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Abstract
Background: Morphine is commonly used for treating acute and chronic pain. However, its using is
complicated with tolerance and hyperalgesia. Endogenous melatoninergic system is involved in
development of tolerance and hyperalgesia induced by chronic morphine administration, but the precise
mechanism remains unknown.

Methods: 18 male SD rats were randomly divided into Saline(Sal), Morphine(Mor) and
Morphine+Chelerythrine (Mor+Che) group (n = 6, respectively). Each group were received twice-daily
intrathecal injections of saline (10μl), morphine (15μg/10μl) or morphine (15μg/5μl)+ chelerythrine
(5μg/5μl) for consecutive 9 days, respectively. MWT and TWL of all animals were recorded on day 1, 3, 5,
7, 9. The morphine tolerance was depicted as MPAE on day 1, 3, 5, 7, 9 and on day 10 which can be used
to calculate for ED50 of each group. Then we determined the serum level of melatonin by ELISA and
expression of MOR , MT1, MT2 and PKCγ by RT-qPCR and WB in spinal dorsal horn of three group rats.

Results: Comparing with Sal group, the Mor group exhibited a significant lower serum melatonin level and
up-regulation of expression of the MT1, MT2 and PKCγ in the spinal dorsal horn. Co-administration of
chelerythrine with morphine not only attenuates morphine-induced hyperalgesia and tolerance, but also
increases the down-regulation of serum melatonin level) and reduces the up-regulation of expression of
MT1 and PKCγ in spinal dorsal horn compared with Mor group.

Conclusion：Melatonin can reduce morphine-induced hyperalgesia and tolerance of rats via melatonin-
MT1-PKCγ pathway. 

1. Background
As one of classical opioid analgesics, morphine is relied as a mainstay for acute and chronic pain
management. However, the prolonged use of morphine causes hyperalgesia and tolerance[1, 2].
Morphine-induced hyperalgesia, presents as exaggerated responses to nociceptive stimulation[3]. While
morphine-induced tolerance renders the patient to require increase doses of morphine to achieve target
level of analgesia[4]. Although there are various overlaps in mechanism between morphine-induced
hyperalgesia and tolerance[5], the precise mechanisms involved are not yet fully understood.

Melatonin, one of neuroendocrine hormones produced by pineal gland, has various important
physiological effects[6, 7]. Notably, growing body of literature has shown that melatonin exerts analgesic
action though MT1 and MT2, especially the latter[8]. These receptors present with high density in the
superficial lamina I–V and X where play an important role in pain modulation and transmission.
Moreover, there are evidences that endogenous melatoninergic and opioidergic systems have crosstalk
and both contribute to development of tolerance and hyperalgesia[9, 10]. Therefore, it is a promising
approach to solve morphine-induced hyperalgesia and tolerance by researching their shared pathways.
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Previously, we found MT1 decreased and PKCγ increased in the spinal dorsal horn of morphine-induced
hyperalgesia and tolerance rats[11]. PKCγ is a main form of PKC family with crucial effects downstream
of MOR[12]. It contributes to MOR desensitization which is one of main mechanisms underlying
morphine-induced hyperalgesia and tolerance[13-15]. PKC can also be mediated by melatonin via MT1
and MT2[16]. Furthermore, several researches have indicated that melatonin delivery can decreased
morphine-induced PKC activity or reduced expression of PKCγ[10, 17]. Thus, PKCγ may be the shared
downstream of melatonin receptors and MOR. However, the definite pathway of melatonin mediating
morphine-induced hyperalgesia and tolerance remains elusive. We hypothesized that melatonin reduces
morphine-induced hyperalgesia and tolerance via melatonin-MT1-PKCγpathway and we tested this
hypothesis with PKCγ antagonist chelerythrine in rats with morphine-induced hyperalgesia and tolerance.

2. Methods
This study was conducted according to National Institutes of Health guide for the care and use of
Laboratory animals (NIH Publications No. 8023, revised 1978) and all the procedures were done after the
approval of the Institutional Animal Experimental Ethics Committee of Sichuan University (Chengdu,
China, Approval NO.2017041A).

