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Abstract

Teleconnections like the El Nifio/Southern Oscillation affect climate and weather conditions across the
globe, including conditions that modulate tornado activity. Early studies of teleconnection/tornado
activity relationships provided evidence of links between one teleconnection and tornado activity. Later
attempts introduced multivariate approaches by analyzing bivariate distributions and integrating multiple
teleconnections in statistical models to predict variability in tornado activity. However, little attention has
been given to teleconnection interactions and the role of these interactions in modulating tornado activity.
Here, we employ a data-driven, multiple logistic regression modelling approach to explore the interactions
between the El Niflo/Southern Oscillation, North Atlantic Oscillation, Artic Oscillation, and Pacific North
American pattern and their ability to predict the odds of an active tornado period in the southeastern
United States. We develop models at the annual, seasonal, and monthly scales and, in doing so, illustrate
that the teleconnections and teleconnection interactions that best predict the odds of an active tornado
period differ across timescales and that the relationships exhibit clear seasonality. We also show climate
conditions associated with select interactions that help explain the elevated tornado activity, namely
anomalously high near-surface air temperature and humidity steered by an anomalously strong
subtropical high.

1 Introduction

Tornadoes are narrow, violently rotating columns of air that extend from a thunderstorm to the ground
(Glickman 2000). They occur throughout the world, but are most common in the United States (US),
which experiences more than 1,200 a year, on average, especially east of the Rocky Mountains (SPC
2018). Tornadoes are destructive to human development as well as fatal for human life. For example, the
average annual economic loss from tornadoes was $982 million between 1949 and 2006 (Changon
2009) and while there has been a decline in fatalities over time (Brooks and Doswell 2002; Ashley 2007;
Fricker and Friesenhahn 2022), the average annual fatality rate between 1995 and 2018 is 74 (Fricker and
Friesenhahn 2022).

Studies that document the spatiotemporal distributions and shifts in tornado activity in the US show that
the Southeast (SE) region is particularly tornado prone (Dixon et al. 2011; Coleman and Dixon 2014; Agee
et al. 2016; Ashley and Strader 2016; Gensini and Brooks 2018; Moore 2018; Moore and DeBoer 2019).
Societal exposure is also high in the SE due to denser population, urban land use, and non-permanent
and non-attached housing units (Cutter et al. 2003; Ashley and Strader 2016; Strader et al. 2017). The
coupling of relatively high risk and exposure sets the stage for high tornado vulnerability in the SE US
under the framework of place-based vulnerability (Cutter et al. 2003; Fricker and Elsner 2019). Due to the
high vulnerability, it is important to understand the variability of tornado activity, and the drivers of
variability, to improve monthly and seasonal outlooks and to mitigate losses.

Some studies have sought links between large-scale climate patterns and tornadoes to predict whether
an extended period (e.g., month or season) will be active or inactive. Such monthly or seasonal outlooks
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(e.g., Allen et al. 2015; Lepore et al. 2017) could allow state and local agencies to communicate with the
public to raise awareness and preparedness. The El Nifio/Southern Oscillation (ENSO), which is linked to
tornado activity via modulations in the jet stream (Allen et al. 2015; Cook et al. 2017; Lepore et al. 2017)
and environmental ingredients that favor tornadoes (i.e., moisture, instability, shear, and lift), has been a
focus of these efforts. Different metrics of ENSO have shown skill in predicting tornado activity (Allen et
al. 2015; Lepore et al. 2017; Moore 2019), but, although skillful, ENSO does not account for much of the
variability observed in tornado activity (Marzban and Schaefer 2001) and active (inactive) periods do
occur when the ENSO state is unfavorable (favorable) for tornadoes (Moore et al. 2018). Furthermore, in
the continuum of the atmosphere, ENSO interacts with other atmospheric teleconnections that also alter
the jet stream and tornado ingredients (Deser 2000; Alexander et al. 2002): the Pacific-North American
Oscillation (PNA) (Muioz and Enfield 2011), the North Atlantic Oscillation (NAO) (Mufioz and Enfield
2011; Elsner et al. 2016), and the Artic Oscillation (AO) (Childs et al. 2018). These teleconnections,
therefore, should be considered with ENSO to determine if they improve the predictability of tornado
activity. This is important in all regions impacted by tornadoes, but especially in the SE US where tornado
risk and vulnerability are high and perhaps increasing (Cutter et al. 2003; Agee et al. 2016; Ashley and
Strader 2016; Strader et al. 2017; Gensini and Brooks 2018; Moore 2018; Moore and DeBoer 2019; Fricker
and Elsner 2019) and where the connection between tornadoes and some teleconnections has been
shown to be relatively strong (Allen et al. 2015; Elsner et al. 2016; Lepore et al. 2017; Childs et al. 2018;
Moore 2019; Nouri et al. 2021).

