random Forest vs. Permutation
We assessed toxicological endpoint contributions using Random Forest and Permutation feature importance. Both methods highlighted SR-MMP, NR-AhR,
and SR-ARE as key contributors. While there was agreement between the techniques, the Permutation method, through value permutation, provided a more
robust evaluation. Figure 3 visualizes the relative importance from both methods.

3.6. Compound toxicity assessment
The established model was employed to ascertain the toxicity pro�les of compounds across 12 distinct toxicological endpoints. Table 3 showcases the
ten foremost compounds exhibiting the most favorable toxicity pro�les.
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Table 3
Top ten compounds with favorable toxicity pro�les. The table enumerates compounds based on their mean toxicity scores, derived from evaluations

across 12 distinct toxicological endpoints. The mean represents the average score across all tasks for each chemical.
# CID Name NR-

AR
NR-
AR-
LBD

NR-
AhR

NR-
Aromatase

NR-
ER

NR-
ER-
LBD

NR-
PPAR-
gamma

SR-
ARE

SR-
ATAD5

SR-
HSE

SR-
MMP

SR-
p53

Mean

1 125519 Aminogenistein 0.05 0.15 0.00 0.15 0.07 0.01 0.40 0.02 0.01 0.33 0.01 0.13 0.11

2 230748 INCA-6 0.44 0.07 0.14 0.05 0.06 0.24 0.10 0.01 0.26 0.06 0.02 0.04 0.12

3 68296 3H-1,2-Dithiole-
3-thione

0.59 0.03 0.00 0.30 0.49 0.05 0.01 0.02 0.01 0.00 0.00 0.04 0.13

4 2326992 GNF-PF-254 0.36 0.07 0.02 0.05 0.15 0.11 0.24 0.08 0.37 0.05 0.11 0.05 0.14

5 5281707 COUMESTROL 0.04 0.02 0.01 0.42 0.01 0.01 0.72 0.00 0.00 0.58 0.00 0.02 0.15

6 5280443 Apigenin 0.10 0.44 0.04 0.50 0.10 0.04 0.48 0.00 0.03 0.10 0.00 0.01 0.16

7 5035 Raloxifene 0.78 0.08 0.02 0.03 0.00 0.01 0.21 0.02 0.03 0.73 0.01 0.01 0.16

8 222515 Brazilin 0.11 0.08 0.37 0.95 0.03 0.02 0.01 0.04 0.33 0.00 0.01 0.00 0.16

9 824226 Ro 90-7501 0.53 0.13 0.00 0.32 0.06 0.48 0.11 0.00 0.00 0.44 0.01 0.02 0.18

10 5741425 BRD-
K30715099-
001-01-2

0.58 0.47 0.12 0.08 0.19 0.14 0.31 0.03 0.11 0.15 0.01 0.07 0.19

3.7. Integrative analysis of gene expression, molecular docking, and toxicity
Our comprehensive assessment of compounds on TFF3 gene expression, dimerization inhibition, and toxicity identi�ed Genistein as a prime candidate.
As detailed in Table 4, Genistein demonstrated signi�cant TFF3 downregulation (Z-score of -2.02), a favorable binding a�nity (ΔG of -7.6) for TFF3
dimerization inhibition, and a low toxicity score (0.19) (see Fig. 3). A graphical representation of the 2D structure of the �nal compounds from Table 4 is
depicted in Fig. 4. Additionally, a 2D image of Genistein and its associated toxicities across the 12 tasks is illustrated in Fig. 5. Given its phytochemical
origin, Genistein's potential for reduced side effects underscores its promise for further exploration.

Table 4
Assessment of compounds for TFF3 modulation and inhibition. Summary of compounds' effects on

TFF3 gene expression and inhibitory potential, tested on the A549 cell line over 6 or 24-hour durations at
varied dosages. Toxicity, averaged from 12 scenarios, ranges from 0 (least toxic) to 1 (most toxic).

