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Abstract

Solidity, the language utilized for developing smart contracts, has been gaining

increased importance in blockchain system. Ensuring bug-free of its accompany-

ing language compiler, which converts the contract source codes into executables

finally deployed on the blockchain, is thus of paramount importance. This study

presents DeSCDT, a Deep learning-based Solidity Compiler Differential Testing

approach, to explore possible defects in solidity compiler. At the core lies a well-

behaving deep contract generator following the Transformer architecture and

learnt with diverse contract code. From an initial seed pool of contracts care-

fully picked through semantic encoding and clustering, the generator is capable

of stably producing highly syntactic-valid and functional-rich smart contracts,

with three meticulously formulated generation strategies and a set of mutation

operations. Subsequently, in the meantime of compiling these generated contracts

to trigger compiler crashes, a differential testing environment is setup to explore

misoptimization bugs, by observing the inconsistencies between the outcomes and
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the aspects including gas consumption and opcode size of the optimized and non-

optimized bytecodes. For the experiments, the syntactic validity and diversity of

the contracts generated with DeSCDT, as well as its ability in discovering com-

piler defects, are investigated. The findings indicate that DeSCDT can effectively

generate syntactically correct contracts with a pass rate of 90.8% alongside high

diversity. Among the contracts tested for a 24-hour running of DeSCDT, 37.4%

of them expose inconsistencies across the optimized and non-optimized version

of the same contract. Six bugs that could trigger direct crashing of the compiler

have also detected.

Keywords: Smart Contract, Differential Testing, Solidity Compiler Fuzzing, Contract
Generation, Deep Learning, Bug Detection

1 Introduction

Solidity is an emerging programming language specifically designed to ease the
development of smart contract, pivotal in underpinning the burgeoning blockchain
transactions. To date, approximately 50 million contracts have been deployed on
Ethereum, forming a foundational layer for a myriad of decentralized application
spanning across diverse domains, including cryptocurrency wallets, financial services,
social and games. The source code of a smart contract must be processed with its lan-
guage processor, i.e., the solidity compiler, so as to be deployable and invokable on
the blockchain. Thus, the bug-free or correctness of the compiler itself is of paramount
importance. Failing to do so may make the compiled contract operate inconsistently
as its was designed for, cause catastrophic runtime errors, or even introduce security
vulnerabilities that can be exploited to enforce contract attacks.

Fuzz testing [1] is acknowledged as one of the most highly effective methods for
uncovering potential bugs or defects within both the regular software programs and the
compiler infrastructures. Basically, the fuzzing process involves systematically produc-
ing and feeding inputs into the program under test (PUT) and observing its responses
to identify whether the PUT violates certain correctness policies, such as straightfor-
ward crashes, unexpected or incorrect outputs [2]. While extensive researches have
been conducted on fuzz testing for the more conventional language processors [3], such
as compilers for C and Java, and interpreters for Python and JavaScript, investiga-
tions into fuzz testing for the new and evolving Solidity compiler remain relatively
underexplored.

In fuzzing the solidity compiler, ceaselessly producing syntactically valid test cases,
i.e., smart contracts, without doubt is a critical step [4]. It ensures both the effective
revealing of deep hidden bugs and the maintaining of a valid testing throughput, as
any error in the generated test programs can halt the compiler’s execution and hinder
the tester from probing into the more complex aspects of translation logic. Besides,
the unique gas mechanism [5–7], which necessitates the consumption of gas fees for
either deployment or execution of contracts on the blockchain (to avoid squandering of
computational resources and under-priced DoS attacks due to contract abuse), imposes
special requirements to the compiled outcomes. In response to this peculiarity, the
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solidity compiler offers an optimization module with the purpose to both diminish the
code size (which reduces the deployment gas cost) and optimize the comprising opcodes
(which reduces the gas fees for invoking the contract) of the compiled outcomes. This
brings a different set of bug oracles in fuzz testing the solidity compiler compared with
other conventional compilers.

In addressing the above discussed first point, i.e., the effective generation of

syntactic valid contracts, we establish a reliable deep learning-based contract gen-
erator based on the Transformer architecture, trained with an enormous amount of
varied contract codes sourced from Etherscan. Then, starting from a curated set of ini-
tial seed contracts, which are identified through semantic encoding and clustering, the
learnt generator can consistently produce syntactically valid and functionally diverse
contracts. This is achieved through carefully devised generation strategies, with which
to guide the generator manipulating the seed contracts without breaking the integrity
of their statements. Complementing this, we also integrated fine-grained mutation
methodology, which serves to further augment the variety of the contracts produced.

Pertaining to the second point, i.e., novel bug oracles attributable to the

unique gas mechanism, differential testing is leveraged to unearth potential misop-
timization defects within the Solidity compiler. This process involves the establishment
of a localized Ethereum Virtual Machine (EVM) execution environment, in which the
optimized and non-optimized bytecode versions of contracts compiled from identical
source code are executed. Meanwhile, meticulous recording and comparative analysis
of the metrics, including gas consumption, opcode sizes, and computational outcomes,
are performed. Should there be discrepancies in their computational results, or devi-
ations in gas consumption and opcode sizes that contravene the expected patterns of
the compiler optimizer, then a misoptimization bug has been discovered.

The contributions are summarized as follows:

• We present DeSCDT, a novel deep learning driven differential fuzz testing approach
specifically targeting the emerging Solidity compiler. We distinguish DeSCDT being
the first to pay attention to the misoptimzation defects due to the unique gas
mechanism besides the direct and obvious crash-inducing bugs within the Solidity
compiler.

• To advance the quality of compiler test case generation, a Transformer-based con-
tract generator is learnt. It is adept at producing syntactically valid and diverse
contracts, alongside the light-weight semantic encoding and clustering for seed con-
tract selection, carefully devised generation strategies, fine-grained mutations and
heuristic seed pool update. To the best of our knowledge, we are the first to explore
integrating a deep generative model for fuzz testing the Solidity compiler.

