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Abstract

In this paper we introduce a data analytics approach for specifying the gravity model as
applied to competitive facility location. The gravity model is used primarily by marketers to
estimate the market share attracted by competing retail facilities. Once the market share is
computed, various solution techniques can be applied for finding the best locations for one
or more new facilities. In competitive facility location research, various parametrized gravity
models have been proposed such as the power and the exponential distance decay specifications.
However, parameterized approaches may not be robust to slight data inconsistency and possibly
leading to inaccurate market share predictions. As the volume of data available to support
managerial decision making is growing rapidly, non-parametric (data-guided) approaches are
naturally attractive alternatives as they can mitigate parametric biases. We introduce a unified
gravity model that encompasses practically all existing parametric gravity models as special
cases. We provide a statistical framework for empirically estimating the proposed gravity models
focusing on shopping malls data involving shopping frequency.

Key words: Competitive facility location, Gravity model, Decay function, Data-guided.

1 Introduction

Competitive facilities location problems attempt to find the locations for one or more new facili-

ties among existing competing facilities that maximize the captured market share. The facilities

attract demand generated by customers in the area. In most applications profit is increasing when

market share captured increases. Therefore, the common objective is to maximize the market share

captured by the new facilities. In the basic models such as locating shopping malls, grocery stores,

furniture stores, restaurants, and many others, it is assumed that facilities cannot be easily moved

once they were established. Such basic models were extended in many ways. For example, incor-

porating future changes in market conditions, have an available budget to be spent in building new
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facilities and/or improving the attractiveness of existing facilities by lowering prices, expanding

offerings, improving appearance, or other investments. For a recent review of competitive models

see Drezner and Eiselt (2023) which includes over 100 relevant references.

Competitive models require an accurate estimate of the captured market share at a given

location. Then, optimization methods are applied to find the best location that maximizes the

captured market share. There is no established rule how to reliably estimate the market share

captured and many models were proposed for such estimation (Drezner and Eiselt, 2023). The most

commonly investigated approach is the gravity model (for example, papers before the year 2000:

Bell et al., 1998; Downs, 1970; Drezner, 1994; Jain and Mahajan, 1979; Nakanishi and Cooper, 1974;

Prosperi and Schuler, 1976; Schuler, 1981; Timmermans, 1982, 1988), and more recently Aboolian

et al. (2007a,b); Eiselt et al. (2015); Fernández et al. (2007). In gravity models, it is assumed

that the proportion of the buying power attracted to a facility is proportional to the facility’s

attractiveness and to a distance decay function because the appeal of a facility decreases if the

distance to it increases. This proportion can be interpreted as the probability that a customer

selects a certain facility. Therefore, the sum of these proportions is equal to 1.

Suppose that n demand points exist in the area and demand point i has a buying power Bi.

There are p facilities located in the area and facility j has an attractiveness level Aj . The distance

between demand point i and facility j is dij . The market share Mj captured by facility j is

Mj =

n
∑

i=1

Bi
Ajf(dij , λ)
p
∑

k=1

Akf(dik, λ)

(1)

where f(d, λ) is a distance decay function with a parameter λ. Note that
p
∑

j=1
Mj =

n
∑

i=1
Bi which

means that all the buying power is captured by the competing facilities. There are models that

assume that some of the demand is lost and therefore the sum of the proportions is less than 1

(Berman et al., 2006; Drezner and Drezner, 2008, 2012).

Reilly (1931), who proposed the gravity model, suggested the distance decay function 1
d2

which

imitates gravitational force, and coined the name “gravity model”. For a detailed discussion of

various distance decay functions see Drezner and Eiselt (2023).

The paper is organized as follows. In Section 2 a general formulation of an extended gravity
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model is introduced and analyzed. Various distance decay functions that do not depend on the

attractiveness of the facilities, are proposed and analyzed in Section 3. Distance decay functions

that depend on the attractiveness level are investigated in Section 4. In Section 5, the location of

a new facility for different parameters is found and the various results discussed. We summarize

and conclude the paper in Section 6.

2 A General Gravity Model

The original gravity model was recently extended in many ways (Drezner et al., 2020, 2022). We

present the most recent extension (Drezner and Zerom, 2023b) that incorporates all the recent ones.

