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Abstract

Objective
Chronic inflammatory and immune responses play key roles in the development and progression of
chronic obstructive pulmonary disease (COPD). PANoptosis, as a unique inflammatory cell death
modality, is involved in the pathogenesis of many inflammatory diseases. We aim to identify critical
PANoptosis-related biomarkers and explore their potential effects on respiratory tract diseases and
immune infiltration landscapes in COPD.

Methods
Total microarray data consisting of peripheral blood and lung tissue datasets associated with COPD
were obtained from the GEO database. PANoptosis-associated genes in COPD were identified by
intersecting differentially expressed genes (DEGs) with genes involved in pyroptosis, apoptosis, and
necroptosis after normalizing and removing the batch effect. Furthermore, GO, KEGG, PPI network,
WGCNA, LASSO-COX, and ROC curves analysis were conducted to screen and verify hub genes, and the
correlation between PYCARD and infiltrated immune cells was analyzed. The effect of PYCARD on
respiratory tract diseases and the potential small-molecule agents for the treatment of COPD were
identified. PYCARD expression was verified in the lung tissue of CS/LPS-induced COPD mice.

Results
PYCARD was a critical PANoptosis-related gene in all COPD patients. PYCARD was positively related to
NOD-like receptor signaling pathway and promoted immune cell infiltration. Moreover, PYCARD was
significantly activated in COPD mice mainly by targeting PANoptosis.

Conclusion
PANoptosis-related gene PYCARD is a potential biomarker for COPD diagnosis and treatment.

Introduction
COPD, as a serious chronic lung disease, is characterized by poorly reversible and incomplete airway
obstruction[1]. COPD is the third disease in the top 10 causes of death globally and in China [2–3]. COPD
was traditionally thought to be influenced by cigarette smoking which causes about half of all COPD
cases worldwide[4]. However, the importance of non-cigarette-related risk factors for COPD has strongly
increased in recent years, including genetic factors, occupational exposures, air pollution, environmental
tobacco smoke, poorly controlled asthma, and infectious diseases[5–6].
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Innate and adaptive inflammatory immune is the most common pathogenesis of COPD[7–8]. Multiple
immune cells and mediators have been implicated in the inflammatory immune process, which involve
innate immune cells (macrophages, neutrophils, mast cells, natural killer cells, dendritic cells,
monocytes, eosinophils, and γ/δ-T cells) and adaptive immune cells (T and B cells)[6, 9]. ‘M1-like’ pro-
inflammatory macrophages were increased in COPD which involved the strong recruiting of monocytes
from the circulation, whereas ‘M2-like’ anti-inflammatory macrophages contributed to defective
remodeling in COPD[10–11]. Blood neutrophils were increased in early-stage COPD, and the molecular
and functional changes of neutrophils were correlated with the decline of lung functions[12].
Homocysteine elicited a neutrophil apoptosis-to-NETosis shift via the AKT1-S100A8/A9 axis in
COPD[13]. It was also the ratio of monocytes, dendritic cells, and natural killer cells increased in COPD
patients[14–15]. Moreover, alveolar macrophages (AMs) necroptosis, apoptosis, and pyroptosis
contributed to COPD pathogenesis[16–17]. Resting mast cells were significantly decreased[18]. COPD
patients have increased neutrophils in sputum and blood, which were associated with more frequent
exacerbations[11, 19]. The significantly enhanced expression of γ/δ-T cells and T regulatory cells
appeared associated with COPD[20]. These results highlight a novel and crucially important pathogenic
mechanism for COPD.

The innate immune system recognizes microbial molecules of pathogens and induces a rapid response
by producing inflammatory factors and activating the programmed cell death (PCD) pathway[21]. Recent
advances reported a novel inflammatory PCD modality called PANoptosis (pyroptosis, apoptosis,
necroptosis)[22]. PANoptosis is a highly interconnected innate immune inflammatory cell death process
that is driven through a multiprotein complex (PANoptosome) and involves crosstalk and co-regulation
among these cell death pathways[22–23]. PANoptosis plays a crucial role in coronavirus disease 2019
(COVID-19), cancer, metabolic dysfunction-associated fatty liver disease (MAFLD), and acute respiratory
distress syndrome (ARDS)[24–27]. Macrophages are an important effector of innate immune cells in
PANoptosis[24, 28]. However, the understanding and regulation of PANoptosis in COPD are still revealed.

Our study mainly will demonstrate the association of PANoptosis with COPD. Screening the candidate's
biomarkers of PANoptosis and the correlation with immune infiltration in COPD by bioinformatics and
validation in COPD mice model analyses, and identifying the effects of the candidate biomarkers in
respiratory tract diseases performed by CTD database.

Materials and methods

Data collection
The gene microarray data of COPD samples were mainly collected from Gene Expression Omnibus (GEO,
https://www.ncbi.nlm.nih.gov/geo/). The 5 lung tissue datasets (GSE162635, GSE92511, GSE37768,
GSE73395, GSE76925) and 5 peripheral blood datasets (GSE112811, GSE103174, GSE54837,
GSE133096, GSE55962), containing 365 healthy (control group) and 679 COPD (experimental group)
samples were selected. PANoptosis-related genes integrated pyroptosis, apoptosis, and necroptosis
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genes that were retrieved from the public GeneCards database (http://www.zhounan.org/ferrdb) The
final 96 PANoptosis genes obtained after removing duplicate genes were used for subsequent analysis.

Identification of PANoptosis genes in COPD
The normalized gene expression matrix of the 5 blood/lung tissues datasets after removing batch
effects. We first combined the above 10 datasets with limma R package (version 3.42.2) in Silico
Merging[DOD:10.1186/1471-2105-13-335]. Then, the obtained merged dataset was analyzed using
removal of Batch Effect function of limma R package to remove batch effects, and the data sets before
and after normalization were visualized using a boxplot, density graphic, and UMAP chart. Subsequently,
linear models were applied to figure out differentially expressed genes (DEGs) between COPD and
healthy samples (version 4.3, http://www.bioconductor.org/packages/release/bioc/html/limma.html)
Briefly, |log2 fold change (FC)| > 0.99 and P < 0.05 were set as the selection criteria for DEGs. the
crossover genes between DEGs and 96 PANoptosis genes were identified as PANoptosis genes in COPD.
Venn plot, Volcano plot, and Heatmap were conducted and visualized DEGs using the Sangerbox web
tool (version 3.0, http://www.theSangerbox.com/home.html)

Functional enrichment analysis of PANoptosis genes in
COPD
Functional enrichment analysis was performed on 71 PANoptosis genes in COPD. Gene Ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were used to explore potential
biological processes, cellular components, molecular functions, and important signaling pathways. GO
and KEGG enrichment analyses were conducted by package cluster Profiler (version 3.14.3). A minimum
gene set of 5 and a maximum gene set of 5000 were chosen. P < 0.05 and false detection rate (FDR) < 
0.1 were considered statistically significant.