• The experimental evaluations show remarkable capability of DeSCDT in generating
syntactically valid contracts, as evidenced by a 90.8% compilation pass rate on the
most widely used Solidity compiler version. It uncovers a substantial proportion of
discrepancies between optimized and non-optimized versions compiled from identi-
cal contracts, attributable to misoptimization defects within the Solidity compiler.
Six unique bugs that trigger direct crashing of the compiler during the contract
compilation have also detected. The training dataset and source code of DeSCDT
have been made publicly available at https://github.com/Xutp-F/DeSCDT.
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The remainder of this paper is organized as follows. Section 2 outlines some foun-
dational background knowledge and delineates the research motivation; Section 3
presents a high-level overview of DeSCDT as well as the detailed elucidation of the
primary designs; Section 4 is dedicated to an extensive analysis and discussion of the
experimental evaluations; Section 5 discusses related works, and Section 6 concludes
the paper.

2 Preliminaries

2.1 Solidity Smart Contract

Smart contracts are Turing-complete programs living on a blockchain, triggered to exe-
cute business logic as programmed in response to user transactions. Of the prominent
blockchain platforms that support contracts, Ethereum is the first and also the largest
one, wherein the contract bytecodes are executed within a stack-based Ethereum Vir-
tual Machine (EVM). To navigate away from the intricacies of programming on the
low-level EVM opcodes, high-level languages are utilized to facilitate the development.
In this landscape, Solidity distinguishes itself as the predominant contract developing
language on Ethereum.

Due to the immutable nature of blockchain-stored data, once deployed, the con-
tracts become no longer modifiable, presenting challenges when discrepancies between
intended designs or security flaws are later identified. Even when the developers deploy
an updated contract, its old problematic version still persists on the blockchain, unless
a self-destruct function is provided [8]. Consequently, making sure no miscompila-
tion issues are introduced during the contract compilation, i.e., the correctness of the
compiler, becomes critical significant, as a single defect in the compiler affect all the
contracts that it processed. However, Solidity being an emerging programming lan-
guage, it has been undergoing continuous evolution and refinement since its inception,
encompassing both the language and its accompanying compiler solc, to enhance the
efficiency of the generated EVM bytecode as well as to rectify compiler bugs [9].

2.2 Gas Mechanism

Gas is the fuel that powers the Ethereum. Every computational action within
Ethereum, including deploying and executing smart contracts, incurs certain gas
charges. This unique gas mechanism allows Ethereum to compensate those who pro-
vide computational resources (i.e., the miners), and also fortifies itself against abuse by
deterring malicious actors from overwhelming the network with deceitful actions. The
specific gas fee is computed by gas price × gas cost, where gas price fluctuates accord-
ing to the Ethereum market, and the gas cost refers to the amount of gas consumed.
The gas cost of the EVM opcodes varies. Some operations are cheap, some, like ADD,
AND, EQ, and POP, are inexpensive as they are solely stack operations. In contrast,
others, such as SSTORE (for storage updates) and CREATE (for creating a new smart
contract), are costlier. Since gas is effectively tied to monetary value, specifically in
Ether (Ethereum’s native currency), a contract that requires less gas for deployment
or execution while delivering the same functionality is more desirable [5, 6].
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In response to this peculiarity, the Solidity compiler offers an optimization module,
which simplify complicated expressions within the code, to reduce the bytecode size
that lowers the contract deployment gas cost, and refine the comprising opcodes that
decreases the gas fees for contract invocation. The following example taken from the
official document [10] of Solidity illustrates one such simplification operation. It prunes
away the if branch as the condition in line 3 always evaluates to false, producing the
semantically equivalent yet more computational efficient and concise code “data[7]
= 9; return 1;”.

1. uint x = 7;
2. data [7] = 9;
3. if (data[x] != x + 2) // the condition is never true
4. return 2;
5. else
6. return 1;

2.3 Differential Testing

Differential testing [11] is a method used to uncover subtle semantic bugs, which are
less obvious than explicit errors such as crashes or assertion failures. It employs at
least two programs of the same functionality as cross-referencing oracles, to deal with
the situations where standard test oracles are unavailable. By comparing their outputs
across many inputs, differences in the behaviors of these programs when given the
same input are identified as potential bugs.

To identify potential misoptimization defects within the Solidity compiler, we
adopt a variant of the standard differential testing. It regards the non-optimized
and optimized versions of the contracts, compiled from the same source code, as the
cross-referencing oracles. If these two compiled versions exhibit divergence in their
deterministic computational results under the same inputs, or their opcode size and
gas consumption violate Solidity compiler’s design intent, it then suggests the presence
of a misoptimization bug.

The following provides a simplified contract case generated by DeSCDT. It revealed
a misoptimization defect within the Solidity compiler’s optimization process, that
could lead to inconsistent outputs in differential testing. Particularly, the function
“isEqual()” shows divergent outputs of true or false, when executed from its bytecode
versions compiled with the optimization switch on and off, respectively. Examination
of the disassembled opcodes from both compilations revealed that the functions f1 and
f2 were combined into one when the optimization switch is on. This suggests that the
compiler’s optimization module generally focuses on function statements rather than
identifiers, thus leading to an improper merging of functions with distinct names but
behavior-consistent body, in an effort to minimize the opcode size.