There are n demand points located in the area and p facilities. Some of them can be the new

ones to be established. Define:

Bi is the buying power at demand point i for i = 1, . . . , n.

Aj is the attractiveness level of facility j for j = 1, . . . , p.

dij is the distance between demand point i and facility j.

µij facility j’s expected market share of the buying power at demand point i.

µj the total expected market share captured by facility j.

Following the extended gravity model of Drezner and Zerom (2023b), µj is obtained by

µj =
n
∑

i=1

µij =
n
∑

i=1

Bi
f(dij , Aj)
p
∑

k=1

f(dik, Ak)

(2)

where f(dij , Aj) is defined by parameters α ≥ 0, β ≥ 0, λ ≥ 0 and a function φ(·),

f(d,Aj) = e−λφ(d)+(α+βφ(d)) lnAj . (3)

The above gravity model encompasses most models used in competitive facility location studies as

special cases. For example, the restrictions α = 1 and β = 0 are typically assumed. The function

φ(d) = ln d leads to the commonly used power distance decay function 1
dλ

originally proposed by

Huff (1964, 1966). The exponential distance decay function e=λd proposed by (Hodgson, 1981;

Wilson, 1976) is obtained when φ(d) = d. Bell et al. (1998) suggested φ(d) = dγ for γ ≥ 0. Using

more than 30 thousand shopping trips to grocery stores, they found that γ = 0.409 fits their data

the best.

3



The assumption β = 0 implies that all facilities share a common distance decay parameter −λ

regardless of their attractiveness level. If this assumption is relaxed, it is easy to see from (3) that

the distance decay parameter is facility-dependent, i.e. is given by −λ+β lnAj . Therefore, a more

attractive (appealing) facility will have a slower distance decay due to the moderation (β > 0) by

its higher attractiveness Aj . Using shopping malls trips data and for both power and exponential

distance decays, Drezner and Zerom (2023b) showed that the restriction β = 0 is not tenable and

can lead to a significant loss in market share prediction accuracy.

Despite the empirical success of (3) relative to the more restrictive special cases, it is still a

highly parameterized approach that may not be robust to slight data inconsistency. Such bias

may, for example, lead to inaccurate market share predictions. To circumvent this we propose a

data-driven (non-parametric) alternative to (3) where we make no assumptions on functional forms.

Specifically, we introduce two extensions. The first is more general and is given by

fj(d) = egj(d) (4)

where gj(·) is an unknown smooth function representing facility-specific distance decay. Recently,

Drezner et al. (2020) suggested a more restrictive special case of (4) where

gj(d) = −λjφ(d) (5)

with each facility having its own distance decay parameter λj . The volume of data available to

support managerial decision making is growing rapidly as firm operations become digitized. For

example, retailers such as shopping malls or grocery stores routinely collect information from their

customers such as their zip codes (that helps to determine the distance) and the frequency of their

shopping trips. With just these two pieces of data, one can easily obtain a non-parametric estimate

of equation (4) without imposing any unwarranted restrictions such as those in equation (5). Such

data analytics can offer quick valuable actionable insight to management regarding the impact of

location of facilities on customers’ shopping frequency.

The second extension specifically assumes that any distance decay variation among facilities is

explained by their respective attractiveness, i.e.

f(d,Aj) = eg(d,Aj) = eg0(d)+g1(d) lnAj (6)
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where both g0(·) and g1(·) are unknown smooth functions. Note that (6) is a direct extension of (3).

The function g0(·) can be viewed as the pure distance decay (common to all facilities) while g1(·) as

the decay moderator function. This way, we allow facility attractiveness Aj to moderate distance

decay where the degree of moderation itself may vary with distance. For example, in (3) the degree

of moderation is a constant given by β.

The proposed extensions (4) and (6) can be used by practitioners as a guide while searching for

a more proper tractable parametric specifications or empirically validate currently used parametric

models. In addition to its robustness, the extensions pose no estimation difficulty. While (3)

can be estimated within the generalized linear models (GLM) framework (see Drezner and Zerom,

2023b), we introduce a localized GLM to estimate (4) and (6) that can be easily implemented in

computational platforms such as R or Python.