2.1 Experimental animals
Adult male Sprague-Dawley rats weighing 230-300 g (n = 18) provided by Chengdu Dossy Biological
Technology Co., Ltd (Chengdu, China) were housed in separate cage with food and water freely. The room
has 24°C maintained temperature with a 12-hour light/darkness cycle. All experiments were performed
during 8 am to 4 pm on each test day and all behavioral assessments were performed in the morning.

2.2 Intrathecal catheter implantation
The procedure of intrathecal (i.t.) catheter insertion was carried out as described in our pervious
study[11]. In brief, pentobarbital sodium (60 mg/kg, i.p.) was used to anesthetize rats. Then cervical and
lumbar dorsal skin was sterilized with povidone-iodine. An incision about 1.5cm on the middle line of
lumbar skin (L4–S1) was made. The bilateral muscle along L5 spinous process was cut. Then the L5
spinous process was removed and the intervertebral membrane between L4 and L5 was exposed. The
ligamentum flavum was then punctured by a 22gauge needle following a sterile polyethylene (PE-10)
catheter was inserted into the subarachnoid space rostrally about 2cm length. The catheter was fixed to
the muscle and anadesma, and the proximal ends of the catheter were tunneled underneath the skin and
exist out to the cervical region. After injecting 5μl saline to ensure patency of the catheter, the tip of the
catheter was sealed via fusing. The wounds were sutured layer by layer by 5-0 surgical sutures. The
animals were allowed to recover for 3 days in individualized cages before use. The correct placement of
the catheter was then verified by observing symmetrical lower limbs paralysis induced by intrathecal
injection of 10μl 2% lidocaine and completely recovered from the spinal anesthesia on the fourth day
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after surgery. The animals showing any signs of prolonged motor impairment after the spinal anesthesia
were excluded. The correct placement of the catheter in the subarachnoid space at the lumbar
enlargement was confirmed by dissection at the end of experiment.

2.3 Drug and vehicle administration
Morphine hydrochloride (Shenyang First Pharmaceutical Factory, Shenyang, China) was dissolved in
saline. Chelerythrine was dissolved in Dimethyl Sulfoxide (DMSO). Eighteen rats were divided randomly
into three groups, Saline（Sal）, Morphine(Mor) and Morphine+ Chelerythrine (Mor+Che) (n=6, each). The
Mor group received twice-daily i.t injections of morphine (15μg/10μl) followed by a flush of 10μl saline
delivery into the subarachoid space for consecutive 9 days（twice a day at 9AM and 4PM, respectively)
using a microinjection syringe (Gaoge, Shanghai, China). The Mor+Che group received twice-daily i.t
injections of morphine (15μg/5μl) and chelerythrine (5μg/5μl) followed the same flush as Mor group. The
Sal group received the same amount of 20μl saline, but no morphine, in the same fashion as done for the
morphine group.

2.4 Behavioral assessments
Prior to the first behavioral test, rats were adapted to the testing environment for 3 h per day for
consecutive 5 days. Habituation covers the process of moving rats from feeding room to the testing room
and then they were kept in the testing equipment for 3 h. The behavioral test was implemented by a
researcher blinded to the rat groups. Mechanical hindpaw withdrawal threshold and thermal withdrawal
latency of all animals were recorded on the 1, 3, 5, 7, 9 day respectively during drugs injection. The
baseline nociceptive thresholds (mechanical withdrawal threshold followed by thermal withdrawal
latency) on right hindpaw of each group were determined prior to drugs administration on each
designated test day. The thermal withdrawal latency was measured again 30min after the first drug or
vehicle administration per day between 9:00 am to 10:00 am. After the final behavioral test, rats were
euthanatized by anesthetization with pentobarbital sodium (60 mg/kg, i.p.) followed by cervical
dislocation and the L3-L5 spinal cord were harvested.