1. contract C {
2. function f1() public {}
3. function f2() public {}
4. function isEqual () external returns(bool) {
5. return f1 == f2;
6. }
7. }
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3 Design of DeSCDT

Figure 1 exhibits the overall structure of DeSCDT, encompassing three principal mod-
ules. The offline training module, is charged with the task of cultivating a reliable
generative model on the basis of the Transformer architecture, with a copious corpus
of diverse contract codes collected from the wild after pre-processing. In contract gen-
eration module, the aforementioned trained generator is leveraged to manipulate the
seed contracts, which are carefully picked from the wild with light-weight semantic-
encoding and clustering, under the guidance of the predefined generation strategies, to
steadily yielding syntactically valid contract codes. On this basis, fine-grained muta-
tions are further enforced in this module to augment the diversity of the resulting
contracts. Subsequently, in the compiler differential testing module, the contracts are
compiled with the solc compiler, where failed compilations that trigger compiling
crashes or timeout are directly reported. For the contract cases that successfully pass
through the compilation, they are further fed into a localized EVM for bytecode execu-
tion. Information including gas consumption, opcode sizes, and computational results
between the optimized and non-optimized versions of each contract are observed and
compared, for uncovering the implicit misoptimization defects. By the end of each
fuzzing loop, the interestingness of the newly generated contract is estimated based
on the abnormal behaviors it triggered. The least interesting contract in the seed pool
is then substituted with the newly generated more interesting one, so as to gradually
and heuristically guide later fuzzing loops towards generating contracts that are more
likely to trigger bugs.

Trained Contract 

Generator

Generation 

Strategies

Heuristic 

Mutation

Solc (+/-)

Compilation

Bin (-)

EVM

+: turn on optimizer    -: turn off optimizer

Evalgenerated 

contract
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Compiler 

Bugs

Contract Generation Compiler Differential Testing

Transformer-based 

Generative Model

Wild Contracts 
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Pre-Processing

Contract Generative Model Training
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Fig. 1 The basic workflow of DeSCDT.

3.1 Contract Generative Model

In this section, we present the details of the Transformer-based contract generative
model, including the construction of a large-scale contract corpus and its processing,
as well as the training of the model.

3.1.1 Contract Collecting and Pre-Processing

To ensure the quality of the contract corpus, which is important for training a robust
Transformer model, we collect real-world contracts from Etherscan, the preeminent
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Ethereum explorer, which offers access to a vast array of diverse smart contracts.
Since the contract can only be effectively retrieved from Etherscan on the availability
of their respective deployment addresses, we firstly query the public Ethereum Cryp-
tocurrency database hosted on Google BigQuery to obtain the addresses of all the
unique contracts showing distinct EVM bytecodes. Then, We iteratively query Ether-
scan with the previously obtained addresses for obtaining the corresponding source
code of each contract.

Subsequent to this acquisition phase, we undertake a slight preprocessing of the
raw source code for each contract. This step involves the removal of comments and
the version pragma directive from the code, as well as the consolidation of consecutive
white spaces between code elements into a single space. Simplifying the contracts in
such a way presents enhanced opportunities for the subsequent model to assimilate
and comprehend the syntactic aspects inherent to the Solidity programming language.
Finally, The contracts that show distinct md5hash values calculated on their format-
unified source code, then comprise the dataset for training the model.

3.1.2 Training of the Transformed-based Generation Model

Transformer [12] is the de facto most advanced and widely adopted neural network
architecture, with which diverse models, including the emerging notable large lan-
guage models like ChatGPT and Llama, have been built. Owing to its more rational
network structure and the powerful multi-head self-attention mechanism, it gener-
ally surpasses other neural network structures such as RNNs in capturing long-range
dependencies more effectively. In light of this, we also utilize the Transformer, par-
ticularly its encoder-decoder configuration, to develop a robust model for generating
contracts.

Particularly, we approach the smart contract source code as a sequential array of
characters, denoted as s. By employing a sliding window with a fix span of d characters,
the contract is segmented accordingly. The processing produces a set of input-output
pairs ⟨xi, yi⟩, where xi = s[i : i + d], yi = s[i + d + 1] and 0 ≤ i < len(s) − d, to be
used as the training corpus of the Transformer model.

The specific Transformer architecture we adopted is composed of six layers each
in the encoder and decoder, with a capacity to handle up to 512 tokens in sequence.
90% of the pairs in the corpus are taken as the training samples, while the remaining
10% serve as validation samples. We performed the model training on a Linux server
equipped with two RTX3090 GPUs for 300 epochs employing the Adamw optimizer.
We initiated the learning rate at 1e-3, reducing it by a factor of 10 if there was no
improvement in the validation loss for three consecutive epochs. The model at the
epoch that shows the lowest validation loss is selected as the final Solidity contract
generation model.

3.2 Smart Contract Generation

This section elaborates on the process of generating contracts by jointly leveraging
the trained generative model and fine-grained mutations. The designed generation
strategies and the selection of initial seed contracts are also discussed.

7



3.2.1 Contract Seed Pool Construction

The selection of seed is considered beneficial in boosting the fuzz testing efficacy [1,
13]. Therewith, we perform semantic encoding and clustering on the contract dataset
constructed in Section 3.1.1, to purposely construct an initial contract seed pool.
Compared with the way of randomly picking contract instances as the seeds, this
enables the contract generator have sufficiently diverse seed contracts to manipulate
on.

Specifically, we firstly utilize SmartEmbed [14] to encode each contract in the
dataset into a 128-dimensional numerical vector. The basic idea of SmartEmbed is to
leverage fastText to learn a dictionary of static token embeddings, and sum up the
embeddings of all tokens that make up a contract to achieve its semantic represen-
tation. Following this, we perform clustering on these semantic encodings, grouping
the contracts into clusters such that each cluster only consists of contracts with high
similarity. Algorithm 1 outlines the detailed process of selecting the seed contracts. It
takes in a contract dataset D, a similarity threshold ϵ, and a certain version Solidity
compiler solc, and outputs a contract seed pool P.

In first part of the algorithm, all the contracts are grouped into a collective of
clusters denoted as C, which initially contains just one cluster C = {c0}. For each
contract in the dataset then, we either append it to an existing cluster in C or form
a new cluster with it. During each specific iteration, the semantic encoding of the
contract Di is computed with the SmartEmbed model first. Its similarity with respect
to each cluster cj ∈ C is then assessed with a function designated as avgSim, which
compute an average score between the encoding of Di and all the contracts within
cluster cj , utilizing the Euclidean-based similarity metric adopted in SmartEmbed.
Then, the contract is attributed to the cluster c̃ that exhibits the highest similarity
exceeding the threshold ϵ. In the absence of such a cluster in C, a new cluster that
exclusively contains Di is established and appended to C. Upon the completion of this
iterative clustering process, we pick one contract that can be successfully compiled by
the compiler at random from each cluster, to make up the seed contract pool.

