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Abstract
Travel surveys typically collect detailed information about demographics and travel behavior of
households and persons; but their sample sizes are often limited, and trip information is usually limited to
a single day. In contrast, Mobile Device Location Data (MDLD) provides extensive and accurate trip
records spanning multiple days for each person from a much larger sample, while demographic
information for the individuals are always lacking due to anonymization. This study constructs data
panels combining high-precision, long-term trip records from MDLD with detailed demographic
information from a regional travel survey (RTS). Two probabilistic record linkage algorithms are
employed to identify individuals with similar travel behaviors between RTS and MDLD datasets. The data
panels constructed by the linkage algorithm captured not only peak-hour commutes but also off-peak
travel and non-home-related trips, shedding light on previously underreported travel behaviors and
offering a more holistic view of individuals' travel patterns. This comprehensive dataset also exhibits
comparable demographic characteristics to the original RTS, showing that such data panel is a
reasonable representation of the entire population. The integration of diverse datasets holds promise for
revolutionizing travel behavior analysis and shaping the future of transportation planning in the era of
mobile technology and big data.

1. INTRODUCTION
Urban transportation systems play a critical role in shaping the quality of life in cities, and understanding
travel behaviors is essential for effective transportation planning and policy development. Traditionally,
travel surveys have served as the primary data source for studying travel behaviors, providing valuable
insights into commuting patterns and travel preferences (Nakamya et al., 2007). Typically, travel surveys
gather data regarding individuals’ socio-economic and demographic information, as well as a journey
diary for a speci�c day, which includes information about the starting and ending locations, times, mode
of travel, companions, and purpose of each trip (Hong et al., 2021). However, these surveys have several
limitations that can impact the accuracy and comprehensiveness of the data collected, such as reporting
bias, where people may inaccurately recall or report all of their travel activities, leading to underreporting
or misrepresentation of certain trips (Clarke et al., 1981). Non-response bias is another concern, as certain
groups of people may be less likely to participate in the survey, potentially skewing the representation of
travel behaviors (Richardson et al., 1996). Moreover, travel surveys often have a limited timeframe,
capturing data for only a speci�c day or short period (Stopher et al., 2008), and they may rely on relatively
small sample sizes of participants (Stopher et al., 2011), limiting the representation of travel behaviors.
Therefore, to overcome these limitations and obtain a more comprehensive and precise understanding of
travel behaviors, there is a growing need to explore alternative data sources that can complement and
enhance the insights derived from travel surveys.

In recent years, the landscape of travel data collection and analysis has been dramatically transformed
by the rise of mobile devices and cutting-edge data collection technologies. With the widespread adoption
of GPS-enabled smartphones and other mobile gadgets, an invaluable resource known as Mobile Device
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Location Data (MDLD) has become available (Yang et al., 2023). This data source captures the
movements and locations of individuals with unprecedented precision and continuity throughout their
daily routines (Hu et al., 2023). In contrast to conventional travel surveys, which rely on sporadic and self-
reported data, MDLD distinguishes itself by accurately documenting the precise locations and movement
trajectories of individuals throughout their daily routines (Ratti et al., 2006). This continuous in�ux of
high-resolution location data provides an intricate portrayal of travel behaviors, showcasing origin and
destination points, travel routes, and durations spent at speci�c sites. Through extended data collection
periods, MDLD unveils the temporal dynamics of travel patterns, revealing differences between weekdays
and weekends, peak and off-peak hours, and even seasonal variations in travel habits (Bachir et al.,
2019). Additionally, MDLD illuminates recurring travel behaviors, exposing habitual routes and preferred
modes of transportation among individuals, along with their frequently visited destinations (Ashbrook &
Starner, 2003).