2.4.1 Mechanical allodynia
Mechanical withdrawal threshold (MWT) was measured via a von Frey filament marked with a calibrated
range of bending force (0.6, 1, 1.4, 2, 4, 6, 8, 10, 15, and 26 g) as described previously. Each rat was put
into a plastic cage having a wire mesh bottom and allowed to acclimate for 30 min before measurement.
A single von Frey filament was applied vertically to the region between feet pads in the aspect of right
hind paw plantar for five times with an interval of 5 s. At least one distinct withdrawal response out of
five applications was treated as a positive record. Filaments were used in an up-and-down rule in
accordance with a negative or positive response to determine the hindpaw withdrawal threshold.
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2.4.2 Thermal hyperalgesia
Thermal withdrawal latency (TWL) to radiant heat was determined according to a previously described
method using a thermal testing apparatus (Ugo Basile, Plantar Test 37370, Italy). Rats were placed
individually into plexiglas cubicles placed on a transparent glass surface and allowed to acclimate for 30
min before testing. The light beam from a projection bulb which was located below the glass was
directed at the region between feet pads in the plantar aspect of right hindpaw. The period from the
beginning of radiant heat stimulation to withdrawal of the hindpaw was regarded as hindpaw withdrawal
latency. The baseline latency of about 12 s and a cut-off time of 20 s which was set to prevent thermal
injury. Three trials with an interval of 5 min were made and scores from three trials were averaged to yield
mean withdrawal latency. The measurements were implemented both before and 30 min after morphine
administration.

2.4.3 Morphine tolerance
The morphine tolerance was depicted as the percentage of maximal possible antinociceptive effect
(%MPAE) in the morning from day 1 to 9 and on day 10. The %MPAE was calculated as %MPAE= [(Test
PWL-Basic PWL)/ (cutoff time-Basic PWL)] × 100. Cumulative dose-response curves were determined on
day 10 after long-term morphine and saline administration according to previously described method[11].
Rats were firstly administrated with a low dose morphine (10μg) followed by antinociceptive effect
assessment 30 minutes later through TWL test and then received a next dose (cumulative dosing
increase by 2-fold) and were tested again 30 minutes afterward until the rats couldn’t feel the stimulation
so that  failed to move the hindpaw within the cutoff time.

2.5 ELISA
On day 10, all rats were deeply anesthetized with pentobarbital (60 mg/kg, i.p.). The blood was taken
from ventriculus dexter in the afternoon to minimize fluctuation of the serum melatonin level. The blood
was centrifuged at 1500rpm for 15min and the serum was obtained and placed in EP tubes wrapped with
aluminum foil for protection from light and stored at −80 °C until use. The level of serum melatonin was
assayed though a rat-specific ELISA kits (XL-Er1047, YonghuiBiological Technology Co., Ltd, Beijing)
according to the manufacturer’s instructions.

2.6 Real-Time (RT)-PCR
A part of tissues harvested from each rat for preparation of western blot were used for RT-PCR. Firstly, the
tissues were isolated for the total RNA extraction. Single-strand complementary DNA was designed using
Primer Premier 6.0 and synthesized by Sangong Biotech (Shanghai,China). All complementary DNA
samples were stored at -80°C before using. RT-PCR was performed using a PikoReal Real-Time PCR
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System (PIKORed 96, ThermoFisher, US). Relative messenger RNA (mRNA) levels were calculated
according to the 2- △△CT method. Oligonucleotide primers were used as Table1.