3.2.2 Generation Strategies

Similarly as in DeepFuzz [15], we manipulate the contracts in the seed pool to derive
new contacts. This is achieved by generating new statements with the trained genera-
tive model on prefixing sequences taking from the seed contract, and inserting them or
replacing existing statements with them. However, we restrict the generation locations
to be always within functions, by identifying from the concrete syntax tree (CST) of
the contract all root nodes of its constituent function units and randomly selecting
locations that are within their corresponding dominated sub-trees. The underlying
rationale for this restriction is the recognition that the state variables outside of func-
tions are likely to be used across multiple functions. Therefore, manipulating these
state variables using the generative model has a high probability of rendering the
entire contract syntactically invalid.

Under this premise, the following generation strategies are explored for the current
study, including:
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Algorithm 1 Semantic Clustering based Seed Selection

Input:

1: D: the wild contract dataset
2: ϵ: the similarity threshold with a default value of 0.9
3: solc: a certain version Solidity compiler

Output:

4: P: the pool of seed contracts
5: vec = encode(D0) ▷ encode the contract with SmartEmbed
6: c0 = {⟨D0.addr, vec⟩}, C = {c0}, k
7: for i = 1 to len(D)− 1 do

8: vec = encode(Di)
9: c̃ = argmaxcj∈CavgSim(vec, cj)

10: e = ⟨Di.addr, vec⟩
11: if avgSim(vec, c̃) > ϵ then
12: c̃ = c̃ ∪ e
13: else

14: k+ = 1, ck = {e}, C = C ∪ {ck}
15: end if

16: end for

17: P = {}
18: for each c in C do

19: repeat

20: e = randChoice(c)
21: sc = getContract(D, e.addr)
22: until passCompile(solc, sc)
23: P = P ∪ {sc}
24: return P
25: end for

• STG1: The newly generated code snippet is directly inserted righted after the pre-
fixing sequence. Meanwhile, the rest characters of the original single statement that
the tailing characters of the prefixing sequence resides in is deleted, and the other
statements remain unchanged.

• STG2: Multiple different generation locations are randomly picked from the same
function in the contract. At each selected location, new code snippet is indepen-
dently generated by the trained model, conditioned on the corresponding prefixing
sequence, and then inserted back following STG1.

• STG3: The same number of statements in the original contract that subsequent the
prefixing sequence is substituted with the newly generated code snippet.

3.2.3 Fine-grained Mutation

Build upon the generated contract, DeSCDT further integrates a suite of fine-grained
mutators, to intensify the code distortion for better triggering the corner bugs. Details
of each code mutators, including a concise summarization of the primary code elements
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it operates on, a simple illustrative example, and a brief explanatory note, are listed
in Table 1. While the potential exists for incorporating more sophisticated mutators,
the current selection was made with the intent of minimizing the risk of syntactic
invalidity in the altered code. During the mutation phase, one out of the six types of
mutators is randomly chosen in each iteration to alter the designated code elements.
This process is iterated randomly between one to six times.

Table 1 A brief description of the code mutators adopted

Mutator Mutation Object Illustrative Example Supplemental Description

M1 modify the boundaries within the loops for(uint i = 0; i < 10 ; i++)→for(uint i = 0; i < 10 + a ; i++) a denotes an integer value between 1 and 100

M2 mutate the conditional operators if( a > 1 )→if( a <= 1 )) the available operators used for permutation include: >=, <=, >,<,==, ! =

M3 mutate the arithmetic operators uint a = 1 + b →uint a = 1 ∗ b the available operators used for permutation include:+,−, ∗, /,%, ∗∗

M4 mutate the logical operators c =!a && b → c =!a || b the available operators used for permutation include:&&, ||, !

M5 modify the type of local variables uint a → int16 a use the fewer digits version of the same type for subsitution

M6 modify the control structures while(a < 10){a+ = 1; } → while(a < 10){a+ = 1; break; } insert break or continue into the body of control structures

3.3 Unified Testing Harness

With the newly generated contract, DeSCDT attempts to trigger two main types of
Solidity compiler defects. The much obvious and of immediate interest compiler crashes
or build timeout errors, where a contract case makes the compiler either directly
crash or simply can not finish the compilation within a limited time. The other kind
is the much implicit misoptimization defects, where inconsistent behaviors violating
the compiler designing rules are observed between the optimized and non-optimized
versions of the same contract that pass through the compilation phase. DeSCDT
sets up a unified test harness that accommodate contract compilation and differential
testing for revealing these bugs.

Particularly, in the contract compilation phase, DeSCDT attempts using the com-
piler solc to build two bytecode versions of the input contract, with the optimization
parameter switching on and off, respectively. If either of these two compilations ends
with reporting “InternalCompilerError” that crashes solc, or exceeds the limited
compilation time, then a compiler defect have been detected. For simplicity, this kind
of bugs is termed as BT1.

For the contracts that successfully compile without obvious errors, differential test-
ing is then enforced to run, observe and compare their conflicting aspects, to uncover
potential misoptimization defects. This process involves executing each compiled con-
tract within a localized EVM in terms of each its constituent function units iteratively.
The types of the formal parameters for each function are firstly collected via the com-
mand “solc xxx.sol –hashes -o”, which returns the list of function prototypes. Next,
actual parameters for each function are instantiated with a predefined array of com-
mon and extreme values for each data type. Thereafter, the EVM interface is called
to execute the bytecodes of each function with its respective actual parameters. Dur-
ing this process, the contract aspects regarding its gas consumption, opcode sequence
sizes, and computational outcomes are profiled, with which differential analysis is to
be conducted between each compiled contract pair.

Following summarizes the specific misoptimization defects defined on these col-
lected contract aspects. For these defects, either semantic divergences are observed
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between the compiled contract pair, or the intended optimization goal of simul-
taneously reducing both the code size and gas consumption is violated when the
optimization switch is on.