Despite its promise, MDLD also has its own set of limitations. One of the main challenges lies in the lack
of explicit demographic information, which limits its standalone applicability for conducting
comprehensive travel behavior analysis (Rojas IV et al., 2016). Demographic factors play a crucial role in
shaping travel patterns and preferences. For instance, age and employment status may in�uence the
frequency and purpose of trips, with younger individuals and workers likely having different travel
behaviors compared to retirees or students (Su et al., 2020). Similarly, household size and income level
can impact choices of transportation modes and travel distances (Amoh-Gyimah & Aidoo, 2013). By
combining MDLD with traditional travel survey datasets like the Regional Travel Survey (RTS),
researchers can bridge the gap and create a more robust and comprehensive dataset. At present, the
research and application of the integration of survey data and location data mainly focus on two
directions. One is GPS-based travel survey, where participants are asked to use wearable GPS devices
(Hawkins & Stopher, 2004) or smartphone Apps (Sa� et al., 2015) to record their travel activities. A
signi�cant advantage of GPS-based travel survey is that the demographic information of participants are
still self-reported, which makes it more reliable and detailed. However, a limitation of GPS-based surveys
is the potential for sampling biases, as they depend on participants willing to respond to the GPS survey,
similar to biases in traditional travel surveys (Stopher & Greaves, 2007). The other direction is applying
population synthesis to location data, wherein socio-demographics in the location data are matched to
the marginal control totals in aggregated census data (Janzen, 2017). However, this also requires a sub-
sample of location data with known demographics, which is often scarce and challenging to obtain
(Bwambale et al., 2021).

This study proposes a novel approach to enhance travel behavior analysis through the integration of
MDLD and RTS datasets based on record linkage algorithms. Two distinct data linkage approaches are
utilized to connect individuals with similar travel behavior across datasets. The resulting data panels
offer comprehensive and accurate representations of travel behaviors over multiple days, capturing not
only peak-hour commutes but also off-peak travel and non-home-related trips. Additionally, they include
representative population demographics, enhancing the overall richness and reliability of the dataset.
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The primary objectives of this study are as follows:

1. To integrate MDLD and RTS datasets using two data linkage approaches: one based on a
probabilistic method and the other on similarity-based techniques.

2. To construct data panels that offer a longitudinal perspective on individuals' travel behaviors,
overcoming the limitations of traditional survey methods.

3. To evaluate the effectiveness of each data linkage approach in capturing accurate travel patterns
and compare the characteristics of the integrated data panels with the original RTS and MDLD
datasets.

4. To explore the representativeness of the data panels and discuss the implications of the �ndings for
transportation planning and policy development.

In the following sections, we present the data used for data linkage, the methodology employed for panel
construction, the results of the linking process, and a comprehensive analysis of the data panels,
discussing the implications and potential applications of our �ndings for transportation planning and
policy development.

2. DATA
In this study, two primary datasets are utilized to identify individuals with similar travel behaviors, and
construct the data panel: trips collected in the Regional Travel Survey (RTS), and trips imputed from
MDLD.

2.1. Regional Travel Survey (RTS)
The Regional Travel Survey (RTS) conducted by the Metropolitan Washington Council of Government
(MWCOG) from October 2017 through December 2018 collected demographic and travel information
from a randomly selected sample of households in the metropolitan Washington region. Key components
in the RTS Dataset include household, person, trip, and vehicle �les. Trip details, including
origin/destination, start/end times, mode of travel, and trip purpose are recorded. Demographic
information of individuals, such as age, gender, household size, income level, and employment status are
also included. While the RTS dataset provides valuable insights into the travel behavior and
demographics of the surveyed individuals, it also has some limitations, for example, the RTS relies on a
relatively small sample of participants, and is limited to information gathered on a single day, which may
not fully capture the variations in travel behavior that can occur throughout different days of the week or
across different seasons. Moreover, participants in the RTS might not recall or report all their trips, leading
to incomplete trip records. Despite these limitations, the RTS remains a valuable source of information for
understanding travel behavior in the region.

2.2. Mobile Device Location Data (MDLD)
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The Mobile Device Location Data utilized in this study comes from a consistent national mobility data
panel produced by the University of Maryland (UMD) team from multiple data vendors. Generated from
various positioning technologies such as cell phones, Global Positioning System (GPS), and location-
based services (LBS), the MDLD comprises anonymous and accurate trip records from a much larger
sample of individuals. Like RTS Dataset, MDLD captures trip information including start and end time,
coordinates of the origin and destination, the imputed travel mode, and the imputed trip purpose. Unlike
the RTS, MDLD provides trip information for multiple days, offering a longitudinal perspective on
individuals' travel behaviors. Also, MDLD collects information from a much larger sample of individuals
due to the widespread use of mobile devices. By harnessing MDLD, researchers can gain a broader
understanding of travel patterns over time for a broader sample of the population. However, the dataset
lacks detailed demographic information due to anonymization processes that ensure privacy and data
protection. While the MDLD provides valuable insights into travel patterns, the absence of demographic
data limits the ability to analyze the relationship between travel behavior and speci�c demographic
factors.