3 Distance Decay Functions

Before the paper by Drezner et al. (2020), most competitive location papers assumed that the

distance decay function is the same for all facilities, and concentrated on approaches to estimate

the attractiveness levels of the facilities. Huff (1964, 1966) assumed that the attractiveness is

proportional to the store area. Nakanishi and Cooper (1974) suggested that the attractiveness

is proportional to a product of characteristics and each characteristic is rated by public opinion

surveys. Drezner (2023) lists dozens of papers and attractiveness components that were investigated

However, estimating the expected market share by actual customer behavior is more accurate than

relying on public opinion surveys.

The purpose of this section is to empirically validate various parametric distance functions

proposed in the literature assuming that the distance decay function does not depend on the

facility attractiveness. Thus, from (6),

f(dij , Aj) = eg(dij) (7)

where g(·) is unknown smooth distance decay function. If sufficient or dense data are available from

most (or all) demand points or zip codes, one can also estimate a facility-dependent distance decay
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fj(d) = egj(d) by equation (7) by solely focusing on one facility at a time. In this case, we are no

longer assuming facilities are equally appealing and in fact the resulting estimates are even more

general than those by equation (6). Because the Orange County shopping malls data is very sparse

(even though more than 3000 customers were intercepted in the seven malls) in the sense that there

are several zero trips from demand point i to facility j, the facility-dependent distance decay fj(d)

estimates are very likely to be highly unreliable. We would like to point out that the estimation

procedure discussed in this section is versatile in the sense that it is applicable for estimating the

common distance decay f(d) = eg(d) as in (7) when several facilities are jointly considered (the focus

of this section) or the more general facility dependent decay fj(d) when estimation (with sufficient

data availability) is done one facility at a time. For large retailers that attract customers from

large geographic areas, their shopping frequency data will be sufficiently dense to allow reliable

estimation of fj(d).

In the competitive facility location literature, it is traditionally assumed that g(·) belongs to

a known parametric family of functions. In column 2 of Table 1, a variety of parametric models

that will be explored in this paper are depicted. Note that one can also specify other plausible

parametric functions within the framework of equation (7). Type 1 is similar to Bell et al. (1998),

Type 2 is exponential decay, and Type 5 is power decay. Types 1- 6 are a single decay parameter

models. To capture a more elaborate decay pattern, one may mix a pair of models from Types 1-6.

Accordingly, Types 7 and 8 are constructed. Other pairs may also be combined.

Table 1: Pure Parametric Distance Decays.

Type g(d) ĝ(d) ĉ R2

1 λ1d
0.5 −1.13d0.5 -6.20 53%

2 λ2d −0.23d -7.43 50%

3 λ3d
1.5 −0.05d1.5 -7.90 45%

4 λ4d
2 −0.0125d2 -8.19 40%

5 λ5 ln(d) −1.16 ln(d) -7.05 50%

6 λ6 ln
2(d) −0.43 ln2(d) -7.54 52%

7 λ7d+ λ8 ln(d) −0.11d− 0.64 ln(d) -7.16 52%

8 λ9d
0.5 + λ10 ln

2(d) −0.84d0.5 − 0.11 ln2(d) -6.54 53%
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3.1 Estimation

We outline the estimation procedure of the distance decay function f(·) in (7) within the context

of the gravity model in (2). First, we discuss how generalized linear models (GLM) can be used

to estimate the parametric distance decays (Types 1 - 8) in Table 1. Later we extend GLM into

a localized GLM to obtain f(·) via non-parametrically estimating g(·). To illustrate, we use mall

shoppers survey data in Orange County, California (Drezner, 2006). As a surrogate for expected

market share in (2), we consider

µij : expected number of shoppers in mall j from zip code i.

A total of 80 zip codes (1 ≤ i ≤ 80) and 7 shopping malls (1 ≤ j ≤ 7) are considered. Using

several aspects of the malls’ appeal, Drezner (2006) also measured the attractiveness Aj of the seven

malls. These attractiveness values will be incorporated into distance decay function estimation in

Section 4. The buying power Bi at demand point i is represented by the population size at zip

code i which is publicly available. The distance dij is based on the Euclidean distance where the

latitude and longitude of the centers of zip codes were first converted to miles.