Protein-protein interaction (PPI) network construction
Interactions between different PANoptosis genes were analyzed using STRING database (version 11.09,
https://cn.string-db.org/) Herein, the "Organism" used was “Homo,” Cytoscape software (version 3.9.1)
was used for construction and visualization of PPI networks. The hub genes were identified with
Cytoscape plug-in Cytohubba according to the betweenness centrality (BC) of the gene in the PPI
network.

Weighted correlation network analysis (WGCNA)
WGCNA is used to mine and find co-expressed gene modules, and it is aimed at exploring the
association between the module genes and clinical phenotype. The relative modules in COPD were
identified via R package WGCNA (version 1.71, https://cran.r-
project.org/web/packages/WGCNA/index.html). At first, MAD (Median Absolute Deviation) was
calculated for each gene, and 50% of genes showing the lowest MAD were filtered before further
analysis. Then, a weighted adjacency matrix was constructed based on the power function
A_mn=|C_mn|^β (C_mn = Pearson's correlation between Gene_m and Gene_n; A_mn = adjacency between
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Gene m and Gene n). β was a soft-thresholding parameter. The adjacency was transformed into a
topological overlap matrix (TOM), and the corresponding dissimilarity (1-TOM) was calculated after
obtaining the power of 16. To classify Genes with similar expression profiles into Gene modules, average
linkage hierarchical clustering was conducted according to the TOM-based dissimilarity measure with a
minimum size (Gene group) of 30 for the Genes dendrogram. To further analyze the module, we
calculated the dissimilarity of module eigengenes, chose a cut line for module dendrogram, and merged
some modules. Parame-tersdeepSplit and Similar module merge thresholds were set at 3 and 0.25,
respectively. Finally, we obtained 18 co-expression modules.

Least absolute shrinkage and selection operator regression
(LASSO) construction
LASSO regression was aimed at constructing a risk model via R package glmnet. K-fold LASSO-Cox
regression was implemented after integrating survival time, survival state, and gene expression. Cross-
validation (k = 5) was used to obtain and test the model. Correlation coefficients at lambda. min was set
as the final model. After candidate genes were selected at lambda. min, R package survival was used to
calculate the Risk Score. A prognostic model was conducted using Cox method to evaluate each gene.
LASSO-Cox regression was generated using the Sangerbox web tool.

Receiver operating characteristic (ROC) Curve construction
ROC curve was further validated by hub genes and it is aimed at evaluating the diagnostic value of DEGs.
The area under the curve (AUC), sensitivities, and 1-specificiies were obtained using R package pROC
(version 1.17.0.1). The AUC values are 0.5–0.7/0.7–0.9/ > 0.9 were identified as low/moderate/high
accuracy, respectively. Sensitivities and 1-specificities together are used to evaluate the authenticity of
the model, they get closer to 1.0, the model is much more authentic.

Immune Infiltration Analysis
Immune infiltration analysis between control and COPD groups was operated by CIBERSORTx web tool
(https://cibersortx.stanford.edu/upload.php). CIBERSORTx calculated the composition of 22 types of
immune cells in each sample after obtaining the immune cell infiltration matrix, The algorithm employed
the LM22 signature for 100 permutations. Filtering out samples with P < 0.05 for further analysis.
Spearman correlation analysis was carried out to illustrate the correlation within 22 types of immune
cells and the association between hub genes and infiltrated immune cells. A bar graph was used to show
the distribution of 22 types of immune cell infiltrations in each sample via the Sangerbox web tool. The
related heatmap was further applied to visualize the correlation of 22 immune cell infiltrations using a
corrplot package. Finally, the correlation between hub genes and infiltrated immune cells was visualized
using ggplot2 package. P < 0.05 was considered significant.

Connective Map database (CMAP) drug database analyses
The top 150 up-regulated and 150 down-regulated DEGs were uploaded to the CMAP
(http://www.broadinstitute.org/cmap/) to investigate the potential small-molecule agents for treatment
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of COPD.

PANoptosis-related hub genes all regulatory target gene
sets analyses
To predict the regulatory target gene of identified hub genes based on the gene expression profile of
patients with COPD, we applied gene set enrichment analysis (GSEA) in the Sangerbox
(http://www.theSangerbox.com/home.html), and the c3.all.v7.4.symbols.gmt gene set was downloaded
from the Molecular Signatures database, with the threshold set at P < 0.05.

Comparative Toxicomics Database (CTD) analyses
The inference scores of PYCARD in a total of 17 types of respiratory tract diseases were analyzed by
CTD database (http://ctdbase.org/).

Animal models and experimental procedures
All animal care and experimental protocols were approved by the Animal Experimental Ethical
Committee of Kunming Medical University, and all animals received humane care in compliance with the
National Institutes of Health guidelines.

The COPD mice model was induced by CS exposure and LPS administration. Briefly, 6-8-week-old male
C57BL/6 mice were kept in specific pathogen-free facilities with free access to food and water for 1
week before experiments. After 1 week acclimation period, mice were given 5 µg of LPS by intratracheal
instillation under isoflurane anesthesia (Escherichia coli O55:B5, Sigma Aldrich, USA) on week 1. Mice
were placed in an oral and nasal exposure system (Beijing Huironghe Technology, China) and exposed to
CS (1 cigarettes/1 mouse, once/day, 6 days/week) from 1 to 16 weeks except for the day with LPS
administration. The cigarette suction parameters included the following: suction time of 2 s, time interval
of 2 s, suction frequency of 10 s, and suction flow of 35 ml. Cigarettes (Hongqi Canal® Filter tip
cigarette, smoke of each cigarette containing 11 mg tar, 0.7 mg nicotine, and 13 mg carbon monoxide)
were obtained from Henan Tobacco Industry (Zhengzhou, China). The relevant parameters of exposure
were as follows: dilution flow of 10 L/min, air extraction flow of 13 L/min, oxygen concentration of 20 ± 
0.5%, and air humidity of 60 ± 5%.

Pulmonary Function Examination
Pulmonary function in conscious mice was measured biweekly by whole-body plethysmography (EMKA
Technologies, Canada). The respiratory parameters obtained using this technique include Expiratory time
(Te), inspiratory time (Ti), relaxation time (RT), expiratory flow at 50% tidal volume (EF50), peak expiratory
flow (PEF), peak inspiratory flow (PIF), maximum minute ventilation (MV), expiratory volume (EV).