By combining the RTS's detailed demographic information with MDLD's high-precision, long-term trip
records, the research aims to create a unique dataset that can provide insights into travel behavior trends
and their connection to demographics at a broader scale. Anna Arundel County in the State of Maryland
is chosen as the case study in this paper. To ensure data accuracy and relevance, both datasets were
�ltered to include only individuals and devices residing within Anna Arundel County. Additionally, the
analysis was limited to trips occurring solely within the county, excluding any trips departing from or
entering the county from different regions. It should be noted that the methodology is scalable to
regional, state or national level.

3. METHODOLOGY
Figure 3 − 1 presents the methodological framework of this study. There are three major components:
Data Preprocessing of RTS and MDLD, Identi�cation of individuals with similar travel behaviors by two
distinct approaches, and Construction of the data panel.

3.1. Data Preprocessing
The data record linkage requires that both datasets have the same structure and comparable attributes.
In the case of this study, the RTS already includes person information such as the census tract of the
home location, as well as trip details like census tract of origin/destination, start/end times, and more.
However, the raw MDLD only contains location sightings with anonymized device identi�ers (ID), latitude
and longitude coordinates, time stamps, and positioning accuracies. To bridge this gap, a series of
imputation algorithms are applied to derive the home location and trip information for each individual in
the MDLD dataset (Zhang et al., 2021). A behavior-driven approach is utilized to identify devices’ home
locations, which are imputed as the census tract where the device is observed with the highest count of
nights, hours, and sightings during nighttime (Pan et al., 2023).
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For extracting trip information from the sightings, a tour-based method is employed. The algorithm
recognizes essential tours based on the daily life centers—such as a typical home-destination-home tour
composed of multiple trips between the daily life centers and other stops—and further examines location
observations within each tour to construct the complete chain of trips. Between the major activity
locations, the point-to-point travel time, distance, and speed from the current location observation to the
previous sighting and the next sighting are examined through a recursive algorithm to identify the stops
and trips. Finally, a daily trip roster is generated, where for each trip, a unique trip identi�er, start and end
time, and coordinates of the origin and destination are included.

Additionally, the MDLD dataset may contain data from one or multiple recorded days for each device,
while the RTS dataset records only one day for each person. To account for this difference, one day is
carefully selected for each device in the MDLD data. Speci�cally, the focus is on including trips from the
day with the highest number of recorded trips, as this day is deemed to best represent the person and
allows for meaningful comparisons between the datasets.

3.2. Data linkage
In this research study, we present our methodology that builds upon the existing conventional approach
for data record linkage. Figure 3 − 2 visually represents the data record linkage framework:

The framework presented above encompasses the fundamental steps involved in any data record linkage
model, whether it is exact matching or supervised/unsupervised probabilistic matching. These steps
include indexing/blocking, similarity measurement, and linking decision. However, each step may vary in
its implementation across different record linkage models. The selection of a speci�c model depends on
various factors, such as the speci�c needs of the research, the characteristics of the data, the availability
of previous knowledge, and whether partially true data is accessible for model training or not (Zhu, 2017).

After data processing step described in the previous section, these datasets are structured at the trip-unit
level, where each device/person may have one or more records representing the total number of recorded
trips. However, this data structure presents a unique challenge for the matching process, given our aim to
link persons/devices. Most matching techniques are commonly applied to datasets involving entities with
single records, such as health data records and other administrative data sources (Enamorado et al.,
2019; Fleming et al., 2012; Sayers et al., 2016). To address the challenges posed by the trip-unit level data
structure in the matching process, we have developed two distinct approaches, both based on
probabilistic record linkage principles. In the following sections, before presenting the two approaches, we
provide a more detailed explanation of each of the record linkage steps that were incorporated into both
approaches.

3.2.1. Indexing/Blocking
The �rst step of data linkage is called indexing or blocking. This involves creating a list of potential
candidate pairs between the two datasets for the comparison in the subsequent step. Initially, all possible
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pairs are formed into a matrix including all possible cases by exhaustively trying every entity from
dataset A with every entity from dataset B. However, this exhaustive approach can result in signi�cantly
high computational time and reduce the algorithm's e�ciency in �nding matches. To address this issue, a
more e�cient approach is employed by eliminating many pairs through a process known as "blocking."
Blocking involves grouping entities based on certain criteria, such as shared attributes or properties (Jaro,
1989). For example, candidate pairs may only be considered if they share the same zip code area. This
way, the algorithm can reduce unnecessary comparisons and focus only on potentially relevant matches,
thereby improving its e�ciency. Blocking techniques are diverse and not constrained to merely grouping
entities with identical attributes (Standard Blocking). In our study, we used Standard Blocking and we
restricted our comparisons to individuals/devices residing in the same home tract area.