• BT2: refers to the case where divergent outputs are observed between the optimized
and non-optimized bytecodes fed with the same inputs.

• BT3: refers to the case where the gas consumption of the optimized version is larger
than that of the non-optimized version, while the opcode size is smaller.

• BT4: refers to the case where the opcode sequence size is larger than that of the
non-optimized version, while the gas consumption is smaller.

• BT5: refers to the case where both the gas consumption and opcode sequence size
of the optimized version exceed those of the non-optimized version.

3.4 Seed Pool Update

DeSCDT maintains a dynamic seed pool, by appending to the pool newly generated
interesting contracts and retiring the less interesting ones as the fuzzing iteration
goes, to heuristically increase the ratio of effective fuzzing loops that are more likely
to trigger bugs. The interestingness of a contract is comprehensively estimated in
accordance with both its ignored time in the seed pool and the abnormal behaviors
observed during the compilation and differential testing phases.

Formally, for a contract c̃ newly derived from an existing contract c in the pool,
its quantitative interesting score is computed as:

IScore (c̃) = w1 × sign(BT1, c̃)

+ w2 × sign(BT2, c̃)

+ w3 × gasDiff(c̃+, c̃−)

+ w4 × opDiff(c̃+, c̃−)

(1)

sign(BT1, c̃) =

{

1, if c̃ triggers BT1 bugs

0, else
(2)

sign(BT2, c̃) =

{

1, if c̃ triggers BT2 bugs

0, else
(3)

gasDiff(c̃+, c̃−) =







gas(c̃+)

gas(c̃−)
, if gas(c̃+)/gas(c̃−) > 1

0, else

(4)

opDiff(c̃+, c̃−) =







len(c̃+)

len(c̃−)
, if len(c̃+)/len(c̃−) > 1

0, else

(5)

where, sign(·, ·) is a signal function indicating whether the contract triggers certain
kind bugs in the current fuzzing iteration; gasDiff(·, ·) and opDiff(·, ·) estimate the
degree of deviation from the intended optimization goals with respect to the contract’s
optimized and non-optimized bytecodes’ gas consumption and opcode sequence length,
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respectively; the wis are weights signifying the contributions of each partial part to the
total interesting score, where DeSCDT adopts a value of 3 for w1 and 1 for the rests.

Algorithm 2 depicts the process of updating the contract pool by the end of each
fuzzing loop. Firstly, the interesting scores of existing contracts within the seed pool
are updated iteratively, with increasing the scores of the contracts not being selected
in the last round fuzzing loop, while decreasing the score of the contract just being
manipulated. In such a way, seed contracts that have not been selected for a long
time could gain higher chance to be selected in the next fuzzing loop, ensuring that
potentially interesting contracts are not missed before they are replaced out of the
pool. During the iteration as outlined from line 6 to line 16 in the algorithm, the least
interesting contract, which shows the minimum interesting score, is also found out.
Subsequently, in line 17, the interesting score of the newly generated contract c̃ is
calculated according to Equation 1. If the score of c̃ surpasses the minimum interesting
score found earlier, then the corresponding least interesting contract in the pool is
replaced with c̃.

Algorithm 2 Heuristic Seed Pool Update

Input:

1: P: the pool of seed contracts
2: c̃: the newly generated contract that just goes through the unified testing procedure

of current fuzzing iteration
3: W : the weight array specifying the values of w1 to w4

Output:

4: P: the updated seed contract pool
5: min score = INF, min idx = 0
6: for i = 0 to len(P)− 1 do

7: if Pi is not c then

8: Pi.score += 1
9: else

10: Pi.score = max(0, Pi.score-1)
11: end if

12: if Pi.score < min score then

13: min score = Pi.score
14: min idx = i
15: end if

16: end for

17: sr = IScore (c̃,W ) ▷ calculate the interesting score of c̃
18: if sr > min score then

19: Pi = c̃ ▷ substituting the least interesting seed contract in the pool with c̃
20: Pi.score = sr
21: end if
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Table 2 Performance of DeSCDT in generating syntactic valid contracts.

Model STG1 STG2 STG3 STG+
1 STG+

2 STG+
3 STG−

1 STG−

2 STG−

3

Bi-GRU 81.4% 84.6% 80.2% 80.9% 84.0% 79.8% 62.5% 68.7% 65.9%
Bi-LSTM 82.3% 85.2% 81.7% 81.8% 84.5% 81.3% 63.7% 70.1% 67.1%

Transformer 87.6% 90.8% 86.8% 87.1% 90.4% 86.3% 68.9% 75.1% 72.3%

4 Experimental Evaluation

In this section, we present the experimental evaluation details, answering the following
Research Questions (RQs):

• RQ1: Performance in generating valid contracts. How does DeSCDT behave
in generating syntactic-valid smart contracts?

• RQ2: Performance in boosting the testing coverage. Can DeSCDT effectively
generate diverse contracts that continuously improve the testing coverage?

• RQ3: Bug detection capability. How about DeSCDT’s capability in revealing
Solidity compiler bugs?

4.1 Implementation and Experimental Settings

DeSCDT is implemented mainly with Python and Java. The construction and the
training of the contract generation model are implemented on top of the PyTorch
framework, while the contract generation point localization and fine-grained muta-
tions, which require manipulating on the concrete syntax tree, are implemented using
Java. To obtain the concrete syntax tree of a contract, we use ANTLR1 to build the
parser with the grammar for Solidity2. The fuzzing experiments are conducted on
Solidity 0.4.24, the most widely used version as investigated in the existing work [16].
For estimating the test coverage performance, we leverage afl-gcc and gcov for
instrumenting the solc compiler and the specific profiling of code coverage metrics,
respectively.