Invasive lung function was assessed with a FlexiVent system (SCIREQ, Montreal, Canada). A plastic
cannula was inserted into mouse tracheas and connected to the FlexiVent system. Vecuronium bromide
(6 mg/kg) was injected intraperitoneally to maintain muscle relaxation. Then, mechanical ventilation was
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initiated to measure Newtonian resistance (Rn), respiratory resistance (Rrs), compliance respiratory
system (Crs), static compliance (Cst), forced expiratory volume in 0.1 s (FEV0.1), forced expiratory
volume in 0.2 s (FEV0.2), forced expiratory volume in 0.05 s (FEV0.05), forced vital capacity (FVC), forced
expiratory volume in 0.1 s/forced vital capacity (FEV0.1/FVC), forced expiratory volume in 0.2 s/forced
vital capacity (FEV0.2/FVC), and forced expiratory volume in 0.05 s/forced vital capacity (FEV0.05/FVC).
The data obtained were analyzed using the FlexiVent software (SCIREQ, Montreal, Canada).

Hematoxylin-eosin (H&E) and Masson staining
Lung tissues of the mice were fixed using 4% paraformaldehyde and embedded in paraffin followed by
sectioning into 5 µm sections, and the sections were placed on glass slides, deparaffinized, and
subjected to hematoxylin and eosin (H&E). For analysis of collagen deposition in lung tissues, paraffin
sections were stained with Sirius red and Massons trichrome, and counterstained with Mayers
Hematoxylin. The pathological characteristics of the tissues were evaluated via light microscopy.

Western blot analysis
Lung tissues from each mouse were homogenized in lysis buffer (RIPA: Cocktail: PMSF: Phosstop = 
0.657: 0.143: 0.1: 0.1) to extract total protein. Lung proteins (30 µg) were loaded onto 10% SDS-PAGE
and transferred to PVDF membranes (Millipore Corporation, Billerica, MA). The membranes were blocked
for 1 h with TBST supplemented with 5% non-fat dry milk at room temperature, and then incubated
overnight at 4°C with anti-PYCARD (Cell Signalling Technology, MA, USA), or anti-β-actin (Cat. #93473,
Cell Signalling Technology, MA, USA). The membranes were washed thrice with TBST and then incubated
for 2 h at room temperature with a horseradish peroxidase-conjugated secondary antibody. The
membranes were again washed thrice with TBST and then developed using an enhanced
chemiluminescent detection kit (Cat.WBKLS0500, Millipore Corporation, Billerica, MA). The density of the
protein bands in the membrane was quantified by Scion Image 4.0.2 (Informer Technologies, USA).

Statistical analysis
All Data were displayed as mean ± SEM. The Student’s t-test was used for comparison between two
groups and Student-Newman-Keuls was selected for analyses. One-way ANOVA was employed for
comparison between multiple groups, lung function and body weight between control group and COPD
mice in different time points were compared using the Two-way analysis of variance (ANOVA), and then
Turkey test was selected for analyses, P < 0.05 was considered significant. All the statistical analyses
were conducted using GraphPad Prism 8.0 software.

Results

Identifying PANoptosis-associated DEGs in COPD
We first screened 5 blood and 5 lung datasets for DEGs from GEO database with the R package limma
(Fig. 1). Next, we acquired a merged expression profile after removing the batch effect of COPD from 5
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blood/5 lung datasets (Fig S1). We then obtained 96 PANoptosis-related genes from the overlapping
genes in apoptosis, necroptosis, and pyroptosis. These genes were downloaded from the public
GeneCards database (Fig. 2A). We narrowed the list and identified 71 PANoptosis-related genes of COPD
presented in all 3 groups (Fig. 2B). The expression levels of these 71 overlapping PANoptosis-related
genes in COPD and normal samples were presented as a Volcano plot (Fig. 2C).

Functional enrichment analysis of 71 PANoptosis-related
genes in COPD
To explore the biological functions and signal transduction pathways of the 71 candidate PANoptosis
genes, we performed GO and KEGG enrichment analysis (Fig. 3A). Subsequently, GO enrichment analysis
illustrated these PANoptosis genes were primarily associated with different significant BP (Fig. 3B), CC
(Fig. 3C), and MF (Fig. 3D), respectively. These top 20 GO terms in BP, CC, and MF were shown in Fig. 3E,
mainly including regulation of cell death, cellular response to chemical stimulus, response to chemical,
positive regulation of protein metabolic process, regulation of cytokine production, immune system
process, and oxygen-containing compound. The pathway enrichment analysis revealed that PANoptosis
genes were mainly enriched in COPD and associated with NOD-like receptor signaling pathway,
necroptosis, apoptosis-multiple species, TNF signaling pathway, IL-17 signaling pathway, Toll-like
receptor signaling pathway, cytosolic DNA-sensing pathway, NF-κB signaling pathway, p53 signaling
pathway, C-type lectin receptor signaling pathway, MAPK signaling pathway, T cell receptor signaling
pathway, Th17 cell differentiation, Ubiquitin mediated proteolysis, B cell receptor signaling pathway, Th1
and Th2 cell differentiation, and ferroptosis (Fig. 3F).

Constructing the network of optimized PANoptosis-related
DEGs in COPD
According to the expression profile from the COPD dataset, we observed that there were 25 significant
PANoptosis-related DEGs in COPD, including BAX, HMGB1, MAPK14, CASP1, NLRP3, CASP6, GJA1,
IKBKE, RIPK1, CDK1, SQSTM1, RIPK3, ZBP1, TRAF3, MLKL, PKM, TRIM24, BECN1, BNIP3, DDX3X

PYCARD, MYD88, TP63, AIM2, UBE2D3. Among the 25 optimized PANoptosis DEGs, BAX, MAPK14,
CASP1, NLRP3, IKBKE, RIPK1, SQSTM1, RIPK3, ZBP1, TRAF3, MLKL, PKM, BECN1, PYCARD, MYD88,
TP63, AIM2, and UBE2D3 were highly expressed in COPD versus normal samples. By contrast, the other
7 DEGs had lower expression in tumors than in normal tissue (Fig. 4A-B). The PPI network constructed
and screened 15 optimized candidates (Fig. 4C).

Screening the relative module genes in COPD
WGCNA was applied to screen the relative modules in the external validation set (GSE76925), and a
threshold power of β = 3 was systematically selected to construct the scale-free network, while R2 cut at
0.86 (Fig. 5A-B). WGCNA identified 13 modules, where tan and blue modules (module trait correlation = 
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0.24 and 0.18) had a strong positive correlation with COPD, while turquoise modules (-0.18) were
negatively connected to COPD (Fig. 5C-D). As shown in the scatter plot (Fig. 5E-G), all significant
members in the 3 key modules with COPD genes were cor = 0.32, P = 7.0e-30, cor = 0.54, P = 5.7e-8, cor =-
0.71, P = 0.0e-0, respectively.