Other studies have explored the relationship between multiple teleconnections and US tornadoes. For
example, Elsner et al. (2016) analyzed springtime ENSO, NAQ, and sea surface temperature in the Gulf of
Alaska and western Caribbean to assess seasonal tornado risk. Childs et al. (2018) analyzed cold season
tornado activity in relation to ENSO and AO, while DeBoer (2019) generated multivariate statistical
models using ENSO, NAQ, AOQ, and PNA to predict the odds of an active tornado month. Nouri et al. (2021)
also analyzed a suite of teleconnections in relation to annual tornado activity across different US states
and regions, but their approach built on previous efforts by including teleconnection interactions. Tippett
et al. (2022) also recently examined the interaction between ENSO and AO on a tornado environment
index, but for only February, March, and April.

While this body of literature illustrates the potential of teleconnections to help predict tornado activity, it is
spread over different timescales and periods and yields variable results. Missing from this body is a
comprehensive analysis of the relationship between tornado activity and multiple teleconnections and
their interactions, at multiple timescales. In response, here we propose a regional data-driven modeling
framework that exists annually, seasonally, and monthly. Our study aligns with this growing body of
literature but takes a more exploratory approach by using stepwise multiple logistic regression to identify
the most parsimonious model composed of a teleconnection, suite of teleconnections, or teleconnection
interactions that best predicts the odds of an active tornado period across different timescales. In doing
so, we suggest that the tornado/teleconnection relationship is statistically scale dependent and seasonal.
We also illustrate a way to explore teleconnection interactions to guide future
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climatological/meteorological research into the physical mechanisms that may be driving such statistical
interactions.

2 Data and Methods

We use tornado data from the Storm Prediction Center's (SPC) Severe Weather Database (SPC 2018).
Only tornadoes that occurred within the SE US during the period 1954—-2022 were considered. We define
the SE as the state boundaries of Arkansas, Alabama, Georgia, Florida, Kentucky, Louisiana, Mississippi,
North Carolina, South Carolina, Tennessee, and Virginia, consistent with prior work (Fig. 1) (Guo et al.
2016; Moore 2018). Furthermore, only those tornadoes rated 1 or higher by the Fujita damage scale prior
to 1 February 2007 or the Enhanced Fujita damage scale thereafter (E(F) scales hereafter) were
considered to reduce the influence of non-meteorological factors on the time series (Verbout et al. 2006).
And though the record of E(F)1 + tornadoes includes low-frequency variability, no long-term trend exists
(Moore and DeBoer 2019) as compared to the record of E(F)0 + tornadoes.

Several teleconnection indices are used as a means of linking weather patterns across space (Table 1).
Sea surface temperature (SST) anomalies averaged over the Nifio 3.4 region (5°S—5°N, 170°-120°W)
were taken from NOAA Earth System Research Laboratory to represent ENSO (NOAA 2018b). Nifio 3.4
SST anomalies serve as the basis of the Oceanic Nifio Index (ONI), the 3-month running mean of SST
anomalies in the Nifio 3.4 region and has been used in tornado studies (Allen et al. 2015; Lepore et al.
2017). The Nifio 3.4 index is documented at the monthly scale and was preferred in this study over ONI
because the relationships between tornado counts and ENSO were examined at the monthly rather than
seasonal scale. PNA, NAO, and AO indices were taken from Climate Prediction Center (NOAA 2018b). PNA
and NAO are represented by monthly standardized 500-mb geopotential height anomalies. AO is
represented by monthly standardized 1000-mb geopotential height anomalies.
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Table 1

Description of teleconnections phases and their influence in the SE.

Teleconnection  Definition Impacts in the Southeast
ENSO Coupled oceanic-atmosphere EN phase: Southwesterly jet stream
circulation between the eastern and leading to more frequent midlatitude
western equatorial Pacific Ocean cyclones (Smith et al. 1996).
(NOAA 2018a).
LN phase: Temperatures increase and
low-level jets advect moisture from the
Gulf of Mexico into the coastal states
(Gilford et al. 2013).
NAO Circulation pattern mainly confined to Positive phase: Bermuda High and
the extratropics involving the pressures  Icelandic Low are enhanced
between the Bermuda-Azores High and  strengthening the westerlies aloft
Icelandic Low (Barry 2001). raising surface temperatures (Ting et al.
1996).
Negative phase: Weakening of jet
stream leading to more frequent
midlatitude cyclones over the SE (Ting
etal. 1996).
AO Modulation in the strength of the Positive phase: Strengthened polar jet
circumpolar vortex aloft (Thompson correlates with increases in severe
and Wallace 1998). weather due to moisture influxes and
increased wind shear in the SE (Childs
etal. 2018).
Negative phase: Polar westerlies aloft
weaken and advect cold air from the
Arctic into the SE creating large
horizontal temperature gradients (Childs
et al. 2018).
PNA Relative amplitudes of the ridge and Positive phase: Increased meridional