4.2 RQ1. Performance in Valid Contract Generation

This section evaluates the capability of DeSCDT in producing syntactic valid con-
tracts, which has been confirmed crucial for effective compiler fuzzing [15, 17].
Therewith, we run the fuzzing loops of DeSCDT until 10,000 contracts have been
generated, and deem the ones that pass through the compilation as syntactic valid.
Table 2 summarizes the pass rates, which are calculated by dividing the quantity of
the successfully compiled contracts by the quantity of all the generated ones under
each corresponding alternative setting of DeSCDT.

As shown by the values in the first three columns, where merely the learnt gen-
erative model is utilized to yield new contracts, the models adopting STG2 as their
generation strategy outperform those using the other two kind strategies. Besides,
when comparing across different neural architecture backbones, the generative model
with Transformer backbone exhibits the best performance, with its pass rate reaches

1https://github.com/antlr/antlr4/tree/master
2https://github.com/antlr/grammars-v4/tree/master/solidity
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90.8% when using STG2 as its generation strategy. This indicates the sufficiency
of our learnt Transformer-based generative model in synthesizing syntactically valid
contracts, as well as its superiority over the alternative neural structures in better
comprehending the grammatical nuances of the Solidity language.

Further, we investigated the impact of fine-grained mutation on the syntactic valid-
ity of newly generated contracts. The STG+

x columns exhibits the pass rate achieved
when the contract generation process is completed in its entirety, encompassing both
the use of the contract generative model and the fine-grained mutators. The results
reveal that these pass rates are nearly identical to those in the first three columns. This
indicates that the carefully picked mutators employed in DeSCDT do not necessarily
compromise the syntactic validity of the generated contracts. At the same time, they
could offer additional opportunities to alter the code in ways that expose elusive bugs.

As explained in Section 3.2.2, regardless of the particular generation strategy
employed with the generative model, we consistently confine the generation to occur
within the functions, with the aim of increasing the probability of synthesizing syntac-
tic correct contracts. To verify the significance of this limitation, we also run DeSCDT
by liberating it from the restriction. The results, as shown by the significantly reduced
values in the STG−

x columns, indicate that maintaining this restriction in DeSCDT
is crucial. Without it, there is an average decline of approximately 16.3% in the pass
rate.

Answer to RQ1: DeSCDT can effectively produce syntactically correct
contracts for fuzz testing the Solidity compiler, with the Transformer-based
generator achieving the highest pass rate under generation strategy STG2.
Integrating the generative model further with the carefully picked fine-grained
mutators hardly affect the compilation pass rate, while releasing the generation
location restriction incurs significant degradation on the pass rate of DeSCDT.

4.3 RQ2. Performance in Boosting Test Coverage

4.3.1 Diversity of the Generated Contracts

The significance of test case diversity in uncovering software bugs has long been
acknowledged in the software testing literature [18]. To evaluate whether DeSCDT can
effectively generate diversified contract code, we run DeSCDT for 24 hours and calcu-
late the similarity between the newly derived contracts and their original ancestors. At
each time node that corresponds to every 2 hours execution of the DeSCDT’s fuzzing
loops, 500 more new contracts are further generated and compared against their ances-
tral versions in the original contract seed pool. The SmartEmbed method, which has
been discussed in Section 3.2.1, is utilized for the specific similarity calculation between
the contracts.

Figure 2 depicts the experimental results, where the horizontal axis outlines the
time nodes and the vertical axis marks out the averaged similarity scores. It can
observed that, the similarity scores consistently decrease as the fuzzing duration
increases. Especially, at the last time node, the similarity scores that corresponds to
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Fig. 2 Diversity of newly generated contracts at different time nodes

generation strategies STG2 and STG+
2 drop to 0.841 and 0.825, respectively. This

trend suggests that the contracts generated by DeSCDT progressively diverge from
their original versions, showcasing DeSCDT’s effectiveness in producing diversified
contract cases. Besides, the steeper descent curve corresponding to the results of STG+

2

indicates the added advantage of incorporating fine-grained mutations to enrich code
diversity. Additionally, running DeSCT without the within-function restriction does
not seem to yield significantly more diverse contracts compared to those generated
with the restriction.

4.3.2 Test Coverage Performance

Code coverage is another important indicator reflecting the sufficiency of software
testing. Thereby, we run DeSCDT for 24 hours with the different settings, and statis-
tic three widely used coverage metrics, including line coverage, branch coverage and
function coverage, during this process.

Figure 3 illustrates the variation tendency of these coverage metric values obtained
under different DeSCDT settings. The steadily ascending curves indicate an increasing
exploration of Solidity compiler code units as the fuzzing duration extends. Among the
evaluated settings, DeSCDT adopting STG+

x s generally outperforms the others with
better coverage metrics at each time node, despite the differences are not that obvious.
This suggests the superiority of integrating the generative model with fine-grained
mutations in exploring the deeper program states. Besides, the curves corresponding to
DeSCDT with the STGx

2s exhibit steeper upward trend compared to others. This aligns
with the findings in Figure 2 that STGx

2s help yield more diverse code. Especially,
DeSCDT with STG+

2 achieves the highest coverage of 61.89%, 53.82%, and 32.97% in
terms of the line, branch and function coverage metrics, respectively.

Moreover, to give a more intuitive sense of the code coverage improvements brought
by the newly generated contracts, we compute for each DeSCDT setting a coverage
gain with respect to each coverage metric. The gain with respect to each metric is
calculated with covGain = (Vaug − Vorg)/Vorg, where Vorg denotes the coverage values
obtained by feeding to the compiler merely the contracts within the original seed
pool, and Vaug denotes the coverage values by additionally feeding with all the new
contracts generated during the fuzzing iterations.
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Table 3 Coverage gains obtained with DeSCDT in terms of the coverage metrics

Metrics STG1 STG2 STG3 STG+
1 STG+

2 STG+
3 STG−

1 STG−

2 STG−

3

Line 6.93% 11.24% 6.33% 8.24% 12.53% 7.82% 4.96% 9.36% 5.36%
Branche 5.57% 8.76% 5.33% 7.09% 9.91% 6.71% 4.24% 7.52% 5.04%
Function 4.73% 6.83% 4.38% 6.51% 7.63% 5.65% 3.33% 5.53% 3.65%

Fig. 3 Trend of test coverage in terms of the fuzzing timeline

Table 3 summarizes the corresponding gains. As the values show, DeSCDT adopt-
ing STG+

x generally win over the rest settings, again highlighting the merits of
augmenting the generative model with fine-grained mutations. Particularly, within 24
hours, DeSCDT working with STG+

2 achieves 12.53%, 9.91% and 7.63% improvements
in terms of the line, branch and function coverage metrics, respectively.