Prognosis analysis of optimized PANoptosis-related genes
in COPD
In addition, we verified candidate diagnostic biomarkers utilizing LASSO logistic regression algorithm to
identify COPD-related feature variables of the 15 optimized DEGs (Fig. 6A-B). The diagnostic validity of
the PANoptosis genes was validated by AUC of risk score (Fig. 6C). To explore the relationship of the
candidate PANoptosis DEGs with patient prognosis, we used multivariate Cox regression analysis to
identify 6 prognostic PANoptosis DEGs (MAPK14, BAX, CASP1, TP63, PYCARD, DDX3X) associated with
COPD (Fig. 6D).

Validating hub PANoptosis-related genes in COPD
Furthermore, ROC curve was visualized and illustrated the diagnostic validity of 6 diagnostic markers.
ROC analysis of the genes was performed based on the merged COPD dataset (Fig. 7A). The 6
diagnostic markers had an AUC (> 0.50), and their expression was visualized by a volcano diagram in the
merged expression profile (Fig. 7B). Moreover, we analyzed and estimated the level of the 6 diagnostic
markers in COPD patients and normal samples. As shown in Fig. 7C, MAPK14, BAX, CASP1, and
PYCARD, had outstanding P-values (< 0.05).

Determining if the target PYCARD in COPD
The intersection of 4 optimized PANoptosis-related genes (MAPK14, BAX, CASP1, and PYCARD) and 3
related modules (tan, blue, turquoise) of significant genes are presented in Venn diagram. The 4
overlapped PANoptosis-related genes were identified for further analysis, including MAPK14, BAX,
CASP1, and PYCARD (Fig. 8A). Moreover, the degrees of correlations of the 4 candidates' PANoptosis
genes and COPD with normal patients were shown by a scatter plot. However, only PYCARD had a
significant P-value (2.3e-25) (Fig. 8B-E), of which the expression level was dramatically up-regulated in
COPD compared with that of the normal group (Fig. 8F).

Difference analysis and enrichment analysis of PYCARD
grouping
The merged expression profile of 5 blood/lung COPD datasets, after removal of batch effect, was divided
into a low-expression group and a high-expression group according to the median value of PYCARD, with
P < 0.05 and |log2FC| >0.99. 2325 significant low-expressed genes and 3460 high-expressed genes were
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collected (Fig. 9A). The heatmap only showed the top 20 low- and high-DEGs in |logFC| order,
respectively (Fig. 9B).

Subsequently, we studied the functional effects of different PYCARD expressions based on GO and
KEGG enrichment analysis. The top 20 types of GO analysis primarily contained protein modification
process, cellular response to chemical stimulus, leukocyte activation, positive regulation of metabolic
process, regulation of response to stimulus, immune system process, phosphorylation, cell surface
receptor signaling pathway, cell death, neutrophil activation, granulocyte activation, T cell activation,
ubiquitin-like protein ligase binding. These enrichments clearly show that the expression of PYCARD was
closely related to cell death, immune system process, and protein modification (Fig. 9C). KEGG pathway,
which displayed Metabolic pathway, TNF signaling pathway, Lysosome, Chemokine signaling pathway,
p53 signaling pathway, C-type lectin receptor signaling pathway, MAPK signaling pathway, T cell receptor
signaling pathway, FoxO signaling pathway, NF-κB signaling pathway, Th17 cell differentiation,
Phospholipase D signaling pathway, Ferroptosis, NOD-like receptor signaling pathway, was mainly related
to PYCARD grouping in COPD. These pathways were also mostly related to inflammation, oxidative
stress, ferroptosis, and T cell receptor signaling pathway (Fig. 9D).

Analyzing the correlation between PYCARD and immune-
infiltrated cells in COPD
CIBERSORT algorithm was used to confirm the correlation between PYCARD expression and immune
cells, and we first analyzed the proportion of 22 types of immune cells in COPD samples (Fig S2A). The
correlation of 22 types of infiltrated immune cells was constructed with a correlation heatmap (Fig S2B).
9 types of significantly different infiltration immune cells in patients with COPD and controls were
visualized (Fig. 10A). B cells naive, T cells CD8, T cells CD4 memory activated, and Mast cells activated
were negatively connected to COPD, but T cells CD4 naive, Dendritic cells resting, Macrophages M0,
Mast cells activated, and Eosinophils had a positive correlation with COPD. The correlation analysis
between PYCARD and infiltrated immune cells illustrated that a total of 17 kinds of immune cells had
significant correlations with PYCARD (Fig. 10B). We also analyzed the relationship between PYCARD and
3 types of primary immune infiltration cells that were consistent with the COPD, including T cells CD4
memory activated (r = -0.16, P = 7.4e-5), Dendritic cells resting (r = 0.23, P = 1.2e-8), and Macrophages
M0 (r = 0.27, P = 2.3e-11) (Fig. 10C).

The effect of PYCARD on respiratory tract diseases
The correlation between PYCARD and a total of 17 types of respiratory tract diseases under chemical or
environmental exposure was displayed by a comparative toxicogenomics database (CTD). The
respiratory tract diseases contain lung diseases, respiratory tract diseases, lung diseases (interstitial and
obstructive), respiratory tract infections, bronchial diseases, respiration disorders, pneumonia,
respiratory distress syndrome, acute lung injury, respiratory insufficiency, idiopathic pulmonary fibrosis,
pleural disease, bronchial hyperreactivity, pulmonary edema, pulmonary disease, and COPD. The
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inference score of PYCARD in lung diseases was the highest, and also high in COPD (Fig. 11). The results
implied that PYCARD might be a potential treatment target for multiple lung diseases.

The analysis of the potential drugs for COPD
Based on the target PYCARD in COPD, we further investigated the potential drugs and targeting
pathways using the CMAP database. The top 50 key mechanisms of treating COPD and relevant drugs
were analyzed by normal connectivity scores. The mechanism of Tublin inhibitor, Topoisomerase
inhibitor, DNA inhibitor Aurora kinase inhibitor, and Histamine receptor inhibitor was dramatically
enriched by targeting related genes (Fig. 12). These findings could provide new ideas for the treatment of
COPD.

Predicting potential target genes for PYCARD in COPD
PYCRD might play a critical role in inflammation and immune process in COPD. The potentially key target
genes of PYCARD were therefore evaluated based on the merged expression profile of COPD (Fig. 13A).
The top 5 positive and negative target genes of PYCARD were found by GSEA analysis. These findings
implied PYCARD might regulate COPD by increasing the expression levels of ADNP, CDH4, MCM2, PU1,
and DPPA3 (Fig. 13B), whereas decreasing those of CEBP_C, CDPCR3, OCT1, EVI1, and HFH3 (Fig. 13C).