trough over North America involving
pressures over central Pacific Ocean,
western Canada, and the southeastern
US (NOAA 2018b).

flow of the jet stream resulting cool
outbreaks and increases in midlatitude
cyclone frequency (Leathers et al.
1991).

Negative phase: Increased zonal flow of
the jet stream and is shifted northward
increasing temperature and moisture
influxes from the Gulf of Mexico
(Leathers et al. 1991).

Statistical models are fit to probabilities of tornado activity. In particular, we apply multiple logistic
regression to explore whether combinations of teleconnections or their interactions can predict the odds
of an active tornado period. Rather than predicting tornado counts, logistic regression allows us to
determine if some combination of teleconnections or their interactions can predict the odds of tornado
activity being above or below normal for the period under consideration. Normal, in this study, is
represented by the median tornado counts of three 23-year periods (Period 1 = 1954-1976; Period 2 =
1977-1999; Period 3 =2000-2022) to account for non-stationarity, with an active period defined as one
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in which the number of tornadoes is greater than the median and an inactive period as one in which the
number of tornadoes is less than or equal to the median.

Here, three sets of models are evaluated: (1) annual model, (2) seasonal models, and (3) monthly models.
To account for the potential joint effects of teleconnections on tornado activity, we expand a traditional
fixed modeling framework to include interaction terms between the individual teleconnections. Doing this
allows for a modeling framework that is more flexible than a series of fixed terms and provides the ability
to interpret the relationship between one teleconnection and tornado activity through different values of
another teleconnection. The addition of interaction terms in regression analysis has been shown to
improve model results in tornado casualties (Elsner et al. 2018) and makes physical sense, here, when
considering the influence multiple teleconnections might have on underlying weather patterns across
space and time. The models are all given as:

A
log & = B;Month + B, ENSO + ;A0 + B4,NAO + - PNA
1_p(A) 1 2 3 4 5

U

where p(A) is the probability of tornado activity (4) at an annual, seasonal, or monthly scale, ENSO is the
Nifio 3.4 SST, AO is Arctic Oscillation, NAO is the North Atlantic Oscillation, and PNA is the Pacific-North
American pattern. The interaction terms are formally expressed by a colon and indicate which two
teleconnections are evaluated across the entirety of their range of values. Important for this work, the
seasonal and monthly models are found through a subset of tornadoes occurring during each season or
month across the three 23-year periods. This means inference on the model coefficients might be best
served to employ a Bonferroni correction, which accounts for multiple comparisons—albeit still in a
conservative fashion.

Given our exploratory approach with the goal of identifying the most parsimonious model for the
prediction of tornado activity, we use a stepwise selection process, in both the forward and backward
directions, to identify the model with the lowest Akaike Information Criteria (AIC) (Gorsevski et al. 2006;
Chaurasia and Harel 2012; Gijben et al. 2017). In short, we look to select the model that best fits the data
with the least number of predictors. Given the range of teleconnections that have been reported to
influence tornado activity, we begin with models that include all teleconnections along with all possible
interaction terms. The models yield predicted probabilities of an active period based on teleconnection
index values. Assessing these predicted probabilities, specifically identifying teleconnections or
teleconnection interactions that are associated with a probability of an active month thatis >50% allows
us to determine whether these teleconnections improve upon pure chance. If a stepwise selection process
results in the return of only an intercept, we infer that no teleconnection aids in the prediction of tornado
activity.

Data-driven exploratory approaches like this one provide insight into statistical relationships that can
guide research into physical mechanisms. While a comprehensive analysis of physical mechanisms is
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beyond the scope of this study, we use monthly anomaly composites from the 20th Century Reanalysis
version 3 dataset (https://psl.noaa.gov/cgi-bin/data/composites/plot20thc.v2.pl) to illustrate how our
approach can guide focused analyses of climate conditions associated with teleconnection interactions
that are statistically linked to active tornado periods. We focus on 850-mb geopotential height, 2-m air
temperature, and 2-m specific humidity to characterize the large-scale pattern and low-level
thermodynamic background conditions that are associated with select teleconnection interactions.