We assume that the number of shoppers from zip code i to mall j, denoted by yij , follows a

Poisson probability distribution, i.e.

yij ∼ Poisson(µij) (8)

where

µij ≡ E(yij) > 0. (9)

Note from (2) that µij , is proportional to

µij ∝ Bi × eg(dij) (10)

where f(dij , Aj) uses (7). Now, given the observed data on Bi and dij , and after applying logarithms

to both sides, we obtain the statistical model

ln(µij) = c+ ln(Bi) + g(dij) (11)
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where c is an unknown constant of proportionality. Modeling the log-transformed ln(µij) instead

of µij leads to linear parametric decay models (see Table 1) in their respective target parameters,

i.e.

ln(µij) = ln(Bi) + c+ λXij (12)

where for example Xij = d0.5ij for Type 1 decay and Xij = [ln(dij)]
2 for Type 6 decay. For model

Type 7,

ln(µij) = ln(Bi) + c+ λ1X1,ij + λ2X2,ij (13)

where X1,ij = dij and X2,ij = ln(dij). Parameter estimates (both the respective decay parameters

and the constant c are given in Table 1). Specifically, we use the GLM routine (mgcv library)

within the open source software R; See McCullagh and Nelder (2019) for a comprehensive review

of GLM. In GLM, the target variable yij does not have to be normally distributed. GLM permits

the distribution to be from an exponential family such as binomial, Poisson, Negative-Binomial,

etc. and the unknown parameters c and λ are estimated using maximum likelihood. Note that the

coefficient of ln(Bi) is forced to be 1. This implies that we are implicitly modeling the logarithm

of “rate” of expected shoppers, i.e. ln(µij/Bi). This is an important feature as the number of

shoppers originating from a zip code is expected to be proportional to the population size Bi.

3.1.1 Non-parametric g(d)

In this sub-section we discuss a non-parametric approach to estimate g(·) in (11) without assuming

a parametric form (such as those in Table 1). Assuming that the function g(dij) is smooth, it

follows from Taylor expansion (of order 1) that

g(dij) ≈ g(d) + g′(d)(dij − d) = θ0 + θ1Zij (14)

where Zij = dij−d and θ0 includes the constant c. One may also consider polynomial orders higher

than 1 to capture more complex non-linearity. Using (14), a localized version of (11) is given by

ln(E(yij |dij = d)) = ln(Bi) + θ0 + θ1Zij (15)
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which is still linear, albeit locally, in the parameters θ0 and θ1. Using the Poisson distribution, the

local likelihood function for n× p observed data points is

n
∏

i=1

p
∏

j=1

(Bie
θ0+θ1Zij )yij

yij !
e−Bie

θ0+θ1Zij
. (16)

Estimates for θ0 and θ1 are obtained by maximizing a “locally weighted” logarithm of (16) while

ignoring terms that do not depend on the parameters, i.e.

[θ̂0(d), θ̂1(d)] = argmax
θ0,θ1

n
∑

i=1

p
∑

j=1

Kh(Zij)

(

yij(θ0 + θ1Zij)−Bie
θ0+θ1Zij

)

. (17)

The local weights Kh(Zij) satisfy Kh(u) = h−1K(u/h) for some h > 0 (bandwidth) where K

is a kernel function that satisfies
∫

K(t)dt = 1; See for example Wand and Jones (1994) for a

comprehensive review of kernel-based smoothing. In this paper, we use K(t) = 0.75(1 − t2)1|t|<1

and the bandwidth h = 2σ̂d(n×p)−1/5 where σ̂d is the observed standard deviation of the distances.

Note that in (17), log-likelihood value of those observations nearby (controlled by h) the distance

point d is given more weight via Kh(Zij). Finally, the non-parametrically estimated decay function

is given by

f̂(d) = eθ̂0(d) = eĝ(d). (18)

We note that when estimating the market share captured by different facilities, the different at-

tractiveness levels of the facilities are incorporated. In Table 1, f̂(d) is multiplied by Aj .