PYCARD was up-regulated in CS/LPS-induced COPD mice
We observed that the key gene of PANoptosis-PYCARD dramatically increased in COPD patients
(Fig. 7C). To further increase our confidence in the findings, the expression of PYCARD was further
validated in the CS/LPS-induced COPD mice model. The lung function in conscious mice was detected
every two weeks, Te, Ti, and RT increased while EF50, PEF, PTF, MV, and EV decreased in model mice
from 6 to 16 weeks, compared with the control group (Fig. 14A). Meanwhile, invasive lung function
showed that CS exposure decreased the lung function ventilation parameter Crs, Cst, fFEV0.1, FEV0.2,
FEV0.05, FVC, FEV0.1/FVC, FEV0.2/FVC, and FEV0.05/FVC and increased the resistance parameters Rn
and Rrs in COPD mice (Fig. 14B). In addition, lung sections from COPD model mice slightly increased the
number of inflammatory cells, alveolar wall thickening, and mucus-producing (Fig. 14C). As shown in
Fig. 14A, The lung tissue of control group mice exhibited only little collagen fiber deposition around
vessels and bronchioles. However, extensive collagen was readily observed in lung tissue of CS group
mice compared with the control group, which confirmed CS-induced fibrosis in lung tissue. Furthermore,
compared with the control group, the body weight was significantly decreased in model mice (Fig. 14D).
The results indicated that CS exposure decreased lung function and aggravated the pathological
changes in model mice.

Lastly, we found that the expression of PANoptosis-related proteins including Caspase3, NLRP3, and p-
MLKL was significantly increased in lung tissue of COPD mice (Fig. 15A). Meanwhile, the protein
expression of PYCARD was markedly higher in lung tissues from CS/LPS-treated mice than the control
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mice (Fig. 15B). These results suggest that PYCARD acts at least partly via PANoptosis, and may
contribute to the inflammatory responses of COPD.

Discussion
COPD is one of the leading causes of death nationally and even worldwide[29–30]. A prolonged time
constant for lung emptying leads to airflow limitation in COPD, which is caused by the increased
compliance of the lung as a result of emphysematous destruction and the elevated resistance of small
conducting airways[31–32]. These lesions are associated with the host's lifetime response to inhalation
of toxic gases and/or particles, as well as result in a chronic innate and adaptive inflammatory immune
response[33–35]. PANoptosis is a newly programmed cell death modality that enables crosstalk and
coordination among pyroptosis, apoptosis, and necroptosis pathways, which is strongly associated with
immune inflammation[36]. However, the roles of PANoptosis-related genes (PRGs) in the development
and immune landscape of COPD remain widely unclear. Thus, using previously published data, we
explored the effect of PANoptosis-related genes in immune infiltration and its underlying mechanisms in
COPD. Above all, the overall regulation of PANoptosis in COPD was elucidated.

In the present study, we identified 71 PANoptosis-related genes after integrating the lung-related DEGs
with blood-related DEGs in COPD datasets, based on the previously obtained 96 PANoptosis-related
genes. Subsequently, function enrichment analysis showed that most biological processes were
enriched in programmed cell death, cytokine production, immune system process, response to chemical
stimulus, and the most enrichment pathways were involved in TNF signaling pathway, Toll-like receptor
signaling pathway, B cell receptor, and T cell receptor signaling pathway. These processes and pathways
were widely involved in the development of COPD[37–39]. These results also indicated that PANoptosis-
related genes were the key regulator of inflammatory and immune responses. Next, we evaluated the
diagnostic value of PANoptosis-related genes in COPD through LASSO-COX regression and ROC curves
analysis, which displayed a dramatic increase in the expression of BAX, MAPK14, CASP1, and PYCARD in
COPD patients. It was also validated that these PANoptosis-related genes were the key module members
by WGCNA analysis. Furthermore, the expression of PYCARD was significantly increased in COPD
patients. These findings illustrated that PYCARD could be a novel and potential biomarker for COPD. The
inflammasome adaptor protein PYCARD (known as ASC) is a potential pyroptosis biomarker engaged in
inflammation and related to immune response[40], which provides new insights into the pathogenesis of
inflammatory diseases[41–42]. In addition, regarding function enrichment analysis, we demonstrated
that PYCARD was mainly related to protein modification process, chemical stimulus, regulation of
response to stimulus, and immune system process. Remarkably, PYCARD was engaged in metabolic
pathways, TNF signaling pathway, and C-type lectin receptor signaling pathway. These results also
illustrated that the PANoptosis-promoting role of PYCARD in COPD might regulate the above biological
processes and signaling pathways.

Immune cells in the innate immune response play a key role in COPD and inflammation[43]. PANoptosis
is also significantly associated with the innate immune[21]. To better grasp the infiltrated immune cells
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of COPD and the correlation with PYCARD, we constructed the immune infiltration analysis and found
that B cells naive, T cells CD8, T cells CD4 naive, T cells CD4 memory activated, macrophages M0,
dendritic cells resting, mast cells activated, and neutrophils were remarkably associated with COPD.
Meanwhile, the immune-related analysis further indicated that PYCARD affected many immune cells. In
particular, we noticed that macrophages M0 and dendritic cells resting with high PYCARD expression, T
cells CD4 memory activated had a negative correlation with the PYCARD level. These findings showed
that most innate immune regulators had a positive association with the PYCARD. Meanwhile, PYCARD
played a critically positive role in COPD, which might be exerted by regulating the above immune cells.

In addition, we uncovered the most enrichment target genes of PYCARD based on GSEA analysis,
including HNF4, CAVIN1, PU.1, DPPA3, and SIRT3. Hepatocyte nuclear factors 4 (HNF4) were involved in
metabolism, cell junctions, differentiation, and proliferation and thus regulate liver and intestinal
inflammatory networks[44–45]. Caveolae-associated protein 1 (CAVIN1) controls lipid distribution and
inflammatory signaling by modulating macrophage number, phenotype and oxidative stress[46–48].
Transcription factorSpi-1/PU.1 plays an important role in the differentiation of immune cells. PU.1
expression increased during granulocyte and macrophage differentiation, while decreased during T
lymphocyte and B lymphocyte differentiation[49]. PU.1 promotes the development of rheumatoid
arthritis by inducing the hyperactivation and inflammatory status of macrophages[50]. DPPA3 (known as
PGC7) modulates promoter demethylation of genes related to development[51]. SIRT3 could function as
a regulator against cardiovascular diseases, aging-related diseases, and liver diseases[52–54]. These
potential target genes indicated a positive relationship with the PYCARD expression. However, further
investigation is still required to verify the specific role of PYCARD in COPD and reveal the potential
mechanisms.