3.2.2. Field Comparison
Following the indexing/blocking process, potential candidate pairs are compared for similarity using
selected attributes called "matching variables." These variables are common to both datasets, and the
comparison is done individually for each one. The results range from 0 to 1, with 0 indicating no match, 1
indicating a perfect match, and any value in between representing the degree of similarity. The similarity
depends on the type of variables compared, such as string values, numeric, date, time, or location. This
study focuses on time and geographic variables. Distances between departure and arrival times are
computed in minutes, while distances between departure and arrival locations are computed in kilometers
for each candidate pair. These values represent distances and are not similarity scores yet. To convert
distances into similarity scores ranging from 0 to 1, a linear decay function is used (de Bruin, 2022). The
process involves two tuning parameters: "offset" and "scale." If a distance falls within the speci�ed range,
it gets a similarity score of 1. However, if the distance value exceeds the offset, the score starts to linearly
decay from 1 to 0 at a rate of 1/scale (Fig. <link rid="�g2">3</link>–3).

The selection of tuning parameters in this study is driven by the desired accuracy level and the allowable
error de�ned by the user. For this investigation, the tuning parameters "offset" and "scale" were set to 15
minutes and 25 minutes, respectively, for departure and arrival times. Additionally, for departure and
arrival locations, the tuning parameters "offset" and "scale" were con�gured to 1 km and 3 km,
respectively. We made these choices to the best of our ability. We believe that the choices meet the
speci�c accuracy requirements and permissible errors outlined for the study.

3.2.3. Approach 1
The �rst approach uses a probabilistic method based on the Fellegi and Sunter theorem (Fellegi & Sunter,
1969) for record linkage. We adapt this method to the trip-unit level, which helps identify matching trips
among the datasets. All the previous steps were applied at the trip-unit level to compute similarity scores
across potential candidates. However, it is essential to note that these are similarity scores, not
probabilities. This is why we have chosen to use the Fellegi and Sunter method to convert these similarity
scores into probabilities of matching. To convert the similarity score into a match probability, Bayes'
Theorem is applied. To do this, we require the following information:
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P-Probability (Overall): This is the prior probability, which represents the expected proportion of
duplicates in a dataset before any comparisons are made between records.

M-Probability (for each variable): P(Variable Matches | Record is a Match) is the probability that two
records with the same entity agree on the linkage variable.

U-Probability (for each variable): P(Variable does not match | Record is not a match) is the
probability that two records with different entities agree on the linkage variable.

Unfortunately, none of this information is available in our case, as we lack ground truth data or training
data. Therefore, in approach 1, we estimated these parameters for each matching variable using an
unsupervised algorithm facilitated by the expectation/maximization algorithm (Bauman, 2006). In the
decision step, at the trip-unit level, matched trips are accepted if their similarity score exceeds the
speci�ed threshold value of 0.5.

To �nd matches/links between devices and persons, we developed an algorithm that leverages unique
matches to establish connections between individuals or devices. Since the matching at the trip level can
result in multiple possible matches for each device/person, the algorithm searches for the most unique
connections, assuming that the most unique links are the more reasonable matches.

3.2.4. Approach 2
The second approach is based on a similarity-based method. In this approach, we restructured the
dataset, transforming it from the trip-unit level to the person/device level. This involved aggregating all
trip information pertaining to each individual or device into a single trip itinerary. Each trip itinerary is
represented as a vector of one or more trips, with each trip including selected matching variables as
departure and arrival times, as well as departure and arrival locations in longitudinal and latitudinal
format. By restructuring the data in this way, we create a more manageable dataset that facilitates the
application of similarity measures. To measure the similarity between any candidate pairs, we have
chosen to use the dynamic time warping algorithm (Muller, 2007). This algorithm calculates the distance
between the two candidate pairs, taking into account variations in the time and location axes. The
resulting distance is then converted into a similarity score using a linear decay function, similar to the
tuning parameter used in approach 1. The dynamic time warping technique is particularly effective in
capturing patterns and similarities in time-series data, making it well-suited for our trip-based datasets.
This method has been widely used in various data trajectory similarity studies (Gong et al., 2020; Hung et
al., 2015; Sun et al., 2017). In the decision step, we determine the acceptance of matched devices based
on a similarity score. Devices are linked if their similarity score is equal to the maximum value and greater
than or equal to a speci�ed threshold value. For this study, the threshold value was set to 0.5, meaning
that candidate pairs with a similarity score of 0.5 or higher are accepted as matches. By leveraging trip
itineraries, we achieved direct linking of devices to individuals without the need for the uniqueness
algorithm utilized in approach 1.

