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Abstract
Unhealthy air quality conditions can strongly affect long-term human health and well-being, yet many air
quality data products focus on near real-time alerts or short-term forecasts. Understanding the full state
of air quality also requires examining the longer term frequency and intensity of poor air quality at ground
level, and how it might change over time. We present a new modeling framework to compute climate-
adjusted estimates of air quality hazards for the contiguous United States (CONUS) at 10 kilometer
horizontal resolution. The framework blends results from statistical, machine-learning, and climate-
chemistry models – including a bias-adjusted version of the EPA Community Multiscale Air Quality Model
(CMAQ) time series as described in (Wilson et al., 2022) - for ground-level ozone, anthropogenic �ne
particulate matter (PM2.5), and wild�re smoke PM2.5 into consistent estimates of days exceeding the
‘unhealthy for sensitive groups’ (orange colored) classi�cation on the EPA Air Quality Index for 2023 and
2053. We �nd that joint PM2.5 and ozone orange + days range from 1 day to 41 days across CONUS, with
a median value of 2 days, across all years. Considering all properties across CONUS, we �nd that 63.5%
percent are exposed to at least one orange or greater day in 2023, growing to 72.1% in 2053. For a 7-day
threshold, 3.8% and 5.7% of properties are exposed in 2023 and 2053, respectively. Our results also
support the identi�cation of which parts of the country are most likely to be impacted by additional
climate-related air quality risks. With growing evidence that even low levels of air pollution are harmful,
these results are an important step forward in empowering individuals to understand their air quality risks
both now and into the future.

1 Introduction
Air pollution poses a major threat to human well-being, with well documented adverse health effects
(Pope et al., 2002; Schwartz et al., 2002; Bell et al., 2007; Shah et al., 2013; Kim et al., 2015; Karanasiou et
al., 2021) and impacts to quality of life (Kim et al., 2020). The United States has made signi�cant strides
in curbing air pollution since the passing of the Clean Air Act in 1963, with the U.S. Environmental
Protection Agency (EPA) leading the design and implementation of policies and standards for regulating
air quality levels. Since the implementation of the Clean Air Act, the combined emissions of criteria
pollutants and their precursors have dropped by 78% (US EPA, 2016). However, climate change threatens
to reduce these gains by altering meteorology in ways that are either directly conducive to pollutant
formation or indirectly conducive through secondary factors like wild�res (Spracklen et al., 2009; Val
Martin et al., 2015; Cohen et al., 2017; Liu et al., 2021). This counteracting effect, often referred to as the
“climate penalty”, threatens to offset planned emissions reduction strategies and make achieving
rigorous air quality standards more di�cult.

Ground-level ozone and �ne particulate matter (PM2.5) have two of the stronger connections to climate
change of any major pollutants. Ozone, which forms when nitrogen oxides and volatile organic
compounds chemically interact with sunlight, is at least partially modulated by temperature, humidity,
and vapor pressure de�cit, among other factors (Mahmud et al., 2008; Nolte et al., 2008; Shen et al., 2016;
Kavassalis and Murphy, 2017; Arnold et al., 2018; Wells et al., 2021), all of which are projected to shift
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under climate change. While there has been a signi�cant decline in the national average ozone
concentrations since 1980 (from 0.094 ppm in 1980 to 0.066 ppm in 2022; US EPA, 2016), estimates of
the magnitude of the summer ozone climate penalty are on the order of 2–8 ppb by the mid-century,
although estimates varying by season and climate scenario (Nolte et al., 2008; Weaver et al., 2009; Kelly
et al., 2012; Trail et al., 2013; P�ster et al., 2014; Fann et al., 2015; He et al., 2016).The same
meteorological variables also in�uence the production and transport of anthropogenic and biogenic
PM2.5, which combined has been observed to decline by 5–8 µg/m3 since 2000 (from a national average
of 13.53 µg/m3 in 2000 to 7.82 µg/m3 in 2022; US EPA, 2016). However, because particulate matter is
typically directly emitted, models that �nd a strong climate connection for ozone often �nd less success
for PM2.5 (Ryan, 2016). A few studies have shown small, but statistically signi�cant effects of climate on
PM2.5 on the order of 0.5-2.0 µg/m3, but broader research �nds inconsistent trends (Tai et al., 2010; Kelly
et al., 2012; Dawson et al., 2014; Day and Pandis, 2015; Fiore et al., 2015; Shen et al., 2017).

Conversely, increased wild�re activity—which currently represents approximately 15–30% of PM2.5
concentrations in the U.S—is likely to signi�cantly impact PM2.5 production into the future (Jacob and
Winner, 2009; Spracklen et al., 2009; Liu et al., 2021) and put at risk any improvements gained from
controls on anthropogenic emissions. The importance of this point is underscored given the fact that
wild�re is the fastest-growing natural disaster associated with climate change and is expected to
continue to increase over the next 30 years (Kearns et al., 2022). While not a direct correlation, �re
emission increases of 50% more by mid-century are projected for CONUS in multiple studies (Spracklen et
al., 2009; Val Martin et al., 2015; Ford et al., 2018). Historically, an estimated 20–25% of all PM2.5 events
exceeding the 24-hour national standard have occurred when wild�re smoke was present (Kaulfus et al.,
2017). Long-range transport of PM2.5 via large-scale �ow is known to substantially increase PM2.5
concentrations, sometimes by a factor of 2–3 (Mueller et al., 2020; Lin et al., 2021; Mardi et al., 2021).
Local �res’ in�uence can dominate, with prescribed �re burning found to explain about 25% of the
variance in overall PM2.5 concentrations in the southeast U.S. (Afrin and Garcia-Menendez, 2020), with
small �res’ smoke dominating within 2km of the source (Pearce et al., 2012). In severe �re years, wild�re
smoke pollution is even more signi�cant. One estimate found 41% of CONUS pollution in 2020 could be
attributed solely to west coast �res (Lin et al., 2021). Another found an estimated 25% of air quality gains
since at least 2016 have already been eroded by increases in wild�re-related PM2.5 concentrations (Burke
et al., 2023)