Table 1． Sequences of primers for RT-PCR
Target gene Forward primers Reverse primers

β-actin gaagatcaagatcattgctcct tactcctgcttgctgatcca

MT1 tgtcgcttacaccgttgctccagat ggcagcagcactgttcgtcacttca

MT2 tgatctccaactgccgcctccattc agctgcacttgtccaaagcctctt

MOR tctcttctgccatcggtctgcctgt tacagccacgaccaccagcaccat

PKCγ ggttcaccgccgatgccacgaatt ctctgtatggtccacgccgcaaagg

 

2.7 Western blot
Pentobarbital (60 mg/kg, i.p.) was used to anesthetize rats in each group (n = 3/6) and decapitation was
performed for rapid tissue harvesting. The L3-L5 segment of the spinal cord was first divided into the
right and left side and then further separated into the dorsal and ventral horn, respectively. Tissue
samples were homogenized in RIPA buffer (50mM Tris (pH 7.4),150mM NaCl,1% NP-40,0.1% sodium
deoxycholate) and were allowed to homogenize for 10min on fragmentized ice. The samples were
centrifuged at 4°C for 15 min at 12000rpm. The protein concentration of the supernatants was assayed
via a BCA protein assay kit (KGP903, KenGEN BioTECH, Jiangsu, China). Supernatants (50μg) were
warmed for 5 min at 100°C in loading buffer (50 mM Tris–HCl, 2 %SDS, 2 % β-mercaptoethanol, 8 %
glycerol, and 0.1 % bromophenol blue) and resolved by SDS-PAGE on 10 % polyacrylamide gels. After gel
electrophoresis, proteins were electrophoretically transferred to PVDF membranes (HYBOND, Inc.USA).
The membranes were blocked via 5%BSA in Tris-buffered saline (TBST) with 0.1 % Tween 20 for 2 h and
incubated overnight at 4 °C with a primary antibody to MOR(1:200, ab10275, Abcam, Cambridge, UK),
MT1 (1:500, NBP1-71113, Novus Biologicals, US), MT2 (1:200, ab203346, Abcam, Cambridge, UK), PKCγ(
1:200,ab71558, Abcam, Cambridge, UK),β-actin (1:5,000)；Membranes were then incubated in HRP
conjugated secondary antibody (1:5,000; ab6721 and ab6789, Abcam, Cambridge, UK) for 2-3 h at room
temperature, visualized with TBST for 3 times (10min per time), and exposed onto X-films for 1–5 min.
The X-films were scanned and the density of target bands was analyzed by Image Lab (BIO-RAD, US)

2.8 Statistical data analysis
Data are presented as mean ± SEM. The SPSS 16.0 (Chicago, IL) was used to conduct statistical analysis
and the figures were presented by GraphPad Prism 6.0 software (La Jolla, CA, USA). Alteration of MWT,
TWL and MPAE% of day1 to day 9 between groups were assessed with two-way analysis of variance
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(ANOVA) （group × day）followed by the Bonferroni post hoc test for multiple comparisons. The data of
ELISA, western blot, RT-PCR of each group were compared by one-way analysis of variance (ANOVA)
followed by the Bonferroni post hoc test for multiple comparisons. To examine the degree of morphine
tolerance, the ED50 value of morphine in each group was determined via the formula calculated form
linear curve estimation when y=0.5. The up-down reversals were used to get ED50 dose and 95%
confidence intervals (95% CI) of morphine anti-nociception effect and the probit analysis was applied for
the three groups. P-values <0.05 was considered statistically significant.

3. Results
3.1 Effect of co-administration of chelerythrine with morphine on development of hyperalgesia.

The mechanical withdraw threshold (MWT) of Sal group remained unchanged over a period of 9 days.
Administration of morphine alone or morphine plus chelerythrine lead MWT go down significantly
starting from day 3 to the last test day. The MWT reduction tendency of Mor group moderated through
test day 7 and day 9 whereas the MWT reduction tendency of Mor+Che group moderated through test
day 5 to day 9. Comparing with that on day 1, MWT of Mor group was reduced by 96.10% on the day
9.On the other hand, MWT of Mor+Che group was only reduced by 60.16% on the day 9 comparing with
that on day 1(Figure 1A).Meanwhile, thermal withdraw latency (TWL) showed almost no change during 9
days of course in the Sal group. TWL in Mor group showed significant reduction on day 3 and continued
to decrease and it seemed reaching its steady state on day 9. On day 9, it was reduced by 65.41%. On the
other hand, TWL in Mor+Che group also showed significant reduction on day 3 but it seemed reaching its
steady state on day 5. On day 9, it was only reduced by 40.48%. (Figure 1B).