For indexing/blocking and estimating probabilities (P, M, and U) in both approaches, we utilized the
'recordlinkage' package in Python (de Bruin, 2022). By incorporating these two complementary
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approaches, the challenges posed by the original trip-unit level data structure can be effectively
addressed.

3.3. Data panel construction
Data panels are constructed for travelers linked by approach 1 and approach 2, respectively. The trip
records in the data panel are sourced from MDLD, which continuously captures trip information over
multiple days without reporting bias, providing a longitudinal perspective on individuals' travel behaviors.
The demographic information, including age, gender, household size, income level, and employment
status, is obtained from RTS, where detailed and reliable demographic data is reported. By integrating
these two data sources, we combine geospatial accuracy with detailed demographic information,
addressing the limitations of both datasets and enabling a more nuanced analysis.

In the next section, we will present and compare the different characteristics of the four datasets: the
original RTS, MDLD, and the panel data constructed with travelers linked by approach 1 and approach 2.
We will also discuss and analyze the effectiveness of the two linking algorithms and the
representativeness of the panel data.

4. RESULTS

4.1. Sample size, timespan, and trip rate of the data panel
Table 4 − 1 presents a summary of key statistics, including sample size, timespan, and trip rate, for
different datasets: RTS, MDLD, travelers linked by approach 1, and travelers linked by approach 2. Note
that the linkage process involved utilizing RTS and a representative day of MDLD to identify linked
travelers. Subsequently, the travel patterns of these linked travelers were analyzed for the entire month to
which the observed week belonged. This approach simulates the construction of such data panel,
allowing for longer-term tracking of travel behaviors using MDLD data.

As shown in Table 4 − 1, MDLD originally covers a signi�cantly larger sample size compared to RTS, with
23,224 travelers observed within just one week. This number is over 16 times greater than the total
number of travelers in RTS, which includes 1,383 individuals. The substantial sample size in MDLD
enhances the likelihood of �nding travelers with similar travel behaviors in both datasets. Consequently,
approach 1 successfully matched 617 travelers from MDLD with RTS, while approach 2 achieved 977
matches. These numbers represent approximately 44.6% and 70.6% of the travelers in RTS, respectively.
This suggests that incorporating trip records from more days in MDLD could further increase the number
of travelers matched with RTS.
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Table 4
 − 1. Sample size, timespan, and trip rate comparison

  RTS MDLD Linked_approach1 Linked_approach2

Number of travelers 1,383 23,224 617 977

Median number of days in a month 1 10 10 13

Mean number of days in a month 1 11.4 10.89 13.14

Median number of longest

consecutive days in a month

1 4 3 5

Mean number of longest

consecutive days in a month

1 5.413 4.843 6.273

Median trips per day 2 2 2 2.5

Mean trips per day 2.837 2.772 2.215 3.140

One notable distinction is that RTS collects trip records for each responder on a single travel day, while
MDLD provides trip records for an average of 11.4 days per traveler in a month. On average, the longest
consecutive travel days observed for each MDLD traveler is 5.413 days. This highlights one of the
advantages of MDLD, as it captures daily, weekly, and seasonal variations in travel behaviors due to its
multiple-day coverage. For travelers linked by approach 1, the average number of days is 10.89, and the
average longest consecutive days is 4.843, both of which are less than those in the entire MDLD dataset.
Conversely, travelers linked by approach 2 show averages of 13.14 days and 6.273 longest consecutive
days, both exceeding the entire MDLD dataset. This indicates that approach 1 tends to link travelers with
shorter timespans in MDLD to RTS, while approach 2 is more capable of identifying travelers appearing
over more days.