Answer to RQ2: DeSCDT behaves highly effective in producing a range
of diversified new contracts, contributing to the progressive increase in code
coverage of the tested Solidity compiler. Besides, the DeSCDTs which combine
the generative model and fine-grained mutations stands out the alternatives in
their ability to generate the most diverse contracts, effectively testing a broader
spectrum of the compiler’s code units.

4.4 RQ3. Bug Detection Capability

As observed from the evaluations in the preceding sections, DeSCDT with STG+
2 in

overall outperforms its alternatives, in producing new contracts that not only have a
high pass rate but also exhibit sufficient diversification. In consideration of this, we
determined running DeSCDT under STG+

2 , and conduct experiments in this section
to evaluate its capability in compiler bug detection.

4.4.1 Results on Compile-time Defect Detection

By the time of writing, after approximately three months execution, DeSCDT has
successfully identified six unique bugs of BT1, which cause notable crashing of the
Solidity compiler when fed with specific contracts. Following elaborates on two of
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these bugs, including their specifics and the corresponding simplified contract cases
that trigger them.

The first is a bug associated with the mapping feature supported in the Solidity
language, which can be triggered with the listed code snippet below. Compiling the
contract with the optimization either on or off could crash the compiler, reporting
an internal compiler error with the message “Invalid non-value type for assignment”.
The root cause lies in the code between line 4 and 7 generated by DeSCDT, where
mapping type data selected according to the parameter are appended to the tail of
a mapping type array. The incomprehensive consideration and handling to such kind
rare use cases of the mapping structure in the compiler’s code implementation cause
its crashing.

1. contract C {
2. mapping(address=>unit)[] a;
3. function f(uint[] x) public {
4. mapping(address=>uint)[] b;
5. for (uint i = 0; i< x.length; i++) {
6. mapping(address=>uint) t = a[x[i]];
7. b.push(t);
8. }
9. }
10. }

The second bug to discuss is relevant to Solidity compiler’s inadequate handling of
ambiguous identifiers appearing in the contract code. In the following contract case,
DeSCDT generated a return statement containing a weird sub-expression of a(c). It
confuses the compiler in comprehending the precise type of the identifier as well as the
intention of this expression, i.e., to call function a() or to reference variable a. The
compilation of this contract code, regardless of the optimization switch on or off, also
crashes the compiler with issuing an error message of “Requested type not present”.

1. contract C {
2. uint public a;
3. function a(uint c) public returns (uint256)
4. {
5. return 1 * 10 ** a(c);
6. }
7. }

4.4.2 Results on Misoptimization Bug Detection

During the fuzz testing duration, we’ve observed numerous contract cases that activate
the misoptimization bugs. To have a glance of this situation, Figure 4 depicts the
distribution of the contract cases produced during a 24-hour running of DeSCDT,
categorized by the types of bugs they trigger.

Of the 14,237 newly generated contract cases that are differentially tested, 5,324
(about 37.4%) contracts successfully triggered at least one of the four types of misop-
timization bugs. The majority, which is about 37%, of these bug-triggering cases,
occurred between BT3 and BT5, where the compiler’s intended optimization objec-
tives of simultaneously reducing both the code size and gas consumption is violated,
when tested with these specific contracts. 51 cases behave abnormally with producing
divergent outcomes under consistent inputs, indicating potential BT2 bugs within the
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Fig. 4 Quantity distribution of the misoptimization bug triggering contracts.

optimization module. Besides, since bugs of BT2 do not conflict with other misopti-
mization bugs, a number of the generated contract cases are found to trigger them
both. These findings point to concerns about the reliability of the Solidity compiler’s
optimizer in effectively optimizing contracts as intended by users.

To better understand the issue of gas consumption misoptimization, which is
economic-critical both to the contract developers and the users, we further delve into
the opcodes of the generated contracts, whose gas consumption of the optimized byte-
code is larger than that of its non-optimized version. Figure 5 presents the differences
on their opcode frequency distribution. The x-axis denotes all the involved opcodes,
and the y-axis shows the overall frequency differences, calculated by subtracting the
occurrence of each opcode in the optimized version from its count in the non-optimized
version. As the results suggest, the optimization leads to a notably different opcode
distribution. Especially, for these gas consumption misoptimization triggering con-
tracts, their optimized bytecode appear to contain opcodes that consume more gas3,
such as “EXP”, “SLOAD”, “JUMPI” “EXTCODESIZE” and “SHA3”. We hope the
findings on opcode distributions in both optimized and non-optimized versions of these
contracts could aid in redesigning and improving the underlying algorithms in the
compiler’s optimization module.

Answer to RQ3: DeSCDT is capable of revealing both compile-time and
misoptimization bugs within the Solidity compiler. The high number of cases
where misoptimization bugs are triggered suggests the immaturity of the
optimization module. Considerable efforts are still required to refine and
enhance its underlying algorithms to finally meet the intended objectives of
the optimization process.

3https://ethereum.org/en/developers/docs/evm/opcodes/
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Fig. 5 Differences on the opcode frequency distribution of the gas consumption misoptimization
triggering contracts

5 Related Work

Given the pivotal role of compilers in the software ecosystem, extensive researches [3,
19–21] have been conducted on fuzz testing them for validating and enhancing their
correctness. Depending on the differences in the way of generating test inputs, which
is considered to be the most influential part that directly controls the likelihodd of
triggering bugs [1], existing works can majorly be categorized into generation-based,
mutation-based and learning-based fuzzers.