3.2 Effect of co-administration of chelerythrine with morphine on development of morphine tolerance

Our data show long-term intrathecal morphine delivery drives dose escalation of morphine to get
maximal possible antinociceptive effect (MPAE), but co-administration of chelerythrine with morphine
mitigates that effect (Figure 2A). MPAE of Mor group from day 3, 5, 7, 9 decreased 43.79% (p < 0.001),
79.01% (p < 0.001), 91.82% (p < 0.001), 97.04% (p < 0.001), whereas MPAE of Mor+Che group from day 3,
5, 7, 9 decreased 13.22% (p >0.05), 20.53% (p < 0.001), 32.43% (p < 0.001), 44.70% (p < 0.001), compared
with the value on day 1 respectively. Chronic intrathecal morphine or co-administration of chelerythrine
with morphine both produced a rightward shift in the cumulative dose response curve of morphine on day
10, but the rightward shift level of Mor+Che group is less than that of Mor group (Figure 2B). The
morphine ED50 values of rats in three groups on day 10 were presented in Table 2. The ED50 for
morphine, the morphine dose needs to produce 50% of the maximal anti-nociceptive effect of morphine,
was 6.44μg, 26.04μg,15.30μg for Sal, Mor and Mor+Che group respectively. ED50 of Mor group was 4.03
times of that of Sal group and 1.70 times of that of Mor+Che group on day 10 (p<0.001). (Table 2)
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Table 2. ED50 and 95% CI of morphine in Sal, Mor and Mor+Che group

  ED50 (μg) 95% CI (μg)

Sal group 6.44 4.82 to 7.16

Mor group 26.04 23.29 to 28.30***

Mor+Che group 15.30 13.53 to 17.06***###

The measurement was conducted on day 10 after completion of morphine delivery procedures for 9
consecutive days. ED50: the morphine dose that produced 50% of the maximal possible anti-
nociception effect 95% CI: 95% confidence intervals. ***p<0.001, as compared with the Sal group on
day 10, ### p<0.001, as compared with the Mor group on day10.

3.3 Effect of co-administration of chelerythrine with morphine on the serum melatonin level of rats with
morphine-induced hyperaglesia and tolerance.

The level of serum melatonin was determined on day 10. The serum melatonin level in Mor was lower
than that of Sal group(p=0.0036). Whereas the serum melatonin level in Mor+Che group was lower than
Sal group(p=0.0425) but higher than Mor group(p=0.0425) (152.63±6.94 for the Sal group vs.92±4.86 for
Mor group vs.120.03±9.78 for Mor+Che group). (Figure 3).

3.4 Effects of chronic intrathecal co-administration of chelerythrine with morphine on expression of MOR,
MT1, MT2 and PKCγ in the spinal cord dorsal horn of rats with morphine-induced hyperaglesia and
tolerance.

After intrathecal delivery of saline, morphine or morphine+ chelerythrine for 9 consecutive days, we
measured mRNA of MOR, MT1, MT2 and PKCγ in rat’s spinal dorsal horn on day 10. The mRNA of MT1,
MT2, PKCγ in Mor group were all higher than those of Sal group (p=0.0014, p=0.027, p=0.0008,
respectively). There was no significant difference in mRNA levels of MOR between the Sal group, Mor
group and Mor+Che group (p>0.05). (Figure 4). The mRNA of MT1, PKCγ in Mor+Che group were lower
than those of Mor group (p=0.006, p=0.0005, respectively), but no significant difference in mRNA level of
MT2 was shown between the Mor group and Mor+Che group (p>0.05). Beside that mRNA level of MT2 in
Mor+Che group was higher than that of Sal group(p=0.0301), there was no significant difference in
mRNA levels of MOR, MT1 and PKCγ between the two groups (p>0.05) (Figure 4).