Regarding the trip rate, travelers in RTS are recorded to have an average of 2.837 trips per day, which
closely aligns with the average of 2.772 trips per day made by travelers in MDLD. It should be noted that
these numbers are slightly lower than the typical trip rate found in other datasets. This discrepancy can
be attributed to our exclusion, as mentioned in Section 2, of any trips departing from or entering the
county from different regions. This �ltering step was applied to ensure the accuracy and relevance of the
data. Upon examining the travelers linked by approach 1, an average of 2.215 trips per day was observed.
Conversely, travelers linked by approach 2 demonstrated an average of 3.140 trips per day. This suggests
that approach 1 is more inclined to identify individuals who undertake fewer trips, whereas approach 2 is
better suited for detecting more active travelers. Considering that approach 2 can also identify travelers
appearing in more days, it is reasonable to assume that the data panel constructed based on the linking
results from approach 2 will include a higher proportion of active travelers.

4.2. Trip characteristics
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4.2.1 Trip duration
Figure 4 − 1 illustrates the distribution of trip durations across the four datasets, with dashed lines
representing the respective means. The average trip duration in RTS is 14.8 minutes, closely followed by
MDLD with an average of 14.9 minutes, making the red and green dashed lines nearly indistinguishable.
However, variations are observed among linked travelers. Those linked by approach 1 display an average
trip duration of 17.56 minutes, indicating that although they make fewer trips per day, their individual
travel times are longer. Conversely, travelers linked by approach 2 exhibit an average trip duration of
13.00 minutes, indicating a tendency for more frequent short trips per day. This pattern is consistent with
the density curves, where the share of short-duration trips (less than 15 minutes) for travelers linked by
approach 1 (represented by the blue curve) is signi�cantly lower than that for travelers linked by approach
2 (represented by the purple curve).

Furthermore, Fig. 4 − 1 reveals that trip durations in RTS cluster around multiples of �ve minutes (e.g., 5,
10, 15...), indicative of "reporting bias" or "rounding bias" commonly encountered in surveys (Rietveld,
2002). When respondents are asked to report speci�c trip details, such as start and end times, they tend
to round or approximate their responses to convenient intervals, like 5-minute increments. In contrast, the
density curves of trip duration in the other three MDLD-based datasets appear smoother. This is due to
the passive collection of travel information in MDLD, which does not rely on self-reported data from
survey respondents. Consequently, reporting bias is signi�cantly reduced or eliminated in MDLD, making
it a valuable and reliable resource for studying and understanding travel patterns and behaviors.

4.2.2 Time of day and day of week
The departure hour and arrival hour distributions of recorded trips are presented in Fig. 4 − 2(a) and Fig. 4 
− 2(b), respectively. Across all four datasets, a consistent trend is observed in the temporal distribution,
with signi�cantly higher tra�c volume during peak periods (7:00–9:00 and 15:00–18:00) compared to
other times of the day. However, a noticeable discrepancy exists between RTS and the other three MDLD-
based datasets, with RTS reporting fewer trips during off-peak hours, particularly during the night (21:00–
5:00). This reveals the presence of off-peak travel underreporting in travel surveys, wherein individuals
tend to report fewer off-peak trips compared to what is actually revealed in MDLD. This phenomenon has
also been reported in other studies (Chapleau et al., 2018).

The reasons for off-peak travel underreporting in RTS may be twofold: Firstly, respondents may have
di�culty accurately recalling and reporting off-peak trips, especially if they occur infrequently and are not
as memorable as peak-hour travel. Secondly, compared to peak-hour trips, respondents might perceive
off-peak trips as less relevant or important, especially if they are part of continuous activities or involve
short distances, leading to their omission from the reported trips.

This underreporting of off-peak travel in RTS can lead to an imbalanced representation of travel behavior,
resulting in an underestimation of off-peak travel patterns. Consequently, RTS may not fully capture the
true extent and nature of off-peak travel activities. The higher proportion of trips during midday and late



Page 12/26

night in MDLD-based datasets indicates that MDLD can be advantageous in addressing this bias. By
providing continuous tracking of travel behavior, MDLD offers a more comprehensive and accurate
representation of all travel activities, regardless of the time of day.

Regarding the comparison between travelers linked by the two approaches, it is evident that travelers
linked by approach 2 exhibit a relatively higher share of off-peak trips and a lower share of peak trips
compared to travelers linked by approach 1. This suggests that approach 1 tends to identify individuals
following a more regular timetable throughout the day, while approach 2 captures a broader range of
travel patterns, including more off-peak travel activities.