3.2 Performance of Parametric Decays

In Table 1, we report the estimated results for eight parametric decay models. In Figure 1, the

estimated parametric decays are plotted against the non-parametric estimated decay (a proxy for

the “true” decay). Types 1, 6, 7, and 8 appear to closely approximate the true decay. The R2

indicates how well the parametric models predict the expected number of shoppers to malls. Type 1

and Type 8 are the best performers by their R2 followed by Types 6 and 7. Overall, factoring the

number of model decay parameters, one may conclude that Types 1 and 6 performed best overall. In

competitive facility location studies, Type 2 and Type 5 decays are routinely used as the preferred

distance decay patterns. Our analysis shows that this may not be necessarily the case and non-

parametric (data-driven) approaches can be quite useful in guiding selection of more fitting decay
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Figure 1: Parametric decay (the dashed line) against the non-parametric decay (the solid line).

patterns. If one is not willing to commit to any parametric decay, the non-parametrically estimated

decay can also be used directly.
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4 Incorporating Attractiveness

In this section we focus on equation (6) that allows facility attractiveness to interact with the

distance decay. The distance decay function depends on the facility attractiveness. More attractive

facilities have a slower decay function as was shown in Drezner et al. (2020). Re-stating (6),

f(dij , Aj) = eg0(dij)+g1(dij) ln(Aj). (19)

Within the framework of (19), the parametric distance decays shown in Table 1 can be extended

to incorporate the attractiveness level A. The extensions are given in column 2 of Table 2. Other

plausible specifications can be similarly specified. For example, to obtain Type 2 parametric spec-

ification, one should assume g0(d) = λ1d and g1(d) = α1 + β1d. If β1 = 0, the function in (19) will

become the usual exponential decay model f(d,A) = Aα1eλ1d with λ1 ≤ 0. Similarly, to obtain

Type 5 pattern, one can take g0(d) = λ5 ln d and g1(d) = α5 + β5 ln d. For β5 = 0, this further

reduces to the commonly used power decay model f(d,A) = Aα5dλ5 with λ5 ≤ 0. Type 7 pattern

is based on g0(d) = λ7d+ λ8 ln d and g1(d) = α7 + β7d+ β8 ln d.

Estimation of the models in Table 2 mimics the cases of pure distance decay functions that do

not depend on the attractiveness level, and can be done within the GLM framework. Replacing

f(dij) in (7) by f(dij , Aj) in (19) and following the same steps, equation (11) is extended to

ln(µij) = ln(Bi) + g0(dij) + g1(dij)Aj . (20)

For model Types 1 - 6, this in turn becomes

ln(µij) = ln(Bi) + c+ αX1,ij + λX2,ij + βX3,ij (21)

where X1,ij = lnAj and X3,ij = X1,ij × X2,ij . For Type 1, X2,ij = d0.5ij and X2,ij = [ln(dij)]
2 for

Type 6, and so on. For Types 7 and 8 we have

ln(µij) = ln(si) + c+ αX1,ij + λ1X2,ij + λ2X3,ij + β1X4,ij + β2X5,ij (22)

where X4,ij = X1,ij × X2,ij and X5,ij = X1,ij × X3,ij . For example, for Type 7, X2,ij = dij and

X3,ij = ln(dij). Because both equations (21) and (22) are linear in their respective parameters, the

estimation does not pose any additional complexity except for the addition of more variables due

to the interaction terms.

11



Table 2: Parametric Distance Decays with Attractiveness

Type g(d,A) ĝ(d,A) ĉ R2

1 α1 ln(A) + (β1 ln(A)− λ1)d
0.5 −0.06 ln(A) + (0.44 ln(A)− 1.28)d0.5 -6.17 69.0%

2 α2 ln(A) + (β2 ln(A)− λ2)d 0.21 ln(A) + (0.13 ln(A)− 0.28)d -7.44 67.7%

3 α3 ln(A) + (β3 ln(A)− λ3)d
1.5 0.31 ln(A) + (0.04 ln(A)− 0.07)d1.5 -7.92 64.2%

4 α4 ln(A) + (β4 ln(A)− λ4)d
2 0.38 ln(A) + (0.01 ln(A)− 0.02)d2 -8.20 59.9%

5 α5 ln(A) + (β5 ln(A)− λ5) ln(d) 0.44 ln(A) + (0.33 ln(A)− 1.25) ln(d) -7.23 66.6%