Appropriately characterizing and communicating potential reversals in air quality progress is important
for addressing public health and quality of life challenges across the United States. Ozone and
particulate matter have many well documented associations with long and short-term adverse health
effects, including chest pain, coughing, asthma, respiratory diseases and infections, and premature
deaths (Bell et al., 2007; Kinney et al., 2008; Tagaris et al., 2009; Fann et al., 2015, 2021; Garcia-Menendez
et al., 2015; Orru et al., 2017; Silva et al., 2017). Air pollution also more broadly has the potential to
decrease happiness and satisfaction in life, increase many mental disorders, trigger behavioral
responses, and hurt productivity (Lu, 2020). Currently, governments rely on individuals to protect
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themselves from poor air quality by issuing alerts and recommending people to stay indoors and wear
masks. AirNow—a �agship EPA product—collates and applies rapid quality control to sensor observations
across the U.S. to provide near real-time estimation of the o�cial Air Quality Index (AQI), a color-coded
index focused on communicating whether air quality is healthy or unhealthy at a given point in time.
Similarly, BreezoMeter (acquired by Google in late 2022) combines monitoring station and satellite data
with real-time tra�c information, meteorological conditions, European Union’s Copernicus Atmosphere
Monitoring Service (CAMS) to provide both historic, real-time, and forecasted air quality. BreezoMeter
data is widely consumed via an integration into the Apple Weather app on iOS devices. These alert-based
approaches may have small bene�ts that are unequal across populations, as wealthy populations are
more likely to take precautions during a bad air quality event (Burke et al., 2022).

Surprisingly, there is a dearth of data products aimed at providing a representative picture of typical air
quality levels for any given location. Because poor air quality alerts can drive secondary effects like
school cancellations, individuals might be interested in knowing the number of these alerts they might
expect in a given year, and how that is expected to change into the future. Several organizations,
including the EPA and the American Lung Association, do summarize o�cial station data into yearly
reports on air quality levels (American Lung Association, 2023), but face inherent limitations from the
coarse geographic coverage of monitoring stations. Improving the spatial resolution of air quality
summaries requires incorporating data from multiple sources, including climate chemistry, statistical, or
machine learning modeling approaches, each coming with their own set of limitations. Here, we outline
an approach to combine assessments of ozone and �ne-particulate matter both presently and thirty years
into the future to provide high resolution estimates of annual poor air quality days across the contiguous
United States (CONUS).

The Community Multiscale Air Quality Model (CMAQ) results from EQUATES (EPA's Air QUAlity TimE
Series Project) form the foundation for current year projections of ozone and anthropogenic particulate
matter (EPA, 2023). CMAQ is an open-source, state-of-the-art, suite of programs to simulate air quality by
using the latest knowledge in atmospheric sciences and air quality modeling to produce concentrations
of ozone, particulates, and more across spatially continuous layers (Appel et al., 2021). These results are
supplemented with EPA air quality monitoring station observations for bias correction and wild�re-
speci�c concentrations from a machine learning model from Childs et al. (2022). Ozone results are
climate-adjusted using previously published methodology in Wilson et al. (2022), and smoke results are
climate-adjusted using simulated �res’ output from the First Street Foundation Wild�re Model (Kearns et
al., 2022). The integrated modeling approach provides a consistent set of projections for the number
days for both the current conditions and for projected conditions thirty years into the future reaching an
‘unhealthy for sensitive groups’ (orange colored) or above threshold on the EPA Air Quality Index.

2 Materials & Methods
Our modeling framework was intentionally designed with a focus on days with ‘poor air quality’ at ground
level for common pollutants that have a demonstrated connection to climate change. Towards this goal,
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we built the present model with the following key decisions. First, we focused on the two most
widespread pollutants under the National Ambient Air Quality Standards (NAAQS) with the strongest
climate connection, PM2.5 and ozone. The Clean Air Act established NAAQS for six common “criteria” air
pollutants with known health risks that include particle pollution (PM2.5 and PM10), ground-level ozone,
sulfur dioxide, nitrogen dioxide, carbon monoxide, and lead. As of 2022, the population in counties where
air quality levels exceeded the NAAQS was the greatest for particulate matter and ground-level ozone,
with 78.3 million people living in counties where ozone levels exceeded NAAQS, 20.2 million people living
in counties where PM2.5 exceeded the standard (US EPA, 2016). Second, we used an orange and above
(henceforth orange+) classi�cation on the EPA Air Quality Index (AQI) as the de�nition of a poor air
quality day, or when air quality is at a level that starts to plausibly affect the health of a signi�cant subset
of the population. The EPA uses the AQI as a tool for communicating air quality levels from the criteria
pollutants to the public. Each AQI breakpoint is assigned a color that is used in the EPA’s ‘Air Now’ system
and other public messaging around daily air quality safety levels. The six AQI categories and
corresponding colors are as follows: good (green), moderate (yellow), unhealthy for sensitive groups
(orange), unhealthy (red), very unhealthy (purple), and hazardous (maroon). The EPA provides general
recommendations for activity levels under the AQI categories, which are broken out into the ‘general
population’ and ‘sensitive groups’. Sensitive groups refers to populations that may experience heightened
symptoms from exposure to air pollutants, including but not limited to: people with cardiovascular or lung
disease (including asthma and COPD), children and teenagers, older adults, new or expectant mothers,
people with diabetes or obesity, and outdoor workers (US EPA, 2014).