3 Results

Results for the most parsimonious annual, seasonal, and monthly models are summarized in Table 2.
Beta coefficients for independent predictors describe the log-odds of a year being active relative to a one-
unit change in the predictor while holding other predictors constant. Positive coefficients suggest that the
log-odds of an active timescale increase as the teleconnection index increases, whereas negative
coefficients suggest that the log-odds of an active timescale decrease as the teleconnection index
increases. Odds ratios are found using the exponential of the beta coefficients for the independent
predictors. Odds ratios that are greater than 1 suggest that the odds of an active timescale increase along
with the teleconnection index whereas those that are less than 1 suggest that the odds of an active
timescale increase when the teleconnection index decreases.

Beta coefficients for interactive terms describe the log-odds of a timescale being active depending on the
values of both predictors in the interaction. For example, a positive beta coefficient suggests that the
probability of an active timescale increases with increasing values of both predictors, while a negative
beta coefficient suggests that the probability of an active timescale decreases as a function of one
predictor with increasing values of the other predictor. The odds ratios of interactive terms are more
difficult to infer than independent predictors, as no single value can describe the entirety of an interaction,
but should be thought of as an average odds ratio, given all possible values of the included predictors.

With the goal of producing the most parsimonious models, as identified by AIC, we do not perform any
adjustments to alpha to control the family-wise error. In addition, we do not focus on probability values
(pvalues), so as to select models that are the most data-driven without incurring issues of overfitting.
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Table 2
Summary of logistic regression models.

Period Selected Beta Standard Odds p AIC
predictors Coefficients error ratio value
Annual
AO 3.60 1.24 36.82 0.003  90.89
NAO -2.09 1.18 0.1315 0.09
PNA -1.21 0.90 0.30 0.18
AO:NAO -2.91 2.21 0.05 0.19
AO:PNA -4.51 2.55 0.01 0.08
Seasonal
DJF AO 1.41 0.48 411 0.003 87.35
NAO -1.53 0.64 0.32 0.07
AO:NAO -0.82 0.52 0.44 0.12
MAM ENSO -0.53 0.50 0.59 0.29 92.14
NAO -1.45 0.67 24 0.03
ENSO:NAO -2.41 1.10 0.9 0.03
JJA PNA -0.76 0.39 0.47 0.05 95.45
SON ENSO 0.01 0.31 1.01 0.98 100.51
AO 0.33 0.78 1.39 0.67
NAO -0.78 0.56 0.46 0.16
PNA 0.01 0.49 1.01 0.98
ENSO:AO -1.28 0.70 0.28 0.07
AO:PNA -1.62 1.16 0.20 0.16
Monthly
January ENSO 0.39 0.27 1.47 0.15 96.14
AO 0.14 0.26 1.16 0.57
NAO 0.20 0.40 1.23 0.61
PNA -0.77 0.36 0.46 0.03
AO:NAO -0.32 0.20 0.73 0.11
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Period

February

March

April

May

June

Selected
predictors

ENSO

AO

NAO

PNA
ENSO:NAO
ENSO:PNA
ENSO

NAO

ENSO

AO

NAO

PNA
ENSO:AO
ENSO:NAO
AO:PNA
NAO:PNA
ENSO

AO

NAO

PNA
ENSO:AO
ENSO:PNA
ENSO

AO

NAO

PNA
ENSO:AO

Beta
Coefficients

-0.53
0.47
-0.42
-0.04
-0.53
0.89
-0.66
0.60
-0.35
0.01
-0.44
0.29
1.10
-1.79
-0.67
0.54
1.14
-1.05
-0.51
-0.27
2.27
-1.55
1.36
-0.04
0.04
-0.93
-4.45

Standard
error

0.37
0.31
0.45
0.32
0.34
0.43
0.37
0.28
0.54
0.44
0.33
0.34
0.8

0.8

0.47
0.37
0.59
0.64
0.36
0.35
1.05
0.69
0.67
1.01
0.52
0.38
2.09
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Odds
ratio

0.59
1.60
0.66
0.96
0.59
2.44
0.51
1.82
0.71
1.01
0.65
1.34
3.01
0.17
0.51
1.72
0.32
0.35
0.60
0.76
0.10
0.21
3.89
0.96
1.04
0.39
0.01

P
value

0.15
0.13
0.35
0.90
0.11
0.04
0.07
0.03
0.52
0.99
0.18
0.39
0.17
0.03
0.15
0.15
0.05
0.1