Protein level of MOR, MT1, MT2 and PKCγ were determined using Western blot analysis. In Mor group, the
protein level of MT1, MT2, PKCγwere higher than those in Sal group (p=0.0001, p=0.0108, p=0.0001,
respectively). While the protein of MOR in Mor group showed no significant difference with that in Sal
group (p>0.05). There was no significantly difference in protein level of MOR and MT2 between the Mor
group and Mor+Che group (p>0.05). While the protein of MT1 and PKCγprotein in Mor+Che group reduced
significantly compared with those in Mor group (p=0.0005, p<0.0001, respectively). The MT2 protein of
Mor+Che group increased significantly（p=0.0078) while the PKCγ reduced significantly compared with
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Sal group（p=0.0002) .The MOR and MT1 protein of Mor+Che group showed no significantly difference
with those in Sal group (p>0.05). (Figure 5).

4. Discussion
In the present study, we found that intrathecal morphine for 9 consecutive days leads to morphine-
induced hyperalgesia and tolerance in adult rats, and reduces the serum melatonin level, increased
melatonin receptor MT1, MT2 and PKCγ in spinal dorsal horn of rats. Co-administration of chelerythrine
with morphine not only reduces morphine-induced hyperalgesia and tolerance, but also increases the
reduced serum melatonin level and down-regulates the higher level of MT1 and PKCγ. But no significant
change of MT2 in spinal dorsal horn of rats was observed by co-administration with chelerythrine.

4.1 PKCγplays a crucial role in development of morphine-induced hyperalgesia and tolerance

As our previous study[11], intrathecal administrating morphine to rats for 5 consecutive days can result in
behavior of hyperalgesia and tolerance. But in that study, the degree of morphine hyperalgesia and
tolerance is not severe enough and the state has not stabilized. Because the rate and extent of
development of morphine tolerance or hyperalgesia is related to the amount of morphine used and the
duration of administration[18].It is helpful to observe changes of the indicators to be detected when the
model is in a steady state. Therefore, we not only prolonged the duration of medication for 9 days, but
also increased the dosage to 30 ug per day in our current study compared to 5 days and 20 ug per day of
previous study. Our results show that, compared with Sal group, the force causing equal level of pain and
TWL reduced in Mor group. The tendency of MWT and TWL of Mor group moderated through test day 7
and day 9 seeming to have reached severe enough hyperalgesia and a stable state. Co-administration of
chelerythrine with morphine minimized morphine-induced hyperalgesia and tolerance. These results
suggest PKCγ inhibitor chelerythrine can alleviate morphine-induced hyperalgesia and tolerance
effectively.

Several studies have report the activation of PKCγ in the spinal dorsal horn plays an important role in the
development of morphine-induced hyperalgesia and tolerance[14, 15], and this effect may act through
mediating MOR phosphorylation[12]. There is no analgesic effect of chelerythrine itself[10]. Our results
show that PKC inhibitor chelerythrine can significantly reduce morphine-induced hyperalgesia and
tolerance, which is consistent with previous studies [14, 15, 19].

4.2 Melatoninergic system participates in morphine-induced hyperalgesia and tolerance at multiple levels.

Our result showed decreased serum melatonin level in rats with morphine-induced hyperalgesia and
tolerance, which is consist with our previous study[11]. Shavali et al[20] found that melatonin exerted
analgesic effect not through opioid receptors but via causing the release of beta-endorphin. Furthermore,
analgesic effect of morphine decreases after excision of the pineal gland where is the main place
secreting melatonin[21]. Studies have shown that melatonin can regulate pain through the endogenous
pain-modulating system (PMS)[22]. Administration of exogenous melatonin can alleviate allodynia and
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hyperalgesia in neuropathic pain models[23], and this analgesic effect is dose-dependent[24, 25]. This
indicates the decrease of melatonin level is associated with decreased MWT and TWL in rats. Thus, to a
certain extent, reduction in serum melatonin level is involved in morphine-induced hyperalgesia and
tolerance. But we didn’t point out the precise location it works. It can happen either at peripheral or central
or both.