Figure 1 shows a �owchart diagram of all modeling components and the general work�ow. All modeling
components were designed to produce independent predictions of annual orange + days in both 2020s
and 2050s climate conditions. We then integrated the results from each component into a joint result of
orange + days by adding the days from each component together. The following sections describe the
individual modeling methodologies for ozone, wild�re smoke particulate matter, and anthropogenic
particulate matter along with their corresponding climate projections, if relevant.

2.1 Ozone
To generate an annualized expected number of ozone exceedance days, we follow the ozone modeling
methodology described in Wilson et al. (2022) that uses a point process extreme value model with CMAQ
data and climate-projected temperature, relative humidity, and vapor pressure de�cit as the
meteorological controls on extreme ozone levels. Extreme Value Theory (EVT)is a frequently used
technique for modeling ozone levels (Smith, 1989; Thompson, 2001; Rieder et al., 2010; Shen et al., 2016)
and allows for estimating both the frequency and intensity of ozone exceedances. The methodology is
summarized below, along with several minor changes.

2.1.1 Bias Correction
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To account for biases in the CMAQ time series (Appel et al., 2021), we merged station observations and
CMAQ model output into a single data layer via a spatial regression model with time varying bias
coe�cients. These biases in CMAQ output, as discussed explicitly in (Appel et al., 2021), include a
persistent underestimation of ozone across CONUS in springtime and in California throughout the year,
as well as a tendency for CMAW to underestimate PM2.5 across the western and southern States. This
merging approach is conceptually similar to the EPA fused data product methodology described in
Berrocal et al. (2012), and serves the purpose of synthesizing the best available air quality information at
a given location. For each daily time step, observed ozone concentrations were estimated using CMAQ
concentrations and a spatially varying random �eld modeled with a Gaussian Random Field (GRF)
process. To avoid propagating signi�cant concentration changes in the merged product across areas
bracketed by EPA stations but without any observations in between, we implemented an intermediate
step that created ‘synthetic observational stations’ representative of CMAQ output at approximately 100
kilometer grid spacing, while removing any synthetic gridded stations within 50 kilometers of real AQS
stations. Each synthetic station was assigned the modeled concentration value from the corresponding
CMAQ grid cell. This process results in a conservative spatial bias correction where AQS observations are
favored in locations where they exist, otherwise the original CMAQ concentrations are kept as unaltered
as possible. This scheme avoids edge cases where large discrepancies between modeled and observed
results are propagated over long distances, while the modeled concentrations away from the
observations should be considered to be consistent yet conservative estimates. The bias correction
model was �tted using the INLA-SPDE approach in R-INLA (Rue et al., 2009; Lindgren et al., 2011) for
every day in the EQUATES dataset between 2006 and 2019.

2.1.2 Current & Future Climate Time Series
The ozone component used a consistent set of daily meteorological covariates from the University of
Idaho Gridded Surface Meteorological Dataset (GridMET), which are derived from a climatically aided
interpolation process that blends gridded climate data and regional reanalysis datasets into a spatially
and temporally complete set of surface meteorological variables (Abatzoglou, 2013). We used maximum
temperature, minimum humidity, and vapor pressure de�cit data for model �tting, consistent with the
covariates recommended in Wilson et al., (2022). Daily observations were downloaded for the years
2006–2019 (over 350,000 observations per year; EPA-AQSweb) to match the ozone observations and
resampled onto a 10 km grid using a weighted average of each covariate value.

We generated a mid-century (2046–2059) ozone weather time series by statistically adjusting the
GridMET data to re�ect the distribution changes between current and future conditions across an
ensemble of downscaled SSP245 climate models produced by the NASA Earth Exchange (NASA-NEX)
(Thrasher et al., 2022). We excluded the ‘hot models’ (Hausfather et al., 2022) from the ensemble mean,
leaving 11 GCMs in total. Because the NASA-NEX data only contained projected values for mean relative
humidity, we derived minimum humidity and vapor pressure de�cit using the Clausius Clapeyron equation
to get a saturated vapor pressure at the maximum and minimum temperatures, assuming a vapor
pressure derived from mean humidity data. Modi�ed quantile and scaled distribution mapping bias
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correction techniques from the bias correction Python3 package were used to correct modeled projections
by adjusting them with statistical scaling factors derived between current and future model output (Bai et
al., 2016; Switanek et al., 2017). This process preserves the underlying variability in the current time series
while shifting the overall trend towards a future climate. Supplementary Fig. 1 shows the mean changes
across temperature, humidity, and vapor pressure de�cit between 2050s and 2020s climate conditions.