Conclusions
In summary, we applied a comprehensive bioinformatics analysis and a multi-omics approach to
characterize the functional role of PANoptosis genes and their association with the immune landscape in
COPD patient samples. We demonstrated that the occurrence and progression of COPD are closely
related to PANoptosis. We also identified the PANoptosis-related gene PYCARD associated with COPD
inflammation, immune responses, C-type lectin receptor signaling pathway, and metabolic pathway.
Therefore, we suggest that PYCARD could be utilized as a potential diagnostic biomarker and
therapeutic target for COPD.

Declarations
Ethics approval statement

This study was approved by the Medical Ethical Committee of Kunming Medical University. All the
experimental methods were carried out according to the approved guidelines. (Approval
No. kmmn20230944). All experimental procedures involving mice were carried out in strict accordance



Page 15/32

with the recommendations in the Guide for the National Institutes of Health guide for the care and use of
Laboratory animals (NIH Publications No. 8023, revised 1978) 

Acknowledgments

Rui Shi designed and performed experiments, analyzed the data, and wrote the paper.
Renwen Liang and Fang Wang performed partial experiments. Lueli Wang helped to analyze partial data
and revise the manuscript. Wuyi Zidai and Jie Zhang helped to acquire partial data. Luo Min, Xiaohua Du,
and Shibo Sun helped to revise the manuscript. Chuang Xiao and Chaozhong Li reviewed the manuscript.
Xuewu Liang and Alex F Chen helped to revise the manuscript and gave final approval for the version to
be published. Weimin Yang supervised the study, revised it, and reviewed the manuscript. All authors
read and approved the final manuscript. We also thank the GEO and HPA research network for providing
the data analyzed in this article.

 

Acknowledgments

This work was funded by the National Natural Science Foundation of China (No. 81870037, 82160013,
82160007); Science and Technology Program of Yunnan Province (No.202105AF150015,
202102AA310030, 202302AA310026); Kunming Development and Reform Commission (202202); State
Key Laboratory of Drug Research (SKLDR-2023-KF-08); Yunnan Key Laboratory of Pharmacology for
Natural Products (YKLPNP-K2403). In addition, this study was supported in part by the Ministry of
Science and Technology of China (2021YFA0804803), the Major Project of Natural Science Foundation
of Hunan Province (Open Competition) (2021JC0002), and the National Science Foundation of China
(81930012, 82241027). 

No conflict of interest 

No conflict of interest exists in the submission of this manuscript, and the manuscript is approved by all
authors for publication. I would like to declare on behalf of my co-authors that the work depicted was
original research that has not been published previously and is not under consideration for publication
elsewhere, in whole or in part. All the authors listed have approved the manuscript that is enclosed. 

Declaration of Competing Interest

The authors declare no conflicts of interest. 

Data availability statement

The data in the current study are available from the first author upon reasonable request.

References



Page 16/32

1. Pj B, Pg B, Ek S et al (2015) Chronic obstructive pulmonary disease. Nat Rev Dis Primers 1:15076

2. Leading causes of death and disability 2000–2019: A visual summary. Available from:
https://www.who.int/data/stories/leading-causes-of-death-and-disability-2000-2019-a-visual-
summary

3. Top 10 causes of death in China for both sexes aged all ages (2019) Available from:
https://www.who.int/data/gho/data/themes/mortality-and-global-health-estimates/ghe-leading-
causes-of-death

4. Ia Y, Cr J, Ss S (2022) Chronic obstructive pulmonary disease in never-smokers: risk factors,
pathogenesis, and implications for prevention and treatment. Lancet Respir Med 10(5):497–511

5. Ek S (2020) Genetics of COPD. Annu Rev Physiol 82:413–431

6. Z Y, B C (2022) Multi-omics analyses of airway host-microbe interactions in chronic obstructive
pulmonary disease identify potential therapeutic interventions. Nat Microbiol 7(9):1361–1375

7. Jl S, Jh R, C G et al (2021) The aging lung: Physiology, disease, and immunity. Cell 184(8):1990–
2019

8. C B, N G. Airway inflammation in COPD: progress to precision medicine. Eur Respir J. (2019) ;54(2)

9. Kf B, Sd S, Sf R et al (2019) Functional effects of the microbiota in chronic respiratory disease.
Lancet Respir Med 7(10):907–920

10. Sv C, Df R (2003) Impaired inhibition by dexamethasone of cytokine release by alveolar
macrophages from patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med
167(1):24–31

11. Pj B (2019) Inflammatory endotypes in COPD. Allergy 74(7):1249–1256

12. Ts K (2023) Systemic alterations in neutrophils and their precursors in early-stage chronic
obstructive pulmonary disease. Cell Rep 42(6):112525

13. Y WL (2023) Airway dysbiosis accelerates lung function decline in chronic obstructive pulmonary
disease. Cell Host Microbe 31(6):1054–1070

14. Y P (2022) Combining single-cell RNA sequencing of peripheral blood mononuclear cells and
exosomal transcriptome to reveal the cellular and genetic profiles in COPD. Respir Res 23(1):260

15. Tm GGG (2022) The arginine methyltransferase PRMT7 promotes extravasation of monocytes
resulting in tissue injury in COPD. Nat Commun 13(1):1303

16. Van Eeckhoutte ZL (2021) Necroptosis signaling promotes inflammation, airway remodeling, and
emphysema in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 204(6):667–681

17. D ET SF (2023) Immunity against Moraxella catarrhalis requires guanylate-binding proteins and
caspase-11-NLRP3 inflammasomes. Embo J 42(6):e112558

18. D W, B C, S B, et al. Screening and identification of tissue-infiltrating immune cells and genes for
patients with emphysema phenotype of COPD. Front Immunol. (2022) ;13:967357

19. K M, R K, K G. Eosinophils in COPD-current concepts and clinical implications. J Allergy Clin
Immunol Pract. (2020) ;8(8):2565–2574



Page 17/32

20. Jm JPJS (2005) Blunted gamma delta T-lymphocyte response in chronic obstructive pulmonary
disease. Eur Respir J 25(3):441–446

21. S L, R K, Y W, et al. AIM2 forms a complex with pyrin and ZBP1 to drive PANoptosis and host
defence. Nature. (2021) ;597(7876):415–419

22. N BS (2023) NLRP12-PANoptosome activates PANoptosis and pathology in response to heme and
PAMPs. Cell 186(13):2783–2801