0.16
0.43
0.03
0.02
0.04
0.96
0.93
0.01
0.03

AIC

98.68

91.57

101.76

94.59

93.09




Period Selected Beta Standard Odds P AIC
predictors Coefficients error ratio value
ENSO:NAO 1.88 1.15 6.54 0.10
July PNA -0.41 0.25 0.67 0.09 96.41
August Intercept only
September  ENSO -0.18 0.33 0.83 0.58 100.24
PNA -0.12 0.27 0.89 0.66
ENSO:PNA 0.55 0.38 1.74 0.14
October Intercept only
November  ENSO -0.08 0.27 0.93 0.77 101.34
AO 0.29 0.41 1.34 0.47
NAO -0.50 0.39 0.61 0.20
PNA 0.22 0.31 1.25 0.47
ENSO:NAO 0.46 0.28 1.59 0.09
ENSO:PNA 0.61 0.33 1.84 0.06
AO:PNA -0.51 0.36 0.60 0.15
December  NAO -0.36 0.24 0.70 0.14 97.21

3.1 Annual model

We estimate the annual model using our data set of 828 unique combinations of year, month, and period.
In the annual model stepwise selection process, AO, NAO, PNA, and the AO:NAO and AO:NA interactions
are selected as predictors (Table 2). This suggests that over the study period, AO, NAQ, and PNA best
predict the level of tornado activity at the annual scale across the SE US.

The odds ratios of the annual model indicate that the probability of an active tornado year decreases with
AO as values of the NAO index increase. Similarly, the probability of an active tornado year decreases
with AO as values of the PNA index increase. That said, as values of AO increase, so does the probability
of an active year, regardless of the value of an interacting NAO or PNA index. In fact, when predicting
annual tornado activity as a function of AQ, the probability of an active year moves from near 0% for an
AO value of - 1 to near 100% with an AO value of 1 across the entire interquartile range of NAO and PNA
values (Fig. 2). This suggests that years dominated by positive AO are more likely to have more active
periods—when accounting for all teleconnections and interactions.

3.2 Seasonal models
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We estimate the seasonal model using a data set of 276 unique combinations of year, season, and
period. Seasons are defined by three-month groups commonly found in the literature: (1) December,
January, and February (DJF), (2) March, April, and May (MAM), (3) June, July, and August (JJA), and (4)
September, October, and November (SON).

AO:NAO and AO:PNA interactions are suggested to be most associated with tornado activity in the annual
model. The MAM and SON seasonal models include ENSO, which was not included in the annual model.
Furthermore, the seasonal modelling approach captures teleconnection interactions that are not selected
in the annual models as well as illustrates that the relationships between teleconnections, their
interactions, and tornado activity vary across the seasons (Table 2).

As seen at the annual scale, the AO:NAO interaction was chosen as a predictor of tornado activity in DJF.
The selection of AO in the DJF model aligns with Childs et al. (2018), who reports a positive relationship
between tornado activity and AO in the cold season, but we show here that the interaction with NAO
modulates this relationship. Specifically, the odds ratios of the DJF model indicate that the probability of
an active season decreases with AO as values of the NAO index increase. In fact, the probability of an
active season moves from near 0% for an AO value of - 2 to at least 75% with an AO value of 2 across
the entire interquartile range of NAO values.

Coming out of the cold season and into the spring, NAO is still selected as a predictor, but as an
interaction with ENSO rather than AO. The interaction plots shown in Fig. 3Aillustrate that the greatest
probabilities for an active season occur when ENSO and NAO are in opposite phases. Put another way,
the probability of an active season is highest during La Nifia with positive values of NAO or during El Nifio
with negative values of NAO.

By summer, the relationship between tornado activity and multiple teleconnections weakens. In the JJA
model only PNA is chosen as an independent predictor of high tornado activity. The beta coefficient and
odds ratios of JJA model suggests that the probability of an active season decreases with higher values
of the PNA index. Quantitatively, the probability of an active season moves from near 70% for a PNA
value of - 1 to near 30% with a PNA value of 1.

In fall, this simple relationship between a single predictor and tornado activity becomes more complex as
the SON model having the highest number of predictors and interactions. In fact, ENSO, AO, NAO, and
PNA were all selected for the most parsimonious model with ENSO:AO and AO:PNA interactions included.
The interaction term including ENSO and AO was the most significant term in the model, highlighting the
influence ENSO has on tornado activity across multiple seasons. The ENSO:AOQ interaction shown in

Fig. 3B), with the greatest probability of an active season occurring when ENSO and AO are in opposite
phases, is similar to the joint ENSO and AO effect reported by Tippett et al. (2022) but also suggests that
the ENSO:AO interaction may occur in other seasons and is not confined to February, March, and April.