Melatonin receptors also involve in morphine-induced hyperalgesia and tolerance. Our study
demonstrated increased MT1 and MT2 level in rats’ spinal dorsal horn with morphine-induced
hyperalgesia and tolerance which is different with our pervious study that administration of morphine
lead MT1 down-regulation but no change in MT2[11]. The development of tolerance and hyperalgesia
can be affected by both duration and dose of morphine, because the varying of both pharmacokinetic
and pharmacodynamic factors [18]. We therefore speculate the difference may due to the prolonged
duration of morphine administration or the increased dose of morphine administered. It is suggested that
the melatonin receptors’ level in the rats’ spinal dorsal horn of may have a dynamic fluctuation process at
different stages in development morphine hyperalgesia and tolerance. Meanwhile, we speculate that this
volatility change in MT1 is characterized by a decrease first and then an increase. Niles [26] and
Bahna[27] et al. found that MT1 and MT2 were up-regulated in rats’ hippocampus after valproic acid
induced neuropathic pain stimulation, suggesting that melatonin receptors are dynamically regulated by
remodeling of pain-related nervous systems[23], which support our speculation. Furthermore, it suggests
the MT1 and MT2 up-regulation is a feedback adjustment consequence to pain-related nervous system
change due to morphine hyperalgesia and tolerance. Since the rat spinal dorsal MT2 level was not
measured in the first five days of the study, it is not clear whether the MT2 level also reduced first and
then increased as MT1 or directly increased.

4.3 Endogenous melatoninergic system involves in development of chronic morphine-induced
hyperalgesia and tolerance through serum melatonin-MT1-PKCγ pathway

PKCγ,especially which in the spinal dorsal horn, plays an important role in development of morphine-
induced hyperalgesia and tolerance[28, 29]. In the present study hyperalgesia and tolerance was observed
with increased PKCγ in rats’ spinal dorsal horn, and was ameliorated by PKC antagonist treatment. This
consist with previous studies demonstrated morphine hyperalgesia and analgesic tolerance can be
attenuated by co-administration of morphine with inhibitors of PKC effectively[29, 30]. In addition, Wei et
al[17] and Li et al[10]found that administration of exogenous melatonin can alleviate morphine-induced
hyperalgesia or tolerance by inhibiting PKCγ activation or reducing the up-regulation of PKCγ expression.
Our study showed blocking PKCγ increased the down-regulated serum melatonin level and reduced
morphine-induced hyperalgesia and tolerance, suggesting PKCγ also involves in the mechanism
underlying the effect of melatonin mitigates morphine-induced hyperalgesia and tolerance. Melatonin
exerts its’ antinociceptive effects mainly through MT1 and MT2[25], and pervious report has
demonstrated melatonin can activate PKC via its’ receptor MT1/ MT2[16]. However, we found blocking
PKCγ only decreased MT1 but not MT2, indicating that melatonin attenuated morphine-induced
hyperalgesia and tolerance probably via serum melatonin-MT1-PKCγ pathway.
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5. Conclusion
Our study demonstrated that melatonin is involved in hyperalgesia and tolerance induced with long-term
administering morphine and PKCγ antagonist chelerythrine minimize the severity of hyperalgesia and
tolerance. It seems that melatonin can reduce morphine-induced hyperalgesia and tolerance of rats via
melatonin-MT1-PKCγ pathway.