2.1.3 Point Process Model
Following the Poisson point process formulation from (Gilleland and Katz, 2016) and the
recommendations in (Wilson et al., 2022), we de�ne an extreme value theory model for ozone intensity
(Λ) in Eq. (1) with location (µ), scale (σ), and shape parameters (ξ) on the time frame [t1, t2] as [0,1] and
parametrize the “season” length as 365.25 days:

1

Conditional on the scale parameter being greater than zero, the Poisson rate parameter in Eq. 2 de�nes
the frequency of exceeding a given threshold:

2

For model �tting, we selected a threshold equal to the 90th percentile value of ozone concentrations at
each grid cell, respectively. We use the preferred model speci�cation from Wilson et al., (2022), using a
log transformed scale parameter and meteorological covariates and ‘year’ as covariates on the location
parameter but not the scale parameter. All model �tting was completed using the maximum likelihood
approach within the R package extRemes version 2.1-2 (Gilleland and Katz, 2016). Each grid cell was
treated independently and the time series were declustered using an algorithm from (Coles et al., 2001)
built into the extRemes package. Current and future predictions for annual orange + days were estimated
using Eq. (2) with a threshold set at 71 parts per billion (EPA-NAAQS) and the daily time series of current
and future meteorological conditions, respectively. We �xed the value of the year covariate equal to the
time frame of 2017–2019 to hold anthropogenic precursor emissions constant over time.

2.2 Wild�re Smoke PM2.5
Wild�re emissions, along with other anthropogenic and biogenic emissions, are represented in EQUATES
CMAQ modeled PM2.5 concentrations alongside ozone. However, there are known limitations in modeling
wild�re smoke in climate chemistry models (Garcia-Menendez et al., 2014; Nikonovas et al., 2017),
including differing wild�re emissions inventories (Koplitz et al. 2018), adequately capturing the in�uence

Λ = (t2 − t1) ⋅ [1 + ξ ]
( )

⋅ I (1 + ≥ 0)
x − μ

σ

−1

ξ ξ ⋅ (x − μ)

σ

λ = [1 + ξ ]
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x − μ
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−1
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of local meteorology on transport dynamics (Herron-Thorpe et al., 2014; Gunsch et al., 2018; Carter et al.,
2020), and accurately modeling plume injection height (Paugam et al., 2016; Ye et al., 2021; Li et al.,
2023). As a result, climate chemistry model output of wild�re PM2.5 can differ signi�cantly from ground
observations.

Therefore in our modeling approach, with a focus on proper attribution of wild�re PM2.5, the daily
gridded wild�re smoke PM2.5 concentration dataset from Childs et al., (2022) is used in combination
with simulated ELMFIRE �re emissions (Kearns et al., 2022; Melecio-Vázquez et al., 2023) to characterize
current and future impacts to air quality conditions for CONUS due to PM2.5. The Childs et al. (2022)
data, hereafter “Childs data”, which are openly available via Github, were produced using a machine
learning (ML) model that combines ground, satellite, and reanalysis data sources to arrive at PM2.5
concentration estimates. The PM2.5 estimates were calculated from those data sources via the ML
model on a 10 km grid across CONUS between the years of 2006 and 2020, and compared against
observations from EPA monitoring stations (from over 130,000 to 500,000 observations per year across
the 2006–2020 time series; EPA-AQSweb). The comparison produced an CONUS-average R2 of 0.67, with
the strongest correlation evident in the Paci�c Northwest and the weakest model performance in the
desert Southwest. The Childs model performance did show signi�cant spatial variation across CONUS,
something which the authors partially attribute to spatially variable relationships between satellite AOD
and ground PM2.5 due to land cover (particularly shrubland). Areas with less smoke PM2.5 variance and
more variation in non-smoke PM2.5 were associated with the lowest performance.

To calculate annual orange + days using the Childs data, we �rst applied a 5 pixel gaussian �lter to the
daily concentration data to smooth out coarse gridded artifacts in the source data. We then added a year-
speci�c baseline anthropogenic concentration (described in section 2.3) to the daily smoke PM2.5
estimates and summed the number of total number days above the 35.4 µg/m3 threshold per year.
Adding in an average anthropogenic contribution accounts for the fact that the AQI is calculated off total
PM2.5, not just the wild�re smoke contributing portion. We then summed the number of total number
days above the 35.4 µg/m3 threshold per year and derived the average, average in non-zero smoke years,
and maximum annual number of orange + days across the entire time range. The ‘average in non-zero’
and ‘maximum’ years are a helpful additional characterizations in this context because wild�re time
series are zero-in�ated and orange + days tend to be heavily concentrated in speci�c years with
heightened �re activity. We use the average in non-zero year metric for the primary results in this paper,
with the alternative versions included in the supplementary information.