3.3 Monthly models
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Moving beyond an annual or seasonal modeling approach, we subset our original data set of 828 unique
combinations of year, month, and period by month and estimate a monthly model. As seen in the
seasonal models, the teleconnections and teleconnection interactions selected in the stepwise process
vary across the months. At the more granular monthly scale, these models also illustrate sub-seasonal
variability in some of the teleconnection/tornado relationships, suggesting scale dependence of these
relationships (Table 2). The AO:NAO interaction, for example, detected in the DJF model is seen only in
January, whereas NAO and AO are independent predictors in December and February, respectively.
Likewise, the ENSO:NAO interaction from the MAM model is identified only in the April model and the
AO:PNA interaction from SON is identified only in November.

In several fall and winter months, the most parsimonious models illustrate the previously reported
importance of La Nifia conditions to tornado activity in the SE US. They also indicate that ENSO interacts
with other teleconnections, like PNA and NAO, to modulate tornado activity. In September and November,
for example, active months are favored when the teleconnections are jointly negative whereas strong
positive PNA and NAO reduce the odds that a month will be active—even when La Nina conditions are
present (Fig. 4A, 4B). In February, ENSO also interacts with PNA and NAO to drive some level of tornado
activity (Fig. 4C). That said, the impact of ENSO is more evident than either of PNA or NAQ, as an active
month is favored during La Nifia conditions across a larger portion of the PNA and NAO spectrums.

Transitioning into spring, ENSO continues to be an important predictor as seen with other studies, but the
April and May models again suggest interaction with other teleconnections. In April, an active month is
favored during La Nifia but only when NAO is positive and AO is slightly positive or negative (Fig. 5A). As
in April, active Mays are also more likely when La Nifia conditions are present, but only when AO is
relatively neutral or positive and when PNA is weakly negative to positive (Fig. 5B). Despite the
importance of ENSO, the April and May models suggest that an active month is likely even during El Nifio
conditions if other teleconnections are suitable (e.g., negative NAO in April and negative AO in May).

As found in other studies (e.g., Moore 2018), the statistical relationship between ENSO and tornado
activity seems to flip in summer when active months are most favored during the El Nifio state. However,
the monthly models performed here suggest that this reversal occurs only in early summer and is
contingent on interactions with NAO and AOQ, with the greatest probability for an active June associated
with the coupling of El Nifio conditions with negative NAO and AO (Fig. 6). Like the JUA model, PNA is
selected as an independent predictor in June and July.

4 Discussion

Understanding the relationship between teleconnections and tornado activity is an important scientific
question. It relies on the availability of longitudinal data for climate variables and tornadoes that exist
spatially and at scale. Here we develop statistical models for tornado activity at an annual, seasonal, and
monthly level using a suite of teleconnections and their interactions as the included parameters. Through

Page 12/26



a data-driven approach, we identify which teleconnections and interactions best predict whether a year,
season, or month is likely to be active.

Previous literature has identified a seasonal relationship between teleconnections and tornadoes (Elsner
et al. 2016; Childs et al. 2018; Moore 2018; Brown and Nowotarski 2020; Nouri et al. 2021; Tippett et al.
2022). Here, we find a similar relationship through model selection that includes the greatest number of
teleconnections and interactions and the highest estimated magnitude of effect on tornado activity in
late winter through spring and into early summer (Fig. 7). In late summer through early fall, however,
model selection returns relatively fewer teleconnections as predictors of tornado activity. In agreement
with other seasonal-scale studies (Moore 2019), the monthly models show a weakening ENSO signal in
summer, while also indicating that NAO and AO are less important to tornado activity in late summer and
early fall. This weakening or lack of a teleconnection signal in late summer and early fall aligns with work
suggesting that summer convective activity can be driven by short-term and sub-synoptic scale processes
(Gaal and Kinter Il 2021) and is suggestive of difficulties with sub-seasonal-to-seasonal tornado outlooks
(Gensini et al. 2020) extended into summer. Like the other teleconnections, PNA seems less important to
tornado activity in summer and fall but is retained in more monthly models between July and December
than any other teleconnections, indicating that PNA might outperform others when predicting the odds of
an active month during summer or early fall.