5.1 Mutation-based Approaches

Mutation-based fuzzers [4, 22–25], or model-less fuzzers, produce new inputs cases
by performing random or heuristic code mutations on existing test cases. The effec-
tiveness of such fuzzers largely rely on the quality of the seed pool, the richness of
mutators, as well as the ways to guide the mutation and selection of interesting cases.
Generally, if a newly generated test case triggers previously untested program states,
measured by metrics such as new paths or statements, it will be considered interesting
and saved for later round mutations.

AFL [22], which performs random bitflip mutation and adopts coverage feedback or
target sites [26] as guidance, stands as a prominent example of this category. However,
without comprehending the grammar aspects of the inputs, these general-purpose
fuzzers [22, 26] become much less effective in producing highly structured syntactic
correct programs for fuzz testing the compilers. As such, approaches like LangFuzz [27],
JavaTailor [23] and CodeAlchemist [25] break down test programs into code fragments
and weave ingredients extracted from historical bug-revealing test programs into them
to fulfill mutation. Other methods like Superion [28], DIPROM [24] and Fuzzilli [29]
rather perform mutation either on the AST or the lifted IRs [4] to create syntactic
valid test programs. Besides these works that primarily focus on fuzzing conventional
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compilers, like GCC and LLVM for C/C++, Javascript engines [30] and the JVMs [31],
EVMFuzz for the first time explore EVMs defects with a mutation-based contract
generator. Compare with this work, we blend DL-based generative model with code
mutation to produce varied syntactic valid contracts written in the emerging Solidity
programming language. Also, we target the bug detection of Solidity compiler rather
than EVMs.

5.2 Generation-based Approaches

Generation-based or model-based compiler fuzzers [32, 33], are distinguished by
their use of models that implicit the grammar rules of the target language. This enables
them to generate syntactic highly correct test programs from scratch without relying
on any existing test programs.

CSmith [32], which targets fuzz testing the C compilers including GCC and LLVM,
is a representative method in this category. It hardcodes a subset of C grammar to
ensure valid test program generation and maintains a probability table to choose code
elements to enhance the diversity of the programs. To avoid the testing saturation
issue, YARPGen [34] generates expressive C and C++ programs with a novel mecha-
nism skewing the probability distribution systematically. Besides fuzzing the C/C++
compilers, CSmith also inspired the designing of fuzzers targeting other compilers like
CUDA C/C++ compiler [35], and compilers for other languages like OpenCL [36]
and Simulink [37]. Despite the CSmith-like fuzzers are adept at creating highly valid
test programs, their approach of hardcoding grammar lacks flexibility and requires
extensive engineering efforts and language-specific domain knowledge for adapting to
updated language characteristics or different languages.

5.3 Deep Learning-based Approaches

With the great success of deep learning (DL) driven program analysis researches,
there are also some pioneering works [15, 17, 38, 39] that explore building deep
learning models to generate programs for compiler fuzz testing. DeepSmith [17] is a
trailblazer in applying deep learning for fuzz testing OpenCL compilers, utilizing an
LSTM-based model to generate OpenCL programs. This model surpassed CLSmith, a
traditional fuzzer implemented with extensive engineering efforts according to expert-
defined grammars. DeepFuzz [15] also learns an LSTM-based seq2seq model, but uses
it to create C programs for testing GCC and LLVM. However, it always generates new
test programs based on the initially collected seed program pool. Without the design-
ing of seed pool update process, the diversity of the newly produced programs and the
code coverage they can achieve can be greatly limited. Similarly, Montage [39] trains
an LSTM model to manipulate seed JavaScript programs with newly generated code
snippets to fuzz test the JS engines. To improve the syntactic correctness of gener-
ated code, Dsmith [38] further incorporates a context attention mechanism into the
LSTM to enhance its capability in capturing the long-range syntax dependencies in C
programs. It achieved as high as 78.79% compilation pass rate, which is about 10.5%
higher than the rate achieved by DeepFuzz with its basic LSTM model.
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Compared with these DL-based compiler fuzzers, our method leverages the
advanced Transformer architecture, renowned for its multihead attention mechanism.
This choice significantly enhances the pass rate of the programs we generate. To add
further diversity to the generated programs, our method introduces seed pool update
phase to avoid always manipulating on the original seed programs as existing DL-
based fuzzers do, and incorporates fine-grained mutations with the generative model.
To the best of our knowledge, DeSCDT represents the first endeavor to apply deep
generative modeling in creating Solidity smart contracts, specifically aimed at fuzz
testing the emerging Solidity compiler.

6 Conclusion

This study has presented DeSCDT, an innovative DL-based fuzzer for testing the
emerging Solidity compiler, a critical component in the development and deployment
of smart contracts in the Ethereum blockchain system. DeSCDT’s main component
is a sophisticated contract generator utilizing the Transformer model. It incorporates
advanced features like semantic encoding and clustering for initial seed pool con-
struction, generation strategies with location restriction, fine-grained mutations, and
strategic seed pool updates. These designs enable DeSCDT to generate Solidity smart
contracts that are not only syntactically correct but also diverse in functionality. The
extensive experiments conducted highlighted a remarkable compilation pass rate of
90.8% for the newly generated contracts with high diversity, which significantly con-
tributing to increased code coverage. DeSCDT behaved adept at identifying both
compile-time errors and misoptimization defects in the Solidity compiler. Six unique
bugs that could cause the compiler to crash during contract compilation have been
discovered during a three-month running of DeSCDT. Also, the numerous instances
that expose optimization issues point to the immaturity of the optimization mod-
ule in the compiler. This underscores the necessity for considerable efforts to refine
and enhance the underlying algorithms to meet the optimization goals fully. Some of
our future works include exploring other contract generation strategies, designing and
incorporating more specialized mutators considering the unique language features of
Solidity, as well as optimizing the seed pool update mechanism, to further enhance
the bug revealing capability of DeSCDT for Solidity compiler fuzz testing.
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