2.2.1 Future wild�re smoke estimation
To estimate how air quality due to wild�re-driven PM2.5 may evolve with climate change in the future, our
modeling framework leverages the output from First Street’s wild�re modeling effort. The wild�re
modeling used a Monte Carlo simulation approach to drive a wild�re behavior model at 30m horizontal
using a 10 year NOAA surface weather record, adjusted USFS/DOI LANDFIRE fuel estimates, and
historical ignition locations across CONUS, resulting in approximately 50M simulated wild�res for 2023
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(Kearns et al., 2022). Simulations were also conducted with the weather time series scaled to future
atmospheric conditions using CMIP6 SSP245 outputs, resulting in a corresponding collection of
approximately 50M simulated wild�res for 2053. For each simulated wild�re, we retained information on
the fuel-class-dependent mass output, �re size, and other statistics to estimate simulated smoke output
from ELMFIRE. ELMFIRE’s combustion process estimates the total mass-released and the PM2.5
fractional yield is taken from the Fire Inventory from NCAR (Wiedinmyer et al., 2011). ELMFIRE runs at a
sub-hourly time resolution for the emission rate and the results are aggregated to an average hourly rate,
from which a sum of the hourly emission rates (at each hour) results in an estimate of the total mass-
released for single �re (see full details in Melecio-Vazquez et al. 2023). Each individual �re’s PM2.5
emissions output is aggregated with others within 48 km bins, as de�ned by the underlying �re model’s
computation scheme. Note that the results from Kearns et al., (2022) showed that more wild�res are likely
across CONUS in the future under climate change, but not that those �res are likely to be larger or more
intense than the current distribution of �res.

To model potential changes in poor air quality days at ground-level from the larger number of �res
anticipated in the future across CONUS, we used a “change factor” approach that uses the ratio of future
emissions to current emissions as a proxy for how much additional mass could expected be injected into
the atmosphere due to those additional wild�res in the future. To calculate the change factor, we �rst
used a threshold of 1000 acres for simulated �re size to �lter out the many simulated small �res that are
less likely to have a large effect on orange + day occurrence. We then aggregated the remaining �res of
size greater than 1000 acres in 48 km bins de�ned by the underlying �re model and calculated the
average mass of PM2.5 released in current (2023) and future (2053) simulations (Supplementary Fig. 2).
In doing so, these average masses of emitted PM2.5 focus on local wild�re effects and do not
incorporate any advection in or out of adjacent 48 km bins. This focus recognizes the aforementioned
dominance of local �res on ground-level PM2.5 conditions (e.g. Pearce et al., 2020) and other studies
such as (Jaffe et al., 2020) that have indicated that 80% of wild�res’ emissions are injected into the local
atmospheric boundary layer instead of reaching higher layers at which advection over larger distances at
high altitude may play a role in PM2.5 distribution. We then applied the ratio of future to current
emissions as a multiplier to the daily PM2.5 wild�re concentrations from the Childs data to create a
representative 2050s time series, and repeated the summation of orange + AQI days to estimate the likely
number of such days under future climate conditions.

2.3 Anthropogenic PM2.5
Our modeling approach incorporates anthropogenic PM2.5 estimates to provide a baseline expectation of
poor air quality from non-wild�re related sources. To maintain consistency across model components, we
used EQUATES CMAQ output as the basis for ground-surface-level anthropogenic PM2.5 estimates.
However, because the EQUATES model output does not separate out wild�re related PM2.5 from other
PM2.5 sources, we performed an additional processing routine to estimate wild�re-exclusive PM2.5
concentrations. We used this post-processed data to estimate purely anthropogenic orange + days to add
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a baseline PM2.5 concentration for smoke orange + day calculations without double counting smoke
contributions.

Our processing routine is described as follows. First, we implemented a cap on daily PM2.5
concentrations at 1,400 µg/m3 (the highest single station observation recorded) to account for a known
error in wild�re ignitions in CMAQ output. We then created a new daily concentration time series by
combining CMAQ output with EPA station observations using the same fusion methodology described in
section 2.1.1 to reduce biases in underlying CMAQ model output. For �rst order smoke-removal, we
matched the ‘smoke days’ (non-zero values) in the Childs dataset to the CMAQ grid on a day/year per-
pixel basis and excluded those days from the fused CMAQ output. The machine learning approach in the
Childs data typically has a broader spatial representation of smoke due to the inclusion of satellite-based
products like aerosol optical depth. Visual inspections showed that this step removed a majority of
wild�re activity, but some clear �re activity remained (indicated by large, isolated spikes in PM2.5) due to
methodological differences between the two data products. To account for this, we implemented a
median �ltering process to the daily data to remove large spikes in the CMAQ data that the Childs data
did not capture. Using a window of 9 grid cells, we replaced a pixel’s PM2.5 value with the spatial median
value if the difference between the two was more than 43.5 µg/m3 (the difference between a “green” and
“red” AQI day). We used the processed data to calculate a yearly ‘smoke-exclusive’ mean PM2.5
concentration and the number of orange + days for 2015–2019.