Visual inspection of environmental conditions during phase interactions of teleconnections that are
associated with high predicted probabilities of active tornado periods can provide additional insight into
possible physical mechanisms. Perhaps best seen at the monthly level, climate composites can be used
to illustrate potential physical mechanisms contributing to tornado-active environments. For example, the
ENSO:PNA interaction in February is a significant predictor of an active tornado month (Table 2). The
highest probability of an active February occurs when both ENSO and PNA are negative (Fig. 4). In fact,
the distribution of active months is clearly seen with negative ENSO-negative PNA values and the median
number of tornadoes is highest in February with a negative ENSO-negative PNA relationship (Fig. 8A, B).
Physical explanations for an above active month during a negative ENSO-negative PNA interaction
include anomalously high 850-mb geopotential heights over portions of the SE US and southwestern
Atlantic, which sets the stage for anomalously high 2-m air temperature and specific humidity across the
region (Fig. 8C, D, E).

The ENSO:NAO interaction in April is a significant predictor of an active tornado month. Unlike February,
however, the highest probability occurs when both teleconnections are in opposite phases (Fig. 5). This
suggests that there are four possible phase combinations to drive an active or inactive April: (1) negative
ENSO-positive NAQ, (2) negative ENSO-negative NAQ, (3) positive ENSO-positive NAQ, and (4) positive
ENSO-negative NAO. The empirical probabilities of an active April with negative ENSO-positive NAO and
positive ENSO/negative NAO conditions are 60% or greater whereas the probability of an active month
when both teleconnections are in the same phase is at or below 50% (Fig. 9A, B). In addition, the median
number of tornadoes with opposite phase ENSO-NAO relationships are higher than either of the same
phase ENSO-NAO relationships (Fig. 9B). The climate conditions associated with the active negative
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ENSO-positive NAO interaction are similar to those seen with the negative ENSO/negative PNA interaction
in February, with anomalously high 850-mb geopotential heights, 2-m air temperature, and 2-m specific
humidity across the SE US (Fig. 9C, D, E). Conversely, the climate conditions associated with the active
positive ENSO-negative NAO interaction are opposite with anomalously low heights, temperature, and
specific humidity across the continental US (Fig. 9F, G, H).

The ENSO:AQ interaction in June is a significant predictor of an active tornado month. Similar to April, the
highest probability occurs when both teleconnections are in opposite phases (Fig. 6). The empirical
probabilities of an active June are notably higher when ENSO and AO are in opposite phases than when
ENSO and AO are in the same-signed phase (Fig. 10A, B). Additionally, the median number of tornadoes
with opposite phase ENSO-AO relationships are higher than either of the same phase ENSO-NAO
relationships (Fig. 10B). When ENSO is positive and AQO is negative, climate conditions across the SEUS
are characterized by anomalously low 850-mb geopotential heights, near-normal 2-m air temperature, and
anomalously high 2-m specific humidity (Fig. 10C, D, E).

Moving forward, work will be needed to investigate the physical relationships between teleconnections
and tornado activity as a means of explaining potential causal mechanisms between environmental
conditions and these data driven models. In this sense, research could move beyond a purely statistical
approach toward a physical approach by determining if and how synoptic or mesoscale patterns and
tornado-favorable ingredients vary across bivariate states of teleconnection interactions. As seen in the
preliminary analysis of the ENSO:PNA, ENSO:NAOQ, and ENSO:AOQ interactions for February, April, and
June, respectively, physical mechanisms across the entire range of teleconnection indices can contribute
to greater-than-normal tornado activity. For instance, anomalously high near-surface temperature and
humidity steered by an active subtropical high near the SE US is likely leading to more active
environments. That said, not all interactions are characterized by these environments. Additional study is
necessary to tease out the complex ways in which climate patterns work both independently and
interactively to modulate tornado activity (Brown and Nowotarski 2020; Tippett et al. 2022).

5 Conclusions

The United States experiences more tornadoes, on average, than any other country on Earth. Recent
research has shown that tornado climatology is changing over time, with decreased activity in the Great
Plains and increased activity in the SE US. Some studies have looked to link large-scale climate patterns
and tornadoes through a monthly or seasonal outlook, while others have explored the relationship
between multiple teleconnections and tornadoes across the entirety of the United States. Here, we deviate
from those works by developing statistical models aimed at predicting above or below normal tornado
activity in the SE US through teleconnections and their interactions at an annual, seasonal, and monthly
level. In particular, we develop logistic regression models that incorporate a suite of teleconnections and
their interactions fit to data that accounts for non-stationarity across multiple time periods.
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The data-driven modeling approach outlined identifies the most parsimonious models as determined by
AIC. These selected models yield results aligned with other research, but also highlight potential
interactions and sub-seasonal variability not found in the literature. For example, while ENSO was
selected in numerous winter and spring monthly models—consistent with prior work—it was often
included as an interaction with other teleconnections rather than a singular predictor. This means that
ENSO in conjunction with other teleconnections likely affects the probability of an active period greater
than ENSO alone. Likewise, AO was selected as a predictor of greater-than-normal tornado activity in
April, May, and June not as an independent predictor, but as an interaction with ENSO in all three months
and with PNA in April.