6 α6 ln(A) + (β6 ln(A)− λ6) ln
2(d) 0.40 ln(A) + (0.19 ln(A)− 0.50) ln2(d) -7.66 69.2%

α7 ln(A) + (β7 ln(A)− λ7)d 0.65 ln(A) + (0.29 ln(A)− 0.27)d -7.40 70.3%

7 +(β8 ln(A)− λ8) ln(d) −(0.91 ln(A) + 0.10) ln(d)

α8 ln(A) + (β9 ln(A)− λ9)d
0.5 4.73 ln(A) + (−3.57 ln(A) + 1.04)d0.5 -8.92 70.4%

8 +(β10 ln(A)− λ10) ln
2(d) +(1.54 ln(A)− 0.90) ln2(d)

4.1 Non-parametric g0(d) and g1(d)

We suggest a local weighted GLM to estimate f(d,A) in equation (19) by-passing the need to

impose parametric functions such as those in Table 2. Assuming that both functions g0(dij) and

g1(dij) are smooth, it follows from Taylor expansion that

g0(dij) + g1(dij) ln(Aj) ≈ g0(d) + g′0(d)(dij − d) + (g1(d) + g′1(d)(dij − d)) ln(Aj)

= θ0 + θ1Zij + θ2X1,ij + θ3X2,ij (23)

where Zij = dij − d, X1,ij = ln(Aj) and X2,ij = Zij ×X1,ij . Extending (15) to allow interactions,

ln(E(yij |dij = d)) = ln(si) + θ0 + θ1Zij + θ2X1,ij + θ3X2,ij (24)

which is locally (at a given d) linear in the parameters. We can adopt the local maximum likelihood

steps discussed in Section 3.1.1 where θ0 + θ1Z is replaced by θ0 + θ1Z + θ2X1 + θ3X2. The non-

parametrically estimated f(d,A) by (19) is given by

f̂(d,A) = eθ̂0(d)+θ̂2(d)A = eĝ0(d)+ĝ1(d)A. (25)

4.2 Comparison of Parametric Specifications

For the seven Orange County, CA shopping malls in our illustration, Drezner (2006) measured their

attractiveness (Aj , j = 1, . . . , 7) as follows: (South Coast Plaza mall), A1 = 2.484, (Brea mall),
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Figure 2: Type 1 parametric model (the dashed line) against non-parametric (the solid line) for

four shopping malls.

A2 = 1.529, (Westminster mall), A3 = 1.011, (Main Place mall), A4 = 1.154, (Laguna Hills mall),

A5 = 0.595, (Fashion Island mall), A6 = 2.367 and (Orange mall), A7 = 0.177. Extending the pure

distance models to allow the attractiveness attribute of shopping malls, Table 2 gives the estimated

results for eight parametric models. It is clear that regardless of the form of the parametric

specification, attractiveness adds substantial prediction value as reflected in much improved R2

values. In terms of relative performance, the ranking of the models roughly mimics that for the

pure distance cases with Types 1, 6 and 7 and 8 offering better fits.
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Figure 3: Type 6 and Type 7 parametric model (the dashed line) against non-parametric (the solid

line) for two shopping malls.

Because there is a total of 56 cases (8 models and 7 attractiveness levels), we only present

selected visualizations that are representative of the overall performances. Accordingly, in Figures 2

and 3, selected estimated distance decays (conditional on a given attractiveness level Aj) for the

parametric models are plotted against the non-parametrically estimated decay by equation (25).

For example, as shown in Figure 2, Type 1 parametric model closely resembles the non-parametric
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estimate although its approximation for the least attractive mall (Orange Mall) seems to be off at

shorter distances. In Figure 3, visualizations from Type 6 and Type 7 models are shown for two

selected malls. The performances relative to the non-parametric pattern are comparable with a

slight edge for Type 7 which is consistent with the reported R2.