23. Re SC, Td T (2022) Programming inflammatory cell death for therapy. Pharmacol Ther 232:108010

24. S RK (2022) ZBP1-dependent inflammatory cell death, PANoptosis, and cytokine storm disrupt IFN
therapeutic efficacy during coronavirus infection. Sci Immunol 7(74):eabo6294

25. B RK, Br S (2021) ADAR1 restricts ZBP1-mediated immune response and PANoptosis to promote
tumorigenesis. Cell Rep 37(3):109858

26. Y M, E C, S R, et al. STING agonist diABZI induces PANoptosis and DNA mediated acute respiratory
distress syndrome (ARDS). Cell Death Dis. (2022) ;13(3):269

27. Xt JT, Z L (2023) Ferroptosis inhibitor liproxstatin-1 alleviates metabolic dysfunction-associated
fatty liver disease in mice: potential involvement of PANoptosis. Acta Pharmacol Sin 44(5):1014–
1028

28. M Z, R K, P V, et al. Caspase-6 is a key regulator of innate immunity, inflammasome activation, and
host defense. Cell. (2020) ;181(3):674–687

29. D A, P S, Y Z, et al. Global, regional, and national prevalence of, and risk factors for, chronic
obstructive pulmonary disease (COPD) in 2019: a systematic review and modelling analysis. Lancet
Respir Med. (2022) ;10(5):447–458

30. GBD Chronic Respiratory Disease Collaborators (2020) Prevalence and attributable health burden of
chronic respiratory diseases, 1990–2017: a systematic analysis for the Global Burden of Disease
Study 2017. Lancet Respir Med 8(6):585–596

31. Fj M, Br AA (2022) Treatment trials in young patients with chronic obstructive pulmonary disease
and pre-chronic obstructive pulmonary disease patients: Time to move forward. Am J Respir Crit
Care Med 205(3):275–287

32. Em D, Bm E (2021) Mucus plugs and emphysema in the pathophysiology of airflow obstruction and
hypoxemia in smokers. Am J Respir Crit Care Med 203(8):957–968

33. S W, L O, S D, et al. Multi-omics links IL-6 trans-signalling with neutrophil extracellular trap formation
and Haemophilus infection in COPD. Eur Respir J. (2021) ;58(4)

34. Js Z, Zy L, Xc X et al (2020) Cigarette smoke-initiated autoimmunity facilitates sensitisation to
elastin-induced COPD-like pathologies in mice. Eur Respir J. ;56(3)

35. G C, P C, A B, et al. COPD Immunopathol Semin Immunopathol. (2016) ;38(4):497–515

36. D Y, Y X (2022) Anti-PANoptosis is involved in neuroprotective effects of melatonin in acute ocular
hypertension model. J Pineal Res 73(4):e12828



Page 18/32

37. K JA (2019) PRKN-regulated mitophagy and cellular senescence during COPD pathogenesis.
Autophagy 15(3):510–526

38. M SM, Li JK (2022) A, Plasma proteins elevated in severe asthma despite oral steroid use and
unrelated to Type-2 inflammation. Eur Respir J. ;59(2)

39. Pathview. Available from: https://pathview.uncc.edu/guest

40. Jq S, X T, Wh X et al (2022) The inflammasomes adaptor protein PYCARD is a potential pyroptosis
biomarker related to immune response and prognosis in clear cell renal cell carcinoma. Cancers.
;14(20)

41. C V, Bs SK (2017) Microglia-derived ASC specks cross-seed amyloid-β in Alzheimer's disease.
Nature 552(7685):355–361

42. Kj PDHK (2010) NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol
crystals. Nature 464(7293):1357–1361

43. U R (2020) Distribution of ACE2, CD147, CD26, and other SARS-CoV-2 associated molecules in
tissues and immune cells in health and in asthma, COPD, obesity, hypertension, and COVID-19 risk
factors. Allergy 75(11):2829–2845

44. Jp B (2014) Hepatocyte nuclear factor 4-alpha involvement in liver and intestinal inflammatory
networks. World J Gastroenterol 20(1):22–30

45. V D, B S, P L, et al. Control of cell identity by the nuclear receptor HNF4 in organ pathophysiology.
Cells. (2020) ;9(10)

46. Jy L, Wn B, Ak M et al (2020) Stromal CAVIN1 controls prostate cancer microenvironment and
metastasis by modulating lipid distribution and inflammatory signaling. Mol Cancer Res
18(9):1414–1426

47. W H (2022) Cavin-1 promotes M2 macrophages/microglia polarization via SOCS3. Inflamm Res
71(4):397–407

48. Yw YW, Da L (2023) Caveolae sense oxidative stress through membrane lipid peroxidation and
cytosolic release of CAVIN1 to regulate NRF2. Dev Cell 58(5):376–397

49. G L, W H, W H. Transcription factor PU.1 and immune cell differentiation (Review). Int J Mol Med.
(2020) ;46(6):1943–1950

50. W JT (2023) PU.1 promotes development of rheumatoid arthritis via repressing FLT3 in
macrophages and fibroblast-like synoviocytes. Ann Rheum Dis 82(2):198–211

51. Q Y (2021) PGC7 promotes tumor oncogenic dedifferentiation through remodeling DNA methylation
pattern for key developmental transcription factors. Cell Death Differ 28(6):1955–1970

52. T Z (2020) SIRT3 promotes lipophagy and chaperon-mediated autophagy to protect hepatocytes
against lipotoxicity. Cell Death Differ 27(1):329–344

53. Y G, X J, Y C, et al. Sirt3-mediated mitophagy regulates AGEs-induced BMSCs senescence and senile
osteoporosis. Redox Biol. (2021) ;41:101915



Page 19/32

54. M PG (2022) Salt-Induced Hepatic Inflammatory Memory Contributes to Cardiovascular Damage
Through Epigenetic Modulation of SIRT3. Circulation 145(5):375–391

Figures

Figure 1



Page 20/32

Flowchart of the research.

Figure 2

Identification of PANoptosis genes in COPD. A. Venn diagram showing the intersection of Apoptosis
genes, necroptosis genes, and pyroptosis genes. The overlapping genes were identified as PANoptosis
genes. B. Venn diagram showing the PANoptosis genes in COPD by intersecting of 96 PANoptosis genes,
DEGs in 5 lung and 5 blood datasets of COPD. C. Volcano plots of 71 PANoptosis genes in the merged
COPD dataset after removing batch effect with P < 0.05 and |log2 fold change (FC)| > 0.99. Up-regulated
genes are labeled in red, and down-regulated genes are marked in blue.