Genistein, emphasized, is chosen for further study. "Signature Strength" (SS) indicates the speci�city of
a compound's gene expression impact; "NA" denotes broad gene effects. Gene expression is represented

by Z-scores, with dosages in µM and time in hours.
# CID Name Dose Time Expression ΔG Toxicity SS

1 5280961 Genistein 0.04 24 -2.02 -7.6 0.20 410

2 44142059 BRD-K88269385 10 6 -2.17 -7.2 0.58 538

3 73707610 Avrainvillamide-analog-5 10 24 -3.84 -8.6 0.63 652

4 54645999 BRD-K49434056 5 24 -2.63 -7.2 0.75 NA

5 44489706 BRD-K16046246 10 6 -2.14 -8.1 0.78 NA

6 54654234 BRD-K07660364 5 24 -2.12 -7 0.84 NA

7 969516 Curcumin 100 24 -2.58 -8.1 0.85 NA

8 124846 HTMT 10 24 -2.69 -9.4 0.97 NA

3.8. Molecular dynamics insights into ligand-receptor interactions
Through molecular dynamics simulations, we assessed the Genistein-TFF3 interaction dynamics. Binding energies, inclusive of electrostatic and van der
Waals forces, were derived using the MM-PBSA approach (Table 5). RMSF analysis (Fig. 6B) highlighted signi�cant �uctuations, indicative of TFF3 dimer
dissociation upon Genistein binding. This is further supported by the Gyration trajectory (Fig. 7B), where an increased gyration radius suggests TFF3
monomer separation. Figure 8 offers a 3D depiction of the TFF3 dimer at the simulation's start and end, with Genistein distinctly marked in yellow.
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Table 5
Binding energy components of the Genistein-TFF3 complex derived from MM-

PBSA calculations. The table presents the electrostatic, van der Waals, and total
binding energies computed throughout the molecular dynamic simulation.

Compound Binding Energy Electrostatic Energy Van der Waals Energy

Genistein -19.62 ± 3.32 -18.05 ± 6.14 -34.26 ± 2.55

4. Discussion
The pivotal role of TFF3 in the pathophysiology of airway remodeling, especially in obstructive airway diseases, has been previously highlighted [6]. This
understanding set the stage for our comprehensive quest to pinpoint a compound with the capability to effectively down-regulate TFF3 gene expression,
inhibit its function, and simultaneously exhibit minimal toxicity.

Our initial approach was rooted in the gene expression analysis. Utilizing the expansive LINCS database, we meticulously gauged the impact of a myriad
of compounds on TFF3 gene expression. This foundational analysis was instrumental in shortlisting candidates for further evaluation. Building on this,
we recognized the signi�cance of TFF3's dimerization for its functional stability [13, 25]. The potential to disrupt TFF3's activity by targeting its
dimerization interface became a focal point of our investigation. Our molecular docking studies, tailored speci�cally to TFF3's dimeric form, furnished
critical insights into the binding a�nities of the shortlisted compounds. This dual-faceted strategy led to the identi�cation of eight compounds that
showcased pronounced downregulation of TFF3 expression and also manifested favorable ΔG values, signaling strong binding a�nities. To ensure the
holistic evaluation of these compounds, it was imperative to assess their biological safety. We embarked on a rigorous toxicity evaluation, harnessing the
cutting-edge GCN method within the DeepChem library. This assessment was pivotal in ensuring that the identi�ed compounds, while effective, also
adhered to safety benchmarks. Among the evaluated compounds, Genistein emerged as a standout candidate, ranking 13th in terms of low toxicity.
Intriguingly, its derivative, amino-genistein, took precedence as the compound with the lowest toxicity (Table 3). This naturally occurring phytochemical
not only demonstrated prowess in down-regulating TFF3 expression and inhibiting its dimerization but also showcased minimal toxicity. The inherent
nature of Genistein, being a phytochemical, augments its appeal, suggesting a potential for enhanced biocompatibility and a reduced spectrum of side
effects compared to synthetic counterparts. Our molecular dynamics simulations further endorsed Genistein's potential, revealing a stable Genistein-TFF3
complex and suggesting Genistein's capability to disrupt TFF3 dimerization.