Figure 4 − 3 presents the distribution of trips by day of the week. As RTS only includes weekdays as travel
days, Fig. 4 − 3(a) displays the relative frequencies of trips during weekdays for the MDLD-based datasets
to facilitate a meaningful comparison. Meanwhile, Fig. 4 − 3(b) illustrates the distribution of trips for all
seven days of the week in the three MDLD-based datasets. This distinction highlights one of the major
contributions of MDLD, as it overcomes the limitations of self-reported surveys by providing continuous
tracking of travel activities.

From Fig. 4 − 3(a), it is evident that RTS records a higher proportion of trips on Monday and Wednesday
compared to MDLD, whereas MDLD records a higher proportion of trips on Thursday and Friday
compared to RTS. Figure 4 − 3(b) reveals that travelers linked by approach 1 make slightly more trips
during weekdays and fewer trips during weekends compared to travelers linked by approach 2. This
�nding suggests that approach 1 may tend to link more regular commuters, who primarily travel on
weekdays, while approach 2 captures a broader range of travel patterns, including individuals who travel
on both weekdays and weekends.

4.2.3 Home-based trips and heat map of trip destinations
The analysis highlights the variation in the proportion of home-based trips, as depicted in Fig. <link
rid="�g6">4</link>–4, which underscores the disparities in travel patterns captured by the RTS and MDLD
datasets. In RTS, the proportion of home-based trips is recorded at 81.67%, signi�cantly higher than the
three MDLD-based datasets, where home-based trips constitute 61%-62% of the total. This pattern
corroborates the discussion in section 4.2.2, indicating that the design and limitations of the RTS data
lead to a primary emphasis on trips originating from home and then returning home, which are common
and essential travel patterns. As a result, other types of trips, especially those made during off-peak hours
for non-home-related purposes, are not adequately represented in the RTS dataset. This omission leads to
an incomplete picture of overall transit use and may result in an underestimation of tra�c volume during
off-peak periods. Therefore, by integrating MDLD into the analysis, researchers can gain valuable insights
into the full spectrum of travel patterns, enabling more accurate and inclusive assessments of tra�c
volume during both peak and off-peak hours. The proportions of home-based trips for travelers linked by
approach 1 and approach 2 are both similar to the proportion observed in the entire MDLD dataset. This
indicates that the linkage algorithm employed in the study does not introduce bias in terms of home-
based trips.
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Figure 4–5 presents heat maps of trip destinations from the four datasets, with a focus on trips within
Anna Arundel County as mentioned previously. The spatial distribution of trip destinations is found to be
generally consistent across all four datasets. Annapolis, the county's largest city, emerges as a prominent
hotspot, along with other densely populated towns like Glen Burnie and Crofton. This observation
reinforces the reliability and validity of the MDLD data and the linkage approaches employed in the study,
as the trip destinations exhibit a reasonable and coherent spatial pattern.

However, there is still a noticeable discrepancy between the heat maps of RTS and MDLD. In RTS, trip
destinations appear to be more discrete, with certain rural areas showing no trip records (evident in the
bottom left area of the map). Conversely, the MDLD-based datasets exhibit a more widely distributed
pattern, covering nearly all areas within Anna Arundel County. This difference may be attributed to the
fact that RTS has a smaller sample size compared to MDLD, with trip records collected for a single day
for each participant. Consequently, trips made in some rural areas are likely underreported in RTS. MDLD,
on the other hand, emerges as a promising data source to address this limitation. By providing
continuous movement records over multiple days and encompassing a larger sample size, MDLD offers a
more comprehensive representation of travel behavior. This comprehensive coverage ensures that trips
made in various areas, including rural regions, are adequately captured, leading to a more accurate
depiction of spatial travel patterns within the county.

4.3. Socio-Demographics
This section presents the results of socio-demographics for the individuals residing within Anna Arundel
County in RTS, individuals linked by approach 1, and individuals by approach 2.