Page 21/32

Figure 3

Functions and pathways analysis in 71 PANoptosis genes of COPD. A. GO (containing subsections of
biological processes, cellular component, and molecular functions) and KEGG significant terms
explained by bubble plot. Bubble plot of each term combined with logFC. The absolute value of the Z-
score indicates the probability of regulation, the Z-score greater than zero represents positive regulation,
and the Z-score less than zero represents negative regulation. and the size of the dot indicates the
number of gene counts. B-D. Donut plot represents the top 10 BP, CC, and MF in GO enrichment,
respectively. Donut plot of significant terms combined with logFC. Each column of the inner and outer
circle corresponds to one term. color indicates logFC value in the outer circle. In the outer circle, the
height of column represents adjusted P value, and the filled color represents Z-score of each term. E. Top
20 BP, CC, and MF in GO enrichment using a lollipop diagram. F. Top 20 KEGG enrichment among these
genes using loop diagram.
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Figure 4

Exploring the 25 significant PANoptosis genes in COPD. A. The 25 significant DEGs identified among 71
PANoptosis genes in COPD were displayed in a volcano plot. Up-regulated genes are marked with red,
and down-regulated genes are marked with green. B. Heatmap of the 25 significant DEGs. C. PPI network
constructed via Cytoscape. Colors represent BC values from high (purple) to low (green). D. 15 hub
clustering module based on BC values obtained from Cytoscape plug-in Cytohubba. Colors represent BC
values from high (red) to low (yellow).
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Figure 5

Validation of PANoptosis genes in COPD by WGCNA analysis. A-B.Determination of soft-thresholding
power (β)in WGCNA. A. Analyzing scale-free fit index with β. B. Analyzing the mean connectivity with β.
C. Clustering dendrogram shows module assignment based on β. D. The relationship between module
features (MEs) and clinical traits using heatmap. Each row reflects an ME, and every column reflects the
control or COPD group. E-G. The scatter plot indicates the significant genes in the blue module, tan
module, and turquoise module.
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Figure 6

Construction and validation of risk signatures by LASSO-COX logistic regression algorithm. A-B. In the
LASSO model, ten-fold cross-validation and optimal parameter (lambda)for hub gene coefficients. C.
LASSO-COX logistic regression algorithm model was validated by risk score ROC curve. D. The optimized
diagnostic markers were identified by survival analysis using COX method.
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Figure 7

The screen of hub PANoptosis genes in COPD. A. Validation of BAX, MAPK14, CASP1, DDX3X, PYCARD,
and TP63 by ROC curves in the merged COPD dataset which contained 5blood/lung datasets. B. Volcano
diagram illustrates the expression of 6 genes in the merged COPD dataset. C. The expression of 6 hub
PANoptosis genes COPD patients compared with normal samples.
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Figure 8

Identifying and validating PYCARD as a potential target for COPD. A. Venn diagram shows intersected 4
hub PANoptosis genes (BAX, MAPK14, CASP1, PYCARD) in COPD and the significant genes in blue
module, tan module, and turquoise module. B-E. Scatter plot demonstrates the correlations of BAX,
MAPK14, CASP1, PYCARD, and COPD patients with control samples. F. The expression of PYCARD is
illustrated by a volcano plot. Upregulated genes and downregulated genes are shown in red (log2 (FC) > 
0.99) and green, respectively (log2 (FC) < -0.99), P < 0.05.
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Figure 9

Differential and functional enrichment analysis of PYCARD grouping. A. Volcano graph is the differential
analysis of PYCARD high and low expression groups in the merged COPD dataset. Red dots indicate the
PYCARD high expression group and blue dots indicate the PYCARD low expression group. B. Heatmap
demonstrates differential analysis for PYCARD expression. Red represents high expression, and blue
represents low expression. C-D. GO and KEGG analysis for DEGs. C. Bargraph for DEGs in top 20 GO
terms analysis. Each column corresponds to a term. the higher the column, the smaller P. Green column
indicates BP, blue column indicates CC, yellow column indicates MF. The outer circle is the molecule in
the entry, and the different heights represent the corresponding logFC value. D. Top 20 KEGG pathways
among DEGs using loop diagram.
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Figure 10

Immune cell infiltration and correlational analysis. A Voilin plot displays the proportion of 22 types of
immune cells in the combined sepsis dataset. Pink is COPD samples, and yellow is normal samples. The
significance infiltrated immune cells are shown as: -, P > 0.05; *, P < 0.05; **, P < 0.01; ***, P<0.001. B The
lollipop graph of the correlation of PYCARD and infiltrated immune cells. The color of dots represents P-
value, blue indicates a smaller P-value, and red indicates a higher P-value. A larger dot is a higher
correlation. The left of the diagram labels a negative correlation, and the right part labels a positive
correlation. C. Scatter plot of the correlation between PYCARD and 3-type differential immune infiltration
cells.
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Figure 11

The analysis of correlations between PYCARD and respiratory tract diseases using the comparative
toxicomics database.

Figure 12

Identification of the molecular compounds with their mode of action in CMAP database.
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Figure 13

Screening and predicting the target genes of PYCARD. A.Target genes with up-regulated, and down-
regulated by GSEA analysis. B. Top 5 positively related target genes of PYCARD. C. Top 5 negatively
related target genes of PYCARD.
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Figure 14

Pulmonary function and pathological damage of lung tissue in COPD model mice. A. Pulmonary function
in conscious mice exposed to cigarette smoke from 0-16 weeks. Expiratory time (Te), inspiratory time
(Ti), relaxation time (RT), expiratory flow at 50% tidal volume (EF50), peak expiratory flow (PEF), peak
inspiratory flow (PIF), maximum minute ventilation (MV), expiratory volume (EV), n = 6-7. B. Invasive lung
function in control group and COPD mice was measured at 16 weeks. Newtonian resistance (Rn),
respiratory resistance (Rrs), compliance respiratory system (Crs), static ompliance (Cst), forced
expiratory volume in 0.1 s (FEV0.1), forced expiratory volume in 0.2 s (FEV0.2), forced expiratory volume
in 0.05 s (FEV0.05), forced vital capacity (FVC), forced expiratory volume in 0.1 s/forced vital capacity
(FEV0.1/FVC), forced expiratory volume in 0.2 s/forced vital capacity (FEV0.2/FVC), and forced
expiratory volume in 0.05 s/forced vital capacity (FEV0.05/FVC) in each group, n = 6-7. C. Representative
images of H&E (Upper panel) and Masson (Lower panel) staining in control group and COPD mice
(CS/LPS) lung tissue. Scale bar = 100 μm. D. Body weight in control and COPD model mice, n = 6-7.
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Figure 15

validating the target genes of PYCARD in COPD mice. A. Representative images of immunofluorescence
staining of Caspase3, NLRP3, and p-MLKL (red) in lung tissue (Scale bar = 50 μm), n = 3. B. PYCARD
protein levels in the lung tissues of each group were detected by Western blot, n = 6.
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