The inclusion of interaction terms in the selected models provides an opportunity to move beyond our
traditionally understood individual predictors. Rather than focusing on a single teleconnection across the
entire range of its values, these models suggest that a combination of teleconnections—in similar phases
or opposite phases—provide better predictions of tornado activity. Future work should look to use this
statistical evidence as the basis for research centered around physical explanations or hypotheses for
how teleconnection interactions provide environments capable of —or not capable of —producing above-
normal tornado activity.

Additionally, it is likely that model selection is highly dependent on scale in both time and space. More
research should be devoted to using this same approach to tornadoes in other regions of the United
States and over shorter time scales, which would open the possibility to incorporate additional
teleconnections (e.g., Madden-Julian Oscillation). Such efforts might help identify the optimum scales
over which these relationships exist and shed insight into why some periods have high/low tornado
activity even during unfavorable/favorable background states.
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Figure 1

Study area. The state boundaries of those defined as the Southeast are shaded in grey.
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Figure 2

Predicted probabilities (marginal effects) of an active year based on interactions between AO and NAQ,
and AO and PNA. Values of the NAO and PNA indices represent the 25, 50t and 75t percentiles.
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Figure 3

Predicted probabilities (marginal effects) of an active season for (A) MAM based on ENSO and NAO, and

(B) SON based on ENSO and AO. Values of the NAO and AO indices represent the 25", 50t and 75
percentiles.
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Predicted probabilities (marginal effects) of an active (A) September, (B) November, and (C) February
based on interactions between ENSO and PNA and NAO. Values of the PNA and NAO indices represent

the 25, 50", and 75™ percentiles.
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and 75" percentiles.
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Predicted probabilities (marginal effects) of an active June based on interactions between ENSO and
NAO and AO. Values of the NAO and AO indices represent the 25%, 50", and 75t percentiles.
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Visualization of betacoefficients, odds ratios, and teleconnection interactions for (A) seasonal and (B)
monthly logistic regression models, with teleconnections and their interactions as predictors and tornado
activity as the predictand. Blues indicate negative odds ratios while reds indicate positive odds ratios.
The interactions are highlighted by grey line segments.
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Figure 8

(A) February tornado activity as a function of ENSO and PNA, with active months shown in black and
inactive months shown in grey. Polygons are estimated from the probabilities shown in Figure 4C. (B)
Bivariate distributions of February tornado counts. Categories correspond to polygons in panel A.
Probabilities of an active month per category are provided as %s. (C—E) Climate conditions corresponding
to the tornado-active negative ENSO/negative PNA (ENSO < -0.3, PNA < -0.75) interaction. Years
included in these composites include 1955, 1956, 1974, 1976, 1989, 2009, 2011, 2014, and 2018.
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(A) April tornado activity as a function of ENSO and NAQ, with active months shown in black and inactive
months shown in grey. Polygons are estimated from the probabilities shown in Figure 5A. (B) Bivariate
distributions of April tornado counts. Categories correspond to polygons in panel A. Probabilities of an
active month per category are provided as percentages. (C—E) Climate conditions corresponding to the
tornado-active negative ENSO/positive NAO (ENSO < -0.3, NAO = 0.75) interaction. Years included in
these composites include 1954, 1962, 2006, 2011, and 2018. (F—H) Climate conditions corresponding to
the tornado-active positive ENSO/negative NAO (ENSO >-0.3, NAO < -0.75) interaction. Years included in
these composites include 1961, 1963, 1970, 1979, 1983, 1995, 1997, and 2020.
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Figure 10

(A) June tornado activity as a function of ENSO and AQ, with active months shown in black and inactive
months shown in grey. Polygons are estimated from the probabilities shown in Figure 6. (B) Bivariate
distributions of June tornado counts. Categories correspond to polygons in panel A. Probabilities of an
active month per category are provided as %s. (C—E) Climate conditions corresponding to the tornado-
active positive ENSO/negative AO (ENSO = 0.25, AO < -0.5) interaction. Years included in these
composites include 1957, 1958, 1982, 1987, 1993, 1997, 2009, 2014, and 2019. (F—H) Climate conditions
corresponding to the tornado-active negative ENSO/positive AO (ENSO < -0.25, AO = 0.5) interaction.
Years included in these composites include 1970, 1973, 1978, 1999, 2000, and 2013.
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