List Of Abbreviations
PKC: protein kinase C; MOR:μ-opioid receptor; MT: melatonin receptor; Sal: Saline;Mor:Morphine; Che:
chelerythrine; mechanical withdraw threshold (MWT); thermal withdraw latency (TWL); maximal possible
antinociceptive effect (MPAE)
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Figures

Figure 1

Effect of long-term intrathecal co-administration of chelerythrine with morphine on mechanical withdraw
threshold and thermal withdraw latency (A) The mechanical withdrawal threshold (MWT) of rats.
Comparing with Sal group, MWT of Mor group was reduced by 61.16%, 76.24%, 92.71%, 95.00% on day 3,
5, 7, 9 respectively and was reduced by 46.34%, 50.50%, 48.96%, 48.96% on day 3, 5, 7, 9 respectively in
Mor+Che group. (B) The thermal withdrawal latency (TWL) of rats. Comparing with Sal group, TWL of
Mor group was reduced by 39.38%, 53.25%, 63.46%, 64.85% on day 3, 5, 7 ,9 respectively and was
reduced by 28.49%, 33.72%, 36.67%, 36.34% on day 3, 5, 7, 9 respectively in Mor+Che group. *p< 0.05,
**p< 0.01, ***p< 0.001, compared with Sal group on the corresponding days and analyzed by Bonferroni
correction; +p< 0.05, +++p < 0.001,compared with Mor group on the corresponding days and analyzed by
Bonferroni correction; +p< 0.05, +++p < 0.001. Data is presented as mean ± SEM, n=6 in each group.
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Figure 2

Effect of chronic intrathecal co-administration of chelerythrine with morphine on MPAE (A) MPAE vs.
number of day of administrating saline, morphine and morphine+ chelerythrine, **p<0.01, ***p<0.001,
compared with the value on day 1; ++p < 0.05, +++p < 0.001, compared with the value on the same day in
Mor group. (B) Morphine cumulative dose response curve of Sal group, Mor group and Mor+Che group.
After completion of consecutive 9 days of intrathecal solution delivery, the cumulative dose response
curve of morphine to achieve MPEA was generated on day 10. Data are presented as mean ± SEM, n= 6
rats for each group.

Figure 3
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Serum melatonin level of the rats after receiving saline, morphine or morphine+chelerythrine
administration for 9 consecutive days The serum melatonin was measured on day10 using ELISA, *
p<0.05, ** p<0.01, compared with Sal group; # p<0.05, compared with Mor group. Data is presented as
mean ± SEM, n=6 for each group.

Figure 4

mRNA level of MOR, MT1, MT2, and PKCγin the spinal dorsal horn of the rats in Sal, Mor and Mor+Che
group
(A) There was no significant difference in mRNA level of MOR between Sal, Mor and Mor+Che
group on day 10 after delivery of drug or vehicle for 9 consecutive days. (B) The mRNA expression of
MT1 in Mor group was significantly higher than that in Sal group, and it in Mor+Che group was
significantly lower than that in Mor group. (C) The mRNA of MT2 of Mor and Mor+Che group were
significantly higher than that in Sal group. (D) PKCγmRNA level was significant higher in Mor group than
that of Sal group, and it in Mor+Che group was significantly lower than that in Mor group. *p < 0.05, ***p<
0.001, compared with Sal group; # p<0.05, ## p<0.01, compared with Mor group. Data are presented as
mean ± SEM, n= 3 for each group.
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Figure 5

Protein level of MOR, MT1, MT2 and PKCγin the spinal dorsal horn of rats in Sal, Mor and Mor+Che group
Protein levels were measured with Western blot with on day 10 after intrathecal delivery of drug or vehicle
for 9 consecutive days. (A) There was no significant difference in MOR protein levels between three
groups. (B) MT1 protein level in Mor group was significantly higher than that of Sal group, and it in
Mor+Che group was significantly lower than that in Mor group. (C) The MT2 protein levels in Mor and
Mor+Che group were significantly higher than that of Sal group. (D) PKCγprotein level of Mor group was
significantly higher than that of the Sal group, and it in Mor+Che group was significantly lower than that
in Mor group. PKCγprotein level of Mor+Che group was significantly lower than that of the Sal group. **p
< 0.01, ***p< 0.001, compared with Sal group; ### p<0.001, compared with Mor group. Data are
presented as mean ± SEM, n= 3 rats for each group.
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