5 Locating a New Shopping Mall

Once the distance decay function is selected (we proposed 16 Types, 8 pure distance decay and

8 distance decay with attractiveness), the optimal location for a new facility and the estimated

captured market share can be found within a given ǫ > 0 of optimality by global optimization

methods. Since the models with attractiveness predict the market share better, we report only the

results for the eight models with attractiveness. In Table 3 the expressions for the captured market

share based on Table 2 are depicted. We applied the expressions of f̂(d, α̂, β̂, λ̂) for the estimation

of the market share.

Table 3: Gravity Models with Attractiveness

Type f(d, α, β, λ) f̂(d, α̂, β̂, λ̂)

1 A(β
√
d+α)e−λ

√
d A(0.44

√
d−0.06)e−1.28

√
d

2 A(βd+α)e−λd A(0.13d+0.21)e−0.28d

3 A(βd
√
d+α)e−λd

√
d A(0.04d

√
d+0.31)e−0.07d

√
d

4 A(βd2+α)e−λd2 A(0.01d2+0.38)e−0.02d2

5 A(β ln d+α)e−λ ln d A(0.33 ln d+0.44)e−1.25 ln d

6 A(β ln2 d+α)e−λ ln2 d A(0.19 ln2 d+0.40)e−0.50 ln2 d

A(β1d+β2 ln d+α) A(0.29d−0.91 ln d+0.65)

7 ×e−λ1d+λ2 ln d ×e−0.27d−0.10 ln d

A(β1

√
d+β2 ln

2 d+α) A(−3.57
√
d+1.54 ln2 d+4.73)

8 ×e−λ1

√
d+λ2 ln

2 d ×e1.04
√
d−0.90 ln2 d

The common procedures applied for the location of one facility are the Big Square Small Square

(BSSS, Hansen et al., 1981) applied, for example, in Drezner and Zerom (2023a), and Big Triangle

Small Triangle (BTST, Drezner and Suzuki, 2004) applied, for example, in Drezner and Drezner

(2004). A general approach for generating the upper bound is proposed in Drezner (2007). We
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applied the BSSS algorithm because the data is given in a square. Run times are negligible (a very

small fraction of a second) and thus not reported.

The expected market share captured by a facility from a demand point decreases as a function

of the distance in all competitive location models, including, of course, the gravity model and the

16 distance decay types tested in this paper. Therefore, a simple upper bound for a facility located

anywhere in a square or a triangle is the calculated market share at the closest possible distance

between a demand point and the square or the triangle. The formula for the shortest distance to

a square is given in (Drezner et al., 2023; Drezner and Zerom, 2023a), and the shortest distance to

a triangle is given in Drezner and Drezner (2004).
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Zip code Shopping mall Numbers are Types
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added

1 2
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6 7
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Zoom In
8

5

Figure 4: Zip codes, mall locations, and locations of a new facility

We found the optimal location and captured market share for a low-attractive new facility

(A = 0.2), average attractive new facility (A = 1), and a highly attractive new facility (A = 2).

The locations of 80 zip codes and the seven malls, in addition of some results are depicted in
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Figure 4. The coordinates and properties of the shopping malls are available in Drezner et al.

(2020). The best locations for a new mall, as also found in Drezner et al. (2020), are in the area

between facilities 3, 4, and 7 which is quite densely populated. There is a large strip plaza located

in this area. Also, north of Orange County is Los-Angeles County that has malls that serve some

of the population in that area. Our data set does not include these competing facilities, so the

best location for a new mall is expected to be in that area when the tested data set is applied. We

therefore added an eight facility with A = 2 at the best location for Type 8 which is depicted in

Figure 4. We “assume” that when a decision is made to locate a new facility it is known that a

facility is under construction at that location.