3 Results
Figure 1 shows the projected total number of orange + days from ozone (a-b), wild�re smoke (c-d), and all
sources (e-f) in 2023 and 2053. Results for the alternate smoke speci�cations are included in
Supplementary Figs. 3 and 4. We �nd that joint PM2.5 and ozone orange + days range from 1 to 41
across CONUS, with a median value of 2. Ozone and wild�re-related PM2.5 produce similar numbers of
orange + days at their respective maxima. At a high level, wild�re smoke is the predominant contributing
pollutant on the west coast compared to ozone in the Midwest and on the East Coast. Central and
Southern California are notable exceptions with consistently high values across both pollutants. Ozone
orange + days range from wild�re smoke are spread across the Western US, with hotspots in Northern and
Central California, the Idaho-Montana border, and the Washington-Canada border. Mean days in smoke
years are non-zero across the entirety of most western states, ranging up to 5–10 days in �re-affected
areas. Parts of the Mountain-west and Southeast show orange + days from wild�re smoke, although
typically only a few days. These spatial trends between 2023 and 2053 are consistent regardless of what
wild�re smoke metric (mean, mean in non-zero years, max) is used, but the magnitude of smoke orange + 
days is signi�cantly higher in the maximum year (Figure SI 1). Ozone orange + days are spatially
concentrated in California, the Great Lakes, and the Northeast Corridor, with isolated patches in places
like Salt Lake City, the Greater Denver Region, and various cities in Texas. The magnitude of ozone
orange + days is typically 1–5, with the highest projected count at 27 days in Southern California. The
spatial distributions associated with the future 2053 projections are strongly associated with areas of
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existing ozone pollution with the largest rates of increases associated with Ozone increases in California,
the Great Plains, the Midwest, Tennessee Valley, and Northeastern regions of the country.

Our current year results validate moderately well against station observations. Figure 3 compares the
model predicted number of orange + days to EPA station derived orange + days. To generate
approximately comparable statistics, we selected stations with 75% of available yearly observations for a
minimum of three years between 2014–2021. For PM2.5, our model results tend to be slight
underestimates, with the exception of the western Coastline. For ozone, we show the opposite trend with
slight overestimates in the East and underestimates in the West, especially in California. The largest
differences (10 + days) occur in urban centers with ozone pollution (e.g. Denver, Salt Lake City, Los
Angeles) and hotspots of activity for both ozone and wild�re PM2.5 like the central valley. These
underestimations originate from the low bias in the underlying CMAQ datasets used for model training.

Figure 4 isolates the number of additional orange + days resulting from climate change for ozone (24)
and wild�re smoke (4b), respectively. We �nd the impact of climate change on orange + days to be
relatively modest, with increases of 1–5 days in most locations across both pollutants. For ozone, we �nd
that nearly all our projected increases are in areas that already experience ozone pollution, consistent
with the �ndings in Wilson et al. (2022). This suggests that changes in meteorological conditions into the
2050s are generally not signi�cant enough on their own to create new areas of concern for ozone
pollution. However, if anthropogenic emission of ozone precursors does not decrease in the future,
climate change will exacerbate ozone pollution in areas with existing concern, indicating the magnitude
of the ozone “climate penalty”. In our results this is seen in places like Central and Southern California—
regions which are known to have some of the worst ozone pollution in the United States—projected to see
increases of 10 orange + days by mid-century. For wild�re smoke, we show increases 1–3 days across
most of the western U.S, with concentrated pockets of higher changes. Because the FSF-WFM resolves
wild�re activity at very high horizontal resolution, increases in PM2.5 are more localized to areas with
increased emissions. Our projected increases trend signi�cantly higher in severe �re seasons, with an
extra 10–14 days in many locations out west (Figure SI 3).

In addition to the aforementioned comparisons of our results against observations, we also can observe
the sensitivity of our results to concentration estimates that have been bias-adjusted and then compared
against a threshold to arrive at annual orange + exceedance day estimates. To guard against a
systematic overestimation of the impacts of climate change on concentrations, we have taken a
conservative approach which weights the observations appropriately but limits their spatial in�uence.
The in�uence of the bias-adjustment procedure on results relative to a threshold concentration can be
examined by considering a “worst case” scenario, for each day and for each pixel within the study
domain, where the bias-adjusted estimates would result in an exceedance of the orange + threshold -- but
the non-adjusted concentrations would not. This worst-possible in�uence for ozone is observed to range
from only 0.25% of additional orange + exceedance days annually, to under 0.02% additional days, for an
average of 64 grid points per year for all of CONUS, which is negligible overall. The possible impact on
annual orange + days’ spatial distribution as derived from the isolation of the bias adjustment process for
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ozone and PM2.5 (bias-adjusted minus non-adjusted) is shown in Fig. 5, and indicates that in the “worst
case” the exceedance days would be coincident with those locations with the highest ozone
concentrations. The bias-adjustment method previously described appears to be effectively emphasizing
the impact of the actual observations while allowing the modeled results to provide coherent patterns of
orange + days distribution, without systematically over-extending or overestimating these relative to the
ozone and PM2.5 thresholds. These patterns are similar in distribution and magnitude in both the 2023
and 2053 results.

To better understand how our projected additional orange + days impact the U.S. population, we also
calculated the property-level exposure using property data from the commercial data provider Lightbox,
which has aggregated property and building level data from across the US from public sources including
local tax assessor o�ces ( https://www.lightboxre.com/ ). Figure 6 shows the total count of properties at
the grid-cell level strati�ed by the number of orange + days from all modeled sources in 2023 and 2053,
and broken out by pollutant. Among all 140 million properties nationally, 91.5 million have at least one
orange + day in 2023, increasing to 103.7% in 2053. The number of properties experiencing each
additional orange + day monotonically decreases in both time periods, although a greater proportion of
properties are in higher bins (3+) in the mid-century data. Consistent with current estimates of population
under air quality nonattainment, we �nd that more properties experience orange + days from ozone
pollution rather than PM2.5 pollution. When considering risk by pollutant, more properties experience
orange + days due to Ozone exposure at the lower end of the “number of days” metric,. By contrast,
PM2.5 is the predominant pollutant in areas that see a week (7 + days) of poor air quality day. This seems
to indicate that there are two national pictures emerging, one in which a large amount of the country is
exposed to high levels of Ozone, PM2.5, or both up to a handful of days a year; and another where a
smaller portion of the country is exposed to high levels of PM2.5 driven predominately by wild�re smoke.
While the properties in this most at risk area are proportionally very small, it is important to note that they
are qualitatively different in regard to the characteristics of their exposure from the rest of the country.