Figure 4–6 illustrates the age distribution across the three datasets, with dashed lines representing the
respective means. The average age in RTS is 43.34 years old, which matches the average age of
individuals linked by approach 1. Individuals linked by approach 2 exhibit a slightly older average age of
44.13 years old. While there are some slight differences in age distribution among the three datasets,
such as more individuals between 45–60 years old and fewer individuals between 25–45 years old in
individuals linked by approach 1, the Kolmogorov-Smirnov Test reveals that the p-values for comparing
the entire RTS with individuals linked by approach 1 and approach 2 are 0.7851 and 0.9155, respectively.
Both p-values are signi�cantly greater than 0.05, indicating insu�cient evidence to reject the null
hypothesis that these datasets do not come from the same age distribution. Figure 4–7 displays the
gender distributions across the three datasets, showing similar proportions with approximately 52% of
individuals being female and 48% being male in all datasets. Figure 4–8 shows the race distributions,
with the highest percentage of individuals being white, accounting for nearly 80% across all datasets. The
distribution of employment status is presented in Fig. 4–9, demonstrating comparable patterns among
the three datasets. More than 50% of individuals in all datasets are workers. It is notable that the
percentage of workers among individuals linked by approach 1 and approach 2 is higher than in the
overall RTS. This �nding may be attributed to the fact that workers generally make more trips than non-
workers, increasing their likelihood of being linked with MDLD, given that the linkage algorithms are
based on trip characteristics.
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In conclusion, the distribution of various socio-demographic attributes across the three datasets is
generally similar, suggesting that the data panel constructed by the linkage algorithm exhibits
comparable demographic characteristics to the original RTS. Thus, it can be considered as representative
of the population, similar to the RTS dataset itself. The consistency in socio-demographic pro�les
enhances the validity and applicability of the data panel for studying travel behavior and making
informed decisions in transportation research and planning.

5. CONCLUSION AND DISCUSSION
In this study, we proposed and implemented a novel approach to enhance travel behavior analysis by
integrating Mobile Device Location Data (MDLD) with the Regional Travel Survey (RTS) datasets. Our
goal was to address the limitations of traditional travel surveys and leverage the advantages of MDLD to
create more comprehensive and accurate representations of individuals' travel behaviors. Two distinct
data linkage approaches were utilized to connect individuals across datasets with similar travel
characteristics, resulting in the construction of data panels that provide valuable insights into travel
patterns.

MDLD offered continuous and high-resolution information on individuals' movements over multiple days,
providing a detailed and accurate picture of daily, weekly, and even seasonal travel activities. By
combining this geospatially accurate data with the rich demographic information from RTS, our data
panels provided comprehensive and reliable representations of travel behaviors. Our approach captured
not only peak-hour commutes but also off-peak travel and non-home-related trips, shedding light on
previously underreported travel behaviors and offering a more holistic view of individuals' travel patterns.
This comprehensive dataset also allowed us to analyze travel behaviors over extended periods, providing
a longitudinal perspective on travel habits that was challenging to achieve with traditional survey data.

While our approach showed signi�cant promise, it is essential to acknowledge some limitations. While
MDLD provides continuous location data, there may still be gaps in the dataset due to factors such as
poor network coverage, battery depletion, or device malfunctions. The effectiveness and accuracy of the
home location identi�cation and trip imputation algorithm also needs further validation. The data linkage
process also presents challenges, particularly in dealing with multiple possible matches at the trip level.
Our algorithm addressed this by leveraging unique matches to establish connections between individuals
or devices. While this approach was effective, it is crucial to further explore and re�ne data linkage
methods to ensure accuracy and reliability in large-scale applications.

Despite these challenges, the �ndings of our study have signi�cant implications for transportation
planning and policy-making. By understanding travel behaviors across various time periods and
demographic groups, policymakers can tailor transportation services to meet the speci�c needs of
individuals and communities, and cities can develop targeted interventions to enhance mobility and
reduce congestion, ultimately contributing to a more livable and sustainable urban environment. As data
collection technologies continue to advance, the integration of diverse datasets holds promise for
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revolutionizing travel behavior analysis and shaping the future of transportation planning in the era of
mobile technology and big data.
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Figure 1

Figure 3‐1. Methodological Framework

Figure 2

Figure 3‐2. Data Record Linkage Framework
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Figure 3

Figure 3-3. Conversion of Distances to Similarity Scores using Linear Decay Function

Figure 4

Figure 4‐1. Density of trip duration in minute
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Figure 5

Figure 4‐2. Distribution of trips by the hour of day for (a) the departure time, and (b) the arrival time
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Figure 6

Figure 4‐3. Distribution of trips by (a) weekdays, and (b) weekdays and weekends
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Figure 7

Figure 4‐4. Proportion of home-based trips
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Figure 8

Figure 4‐5. Heat maps of destinations of trips in (a) RTS, (b) MDLD, (c) travelers linked by approach 1,
and (d) travelers linked by approach 2
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Figure 9

Figure 4‐6. Age distribution

Figure 10
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Figure 4‐7. Gender distribution

Figure 11

Figure 4‐8. Race distribution
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Figure 12

Figure 4‐9. Employment status distribution