Beyond our �ndings, Genistein's broader pharmacological pro�le is noteworthy. Derived from soybeans, this iso�avone has been extensively researched
for its myriad health bene�ts, ranging from its antioxidant and anti-in�ammatory properties to its demonstrated antiproliferative effects on diverse cancer
cell lines [26–29]. Additionally, Genistein has been shown to have a potential role in the prevention and treatment of osteoporosis by increasing bone
mineral density [30]. Genistein has also been shown to have potential bene�ts in the treatment of cardiovascular disease, diabetes, and neurodegenerative
disorders [31–33]. Furthermore, research suggests that Genistein may have a positive impact in preventing obesity and enhancing insulin sensitivity [34,
35]. Additionally, Genistein has been found to have potential therapeutic effects in the treatment of liver injury and in�ammation [36, 37]. The exact
mechanisms by which Genistein exerts its biological effects are still under investigation, but it is thought to modulate the activity of various signaling
pathways, including tyrosine kinase, NF-κB, Nrf2, and oxidative stress [38–41]. These �ndings suggest that Genistein may also have potential therapeutic
bene�ts in the treatment of obstructive airway diseases such as ML, COPD, and asthma. In fact, studies have demonstrated that Genistein can inhibit the
activity of various in�ammatory pathways associated with these diseases. For example, one study found that Genistein was able to inhibit the NF-κB,
TNF-α, and MMP-9-associated pathways in lymphocytes from patients with COPD, leading to a reduction in in�ammatory markers [42]. Similarly, in an in
vivo guinea pig model of asthma, Genistein was shown to signi�cantly reduce airway hyperresponsiveness, in�ammation, and eosinophilia [43].
Additionally, in a murine model of asthma, soy iso�avones, of which Genistein is a major constituent, were found to reduce airway hyperresponsiveness,
eosinophil counts, and in�ammatory biomarkers, as well as inhibiting lung tissue eosinophil in�ltration, airway mucus production, and collagen
deposition [44]. So, by inhibiting TFF3, the main regulator in airway remodeling, Genistein may have potential therapeutic bene�ts in the treatment of
obstructive airway diseases such as COPD, asthma, and ML. However, further studies are needed to con�rm its e�cacy and safety in human subjects.

In conclusion, our multidimensional investigation, encompassing gene expression analysis, molecular docking, toxicity assessment, and molecular
dynamics simulations, has illuminated the potential of Genistein as a promising therapeutic candidate for obstructive airway diseases. By targeting the
pivotal TFF3 molecule, Genistein not only showcases the ability to down-regulate its expression but also to inhibit its dimerization, a key aspect of its
functionality.
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Figure 1

Model Performance metrics for predicted toxicities. (A) Speci�city of the model across different toxicities, indicating the true negative rate. (B) Sensitivity,
showcasing the true positive rate for each toxicity type. (C) Precision, representing the proportion of true positive predictions among all positive
predictions. (D) F1 Score, a harmonic mean of precision and sensitivity, providing a balanced measure of the model's accuracy for each toxicity.

Figure 2
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Evaluation of model performance using AUC metrics. (A) PR-AUC curve for each of the 12 toxicological tasks, sorted by their respective AUC values with
the highest at the top. The curve illustrates the trade-off between precision and recall for different threshold values. (B) ROC-AUC curve for each task,
depicting the true positive rate against the false positive rate. Tasks are ranked by their AUC values, with the most predictive ones at the top. The overall
performance of the model across all tasks is represented by the green dotted line.

Figure 3

Feature importance assessment. A juxtaposition of feature importance derived from Random Forest (A) and Permutation (B) methods across multiple
tasks. Predominant features for each task are denoted by the most elevated bars.
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Figure 4

2D structural representations of the �nal compounds from Table 4. Each structure visually depicts the molecular arrangement with reactive atoms
distinctly colored. The compounds are presented in the order based on their toxicity as detailed in Table 4.

Figure 5

Molecular structure and predicted toxicity of the Genistein compound (CID: 5280961). (A) Graphical representation of Genistein's molecular structure with
reactive atoms distinctly colored. (B) Bar chart illustrating the predicted toxicity levels of Genistein across various biological tasks.
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Figure 6

Dynamics and Stability of the Genistein-TFF3 Complex. (A) Root Mean Square Deviation (RMSD) trajectory of the protein backbone atoms, re�ecting the
temporal stability of the Genistein-TFF3 complex. (B) Root Mean Square Fluctuation (RMSF) of individual protein residues, showcasing residue-speci�c
�exibility within the complex. Notable �uctuations in the RMSF plot hint at Genistein's potential role in modulating TFF3 dimerization.

Figure 7

Interaction Dynamics and Structural Changes in the Genistein-TFF3 Complex. (A) Temporal evolution of hydrogen bonds between TFF3 and Genistein
throughout the 100 ns simulation, highlighting the stability of their interaction. (B) Radius of Gyration trajectory for TFF3, with an observed increase
suggesting the dissociation of TFF3 monomers upon Genistein binding.
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Figure 8

Three-dimensional visualization of the Genistein-TFF3 complex over simulation time. Depicted are two distinct frames from the molecular dynamics
simulation: The initial frame (up), capturing the TFF3 dimer in the presence of Genistein, and the concluding frame (down), illustrating the dissociation of
TFF3 monomers subsequent to Genistein interaction. Genistein is delineated in yellow, underscoring its instrumental role in mediating the observed
dimeric separation.