4 Discussion
We presented an integrated estimate of unhealthy air quality days (orange + on the EPA AQI) from ground-
level ozone and �ne particulate matter across the contiguous United States both presently and thirty
years into the future under CMIP6 SSP245. Our work combined representative data sources from climate-
chemistry, machine learning, and statistical models with climate modeling to produce estimates for
orange+ (unhealthy for sensitive groups) AQI days across CONUS. Despite substantial progress in
reducing air pollution in the U.S. through emission control strategies, we �nd that 64% of U.S. properties
of the country experience poor air quality days currently, growing to 72% by midcentury. To our
knowledge, this work represents the �rst large-scale integration of air quality models aimed at providing
long-term, climate adjusted estimates of poor air quality days. With recent evidence suggesting that
individuals alter their behavior in response to air quality events (Burke et al. 2022), this research hopefully
enables individuals and communities to better understand their air quality risks both now and into the
future.
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We �nd that the “climate penalty” under simulated 2050s meteorological conditions is on the order of one
or two additional poor air quality days at ground level for most of the U.S., increasing up to a week or two
in the most severe locations. These increases are consistent with previous literature on the magnitude of
the ozone climate penalty (e.g. Shen et al., 2016) and are similar in magnitude to the increase in poor air
quality days from wild�re smoke days over the past two decades (Burke et al., 2022; Childs et al., 2022).
While these increases might appear modest, there is a growing body of evidence suggesting that even
small increases in air pollution can negatively affect health outcomes, especially over longer time periods
(Brauer et al., 2019; Brunekreef et al., 2021; Dominici et al., 2022). These results are particularly
meaningful for the smaller proportion of areas and across CONUS that see 7 + orange + days. For those
properties, the increase in exposure is disproportionately driven by PM2.5 from wild�re smoke.
Furthermore, some research indicates that current “acceptable” levels of air pollution are possibly too
high, and adverse health effects from air pollution can be observed down to very low concentrations
(Hoffmann et al., 2021). In 2021, this led the World Health Organization to ambitiously recommend
lowering annual mean concentrations of PM2.5 to 5 µg/m3 and peak season MDA8 ozone
concentrations to 60 µg/m3. Using these standards would result in more poor air quality days than we
estimated in this study, underscoring the importance of characterizing any climate-related impacts to air
quality.

Several recent studies have focused speci�cally on the impacts of wild�re smoke on counteracting
progress in reducing anthropogenic PM2.5 levels in the US (Burke et al., 2022, 2023; Childs et al., 2022).
With results showing upwards of 25% of progress has been undone, it is important to understand how
these trends might continue into the future. One of the challenges in translating this type of research to a
high-resolution, climate-projected context are numerous uncertainties in coupled climate and chemical
transport models (Garcia-Menendez et al., 2014; Nikonovas et al., 2017) that can lead to an
underestimation of PM2.5 conditions. Therefore in this study, we focused on proper attribution of wild�re
PM2.5 using the (Childs et al., 2022) dataset and ELMFIRE �re emissions (Kearns et al., 2022; Melecio-
Vázquez et al., 2023) to characterize current and future impacts to surface air quality conditions for
CONUS due to PM2.5. Using ELMFIRE �re emissions from the FSF-WFM anchors our analysis with a
deterministic representation of simulated �re behavior rather than �re weather indices or other proxy
measures. This provides a high resolution realistic representation of where �res have started and how
they have spread across millions of Monte Carlo simulations under the same range of meteorological
forcings, rather than just meteorological conditions alone that might be prone to more �re activity. Using
this approach, we found that the doubling of wild�re risk is associated with an increase in average �re
emissions of up to 50% across CONUS, translating to 1–5 additional orange + days in an average smoke
year and 10–20 orange + days in a bad smoke year (Supplementary Fig. 4). With similar increases in poor
air quality days over the past two decades associated with up to 25% reductions in air quality progress
(Burke et al., 2023), our results indicate that climate change is a signi�cant barrier to achieving PM2.5 air
quality goals in the future.

We note a few limitations to our future smoke estimates. The wild�re behavior model used (Lautenberger,
2013), cannot simulate the relatively rare large plume �res that have coupled atmospheric behaviors, so
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the very largest and severe �res are not captured in the simulation. Since each simulated wild�re is
simulated independently, this approach also cannot resolve the increased correlated impact on air quality
from groups of concurrent ignitions or “cluster �res”, such as the ones outside of Montreal, Canada that
produced poor air quality across the central and eastern US in June 2023. The FSF-WFM is also
geographically constrained to CONUS, so any changes to wild�re activity and corresponding smoke from
Canadian, Alaskan, or Mexican wild�res is not captured in the future projections of the current version of
our air quality model. Our future projections of increased air quality risk do not include any changes in
any advected wild�re smoke contributions to PM2.5, and instead are con�ned to essentially local
contributions. These limitations imply that our current projections should be considered as conservative
estimates, particularly in those areas in the U.S. where large, advective smoke events are known to
contribute to surface PM2.5 air quality. Finally, the FSF-WFM assumes no changes in the built
environment, �re management practices, �re suppression resources, future wind patterns, or signi�cant
anthropogenically-in�uenced shifts in wild�re ignition locations into the 2050s in order to isolate the
effect of climate change.