Table 4: Locations of a New Facility for Parametric Decay with Attractiveness

A = 0.2 A = 1 A = 2

Type x y MS x y MS x y MS

1 5.37 25.02 4.295% 5.37 25.02 9.913% 8.51 20.11 16.386%

2 6.18 25.15 3.535% 7.35 23.29 9.871% 8.21 22.11 16.721%

3 6.26 25.08 3.497% 7.37 23.23 9.820% 8.24 22.08 16.661%

4 6.98 24.59 4.164% 7.57 23.51 10.607% 8.24 22.62 16.450%

5 8.50 18.67 4.919% 8.50 18.66 10.315% 8.51 20.11 16.413%

6 6.38 25.61 3.697% 6.55 23.87 10.702% 7.89 21.91 18.295%

7 6.88 25.52 3.334% 5.37 25.02 9.892% 8.51 20.11 16.807%

8 8.02 27.71 3.650% 6.86 25.33 9.807% 8.51 20.11 18.306%

Table 5: Decline in Market Share Captured

Type A = 0.2 A = 1 A = 2

1 -6.47% -10.94% 0%

2 -6.06% -0.76% -9.21%

3 -5.65% -0.74% -9.17%

4 -2.96% -1.48% -9.92%

5 -26.25% -17.94% 0%

6 -3.84% -0.16% -8.81%

7 -1.15% -10.94% 0%

8 0% 0% 0%

The locations and market shares captured, when another competing facility is added to the list

of existing facilities, are listed in Table 4. For A = 2 the locations are in a small area for all eight

17



types. However for A = 0.2 and A = 1 the location for Type 5 is changed significantly. It is strange

that the captured market share for A = 0.2 is largest for Type 5. This is explained by the fact that

the expected market share for Type 5 is not accurate. The most accurate estimate is obtained by

Type 8 that has the largest R2 value as reported in Table 2. We therefore calculated the market

share captured at the optimal location for each type by the Type 8 formula. In Table 5 the loss

in market share at the location for a certain type compared with the more accurate evaluation of

the market share by the Type 8 formula is reported. For example, for A = 0.2 the market share

captured at the Type 5 location is 2.691% which is 26.25% below the optimal market share of

3.650% reported in Table 4 for Type 8. A user that applies the power decay (Type 5) would locate

at a much inferior location. He will expect a market share of 4.919% and will be “surprised” to

find out after the facility was located, that he captures only 2.691% which is only 55% of what he

expected.

In Figure 4 the eight locations for the facilities of attractiveness 0.2 are depicted. The area

where all new facilities are located is zoomed in on the right so that the eight locations can be

clearly seen. In spite of adding the new eighth facility, many of the locations are close to the area

between facilities 3, 4, and 7 but most are located more to the north. The Type 5 location is outside

the area further to the south, and the Type 8 location, which is the recommended location by the

R2 criterion, is located more to the north closer to Brea Mall (facility #2).

6 Conclusions

Competitive facilities location problems attempt to find the locations for one or more new facilities

among existing competing facilities that maximize the captured market share. The facilities attract

demand generated by customers in the area. Many approaches to estimate the captured market

share were proposed over the last 100 years. The gravity model (Reilly, 1931) is considered to be

the most accurate one. We introduce a data-driven gravity model where no assumption is made

about the functional form of the distance decay.

The approach is unifying in the sense that it encompasses practically all existing parametric

approaches (such as the power and exponential decays) as special cases. To facilitate practical
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implementation, we also provide an estimation procedure that is based on the generalized linear

models (GLM) that is suited both for non-parametric and parametric gravity models. To the best

of our knowledge, a non-parametric gravity model is new to the literature and is quite timely as

data have become easier to collect and process. To illustrate the contribution, we use real data on

shopping malls in Orange County, California. Although the scale of the data is rather small, the

example is informative to highlight the value of the data-guided approach and how it can also serve

to empirically validate existing parametric distance decays.

In the gravity model it is assumed that the probability that a customer patronizes a facility is

proportional to the facility’s attractiveness and to a distance decay function. Before the paper by

Drezner et al. (2020), most competitive location papers assumed that the distance decay function

is the same for all facilities, and concentrated on approaches to estimate the attractiveness levels

of the facilities which is estimated by public opinion surveys. For example, Nakanishi and Cooper

(1974) suggested that the attractiveness is proportional to a product of characteristics and each

characteristic is rated by customers surveys. However, estimating the expected market share by

actual customer behavior is more accurate than relying on public opinion surveys. We apply the

data based on intercepting customers and inquiring about their zip code, which measures their

actual behavior, rather than their opinion which is less reliable. A more accurate estimate of the

captured market share leads to establishing new competing facilities in better locations by the

optimization procedures.
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