Our modeling framework holds all anthropogenic factors outside of those indirectly built into the shared
socio-economic pathways data constant into the future to isolate the effect of climate change. While this
approach is not uncommon in air quality literature, it is unlikely that emissions in the 2050s will be
identical to those in the current period, especially if policies aimed at achieving broader climate goals are
effectively reducing emissions. The trend for future expectations of PM2.5 is a decrease into the future as
anthropogenic sources are better handled and reduced. However the portion that may be attributed to
wild�res is expected to increase, potentially leading to 50% of all PM2.5 sources coming from wild�res
(Val Martin et al., 2015; Ford et al., 2018) especially in western CONUS. This increase is expected to come
mostly from increasing �res and fuel loadings, and minimally from changes in fuel moisture into the
future (Liu et al., 2021). In our analysis, we found the smoke signal outweighs the anthropogenic PM2.5
signal for orange + days in almost all areas, with the exception of major metro areas (e.g. Los Angeles).
For ozone, reductions in precursor emissions or changes in local VOC-to-NOx ratios could temper the
climate-related increases, but the relative impact compared to climate-related increases is uncertain.
Understanding the relative contribution of policy-related improvements in air quality versus climate-
related reductions is an important area of continued research.

5 Conclusion
Over the last half-century, a tremendous amount of improvement has been made in the reduction of
harmful anthropogenically-sourced pollutants. In fact, per the EPA (EPA-Trends), the combined emissions
of criteria pollutants and their precursors have dropped by 78% since 1970. This trend provides clear
empirical evidence that the Clean Air Act, and other policies geared towards the reduction of harmful air
pollutants, have been effective. Furthermore, those reductions have occurred across a number of different
pollutants, but have generally all had the positive bene�t of reducing various health risks. The outcome
has been a healthier environment, less pollutant exposure for the population, and an overall improvement
in quality of life across a number of different associated dimensions. The implications of these
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improvements are exceedingly important as exposure to high levels of Ozone and PM2.5 have been
consistently shown to be linked to lower levels of physical and mental health, at even low levels of
occurrence (Bell et al., 2007; Kinney et al., 2008; Tagaris et al., 2009; Fann et al., 2015, 2021; Garcia-
Menendez et al., 2015; Orru et al., 2017; Silva et al., 2017).

Unfortunately for US communities, recent changes in the environment are also driving increases in some
pollutants and improvements made under the Clean Air Act are coming undone per the “climate penalty”
(Rasmussen et al., 2013; Burke et al., 2023). While the country is still less exposed to high levels of Ozone
and PM2.5, a reversal at the national level is worrisome and worth the attention of scientists and
policymakers. Moreover, this research shows that while the average “climate penalty” across the country
is relatively small, in some areas the reversal is much more dramatic. Those areas are also seeing the
most impacts of the role the changing climate is having in driving the “climate penalty” with direct
exposure in increasing levels of extreme heat (and associated conditions) driving up exposure to Ozone
and increasing rates of wild�re (and associated conditions) driving up exposure to PM2.5. The carry-on
effects of this hyperlocal exposure also bring with them potential for larger scale socioeconomic
consequences. In these localized areas, there are likely to be spikes in the negative physical and mental
health implications that we know are associated with exposure to poor air quality. Additionally, we are
already seeing residents leave areas associated with high rates of exposure to environmental conditions
that directly impact “quality of life”. In coastal Florida for instance, research has shown that areas with
high exposure to nuisance tidal �ooding are growing at slower rates and seeing negative property value
impacts (McAlpine and Porter, 2018; Gourevitch et al., 2023). Nationwide the availability of climate
change impact data have been shown to in�uence the home buying process for speci�c homes that have
been assessed to have high climate risks (Fairweather et al., n.d.). These trends indicate that people
respond to increasing climate risk, and the awareness of that risk, once exposure reaches a tipping point
that negatively impacts their quality of life. The national model documented throughout this research
allows for the identi�cation of the areas most likely to be impacted by increasing exposure to pollutants
and what parts of the country are most at risk for seeing the negative health, economic, and quality of life
impacts that come with that increasing exposure.
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Figure 1

Flowchart showing the model framework components.
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Figure 2

Estimated number of orange+ days in 2023 and 2053 conditions driven by ozone (a-b), wild�re smoke (c-
d), and all modeled sources (e-f).
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Figure 3

Comparison of model predictions versus 2014-2021 EPA station observations for Orange+ Days from (a)
ozone, (b) PM2.5 and (c) both pollutants.
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Figure 4

The expected increase in ozone (a) and wild�re smoke (b) orange+ days by mid-century.
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Figure 5

The difference in annual orange+ exceedance days of the bias-adjusted and non-biased adjusted ozone
(top), PM2.5 (center), and combined (bottom) for 2023 (left) and 2053 (right).
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Figure 6

Number of properties exposed to bins of orange+ days by time period and pollutant.
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