
Page 1/29

PLPP2 as a metabolic and immune marker for
predicting survival and enhancing response to anti-
PD1 therapy in pancreatic cancer
Guannan Sheng 

Tianjin First Center Hospital
Xiaoyan Du 

Tianjin Medical University General Hospital Airport Hospital, Tianjin Medical University
Bo Ni 

National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital,
Tianjin Medical University
Ziyun Liu 

National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital,
Tianjin Medical University
Chenyan Wu 

Beijing Anhua Jinhe Technology Co., Ltd
Kewei Meng 

Tianjin First Center Hospital
Yongjie Xie 

National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital,
Tianjin Medical University
Tao Yang  

 
Tianjin First Center Hospital

Research Article

Keywords: immune and metabolic signature, PLPP2, pancreatic cancer, immune microenvironment,
metabolic

Posted Date: February 14th, 2024

DOI: https://doi.org/10.21203/rs.3.rs-3952664/v1

https://doi.org/10.21203/rs.3.rs-3952664/v1
https://doi.org/10.21203/rs.3.rs-3952664/v1


Page 2/29

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.  
Read Full License

Additional Declarations: No competing interests reported.

https://creativecommons.org/licenses/by/4.0/


Page 3/29

Abstract

Objective
The aim of this study was to establish genetic markers based on metabolic, stromal, and immune factors
by analyzing pancreatic cancer (PC) transcriptome datasets to predict prognosis and response to PD-1
therapy in patients with PC.

Methods
We used the pancreatic cancer data set from the TCGA database to identify metabolic-related genetic
markers through statistical analysis of arti�cial intelligence technology. The association between these
markers and overall survival (OS) in PC patients was then analyzed. Metabolism, stroma, and immunity
were evaluated using GSEA and EPIC algorithms. Finally, external validation was performed on the GEO
data set.

Results
PLPP2 was found to be associated with PC metabolism and can effectively predict OS and disease-free
survival. Internal veri�cation con�rms the accuracy of the mark. PLPP2 was also found to be involved in
the metabolism of tumor cells and to regulate the immune system. PLPP2 was evaluated based on
clinical relevance, metabolic relevance, immune landscape, and immune checkpoint therapy potential. In
vivo experiments showed the potential of PLPP2 as a marker for predicting metabolic status, immune
landscape, and response to immune checkpoint inhibitors in PC patients.

Conclusion
PLPP2 is a newly identi�ed marker that predicts stromal, metabolic, and immune features in PC. These
�ndings have potential applications in therapeutic strategies, particularly in the context of immune
checkpoint blocking. This study provides crucial insights into the molecular mechanisms of PC, genetic
markers that predict prognosis and treatment response, and guides personalized treatment and improved
patient outcomes.

Introduction
Pancreatic cancer (PC) is a malignancy characterized by its propensity for early metastasis, accounting
for more than 90% of the incidence of various types of pancreatic malignancies[1]. It exhibits notable
resistance to established treatment modalities including surgery, chemotherapy, radiotherapy, and
molecular targeted therapy[2, 3]. The malignant advancement of PC, spanning from precancerous
lesions, such as pancreatic intraepithelial neoplasia (PanINs), to the development of malignancy,
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in�ltration, and metastasis, is accompanied by the activation of numerous proto-oncogenes and the
deactivation of tumor suppressor genes. Studies have found that KRAS, p16/CDKN2A, TP53,
DPC4/SMAD4 have high mutation frequency in the process of PC tumorigenesis, resulting in their
activation of tumor-promoting function or inactivation of tumor-suppressing function, so they are
considered to be the four major driving mutations in the development of PC. In 95% of PC cases, the
activation mutation of KRAS occurs at the PanIN stage I, succeeded by the inactivation of the functional
tumor suppressor gene p16 (CDKN2A, over 90%). Inactivation of TP53 (about 75 %) and PC4 (SMAD4,
about 55 %) freqently occur in PanIN stage III[4]. Metabolic reprogramming within the tumor
microenvironment stands as a crucial factor contributing to the unfavorable prognosis observed in PC
patients[5]. Collagen ranks as the predominant extracellular matrix component within the tumor
microenvironment of PC[6]. PC cells can internalize cleaved collagen fragments or collagen-derived
proline, either in a dependent or independent manner[7]. The liberated amino acids resulting from the
degradation of engulfed collagen fragments within the lysosome enter the TCA cycle and undergo
metabolism, furnishing essential materials for the sustenance of PC cell survival(7). Under conditions of
nutrient scarcity, the stimulation and activation of the epidermal growth factor receptor (EGFR) - Pak
pathway intensi�es the involvement of pinocytosis within PC[8].

The PC microenvironment encompasses a diverse array of interstitial cells. Among these, pancreatic
stellate cells (PSC) stand out as specialized �broblasts unique to the pancreas. Intriguingly, a reciprocal
regulatory relationship has been observed between PSC and PC cells. Activated PSC within the PC
context release leukemia inhibitory factor (LIF), fostering the progression of PC cells via paracrine
signaling[9]. The abnormality of blood vessels in tumor tissue causes insu�cient blood supply, which
leads to the shortage of nutrients in the tumor microenvironment. Tumor related PSCs secrete alanine
(Ala) to provide nutrients for PC cells and activate the TCA cycle, reducing the dependence of tumor cells
on serum nutrients such as glucose[10–12].

Immune cells within the PC microenvironment exert a crucial in�uence on the initiation, progression,
therapeutic response, and prognosis of PC. Research has uncovered heightened glycolytic activity in
tumor-associated macrophages (TAMs), a phenomenon that contributes to the advancement of PC[13]. In
addition, the invasion and metastasis of PC can be signi�cantly eliminated by enhancing the
immunosuppressive effect of CD8 + T cells and destroying PI3Kγ, a key lipid kinase in macrophages[14].
Remarkably, upon the knockout of HIF1α in pancreatic tissue, a distinct subgroup of B cells was attracted
to the tumor microenvironment, signi�cantly accelerating the advancement of PanIN lesions propelled by
KRAS mutations[15].

PC cells undergo metabolic reprogramming to adjust to challenges such as energy and nutrient scarcity,
as well as atypical oxidative stress, within the tumor microenvironment. This dynamic adaptation
presents novel avenues and tactics for targeted interventions and therapies in pancreatic cancer,
grounded in its metabolic attributes. Accordingly, PC cells can be classi�ed into three distinct subtypes
based on their metabolic pro�les: slow proliferation, glycolysis, and lipogenesis[16]. The level of amino
acid and carbohydrate in slowly proliferating PC cells was low, and the cell proliferation was slow. In
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glycolytic PC cells, the levels of various intermediate metabolites in the glycolytic pathway and its
pathways, such as phosphoenolpyruvate (PEP), glyceraldehyde 3-phosphate, lactic acid and serine,
increased, and the expression of genes related to the corresponding glycolytic pathway and pathways,
such as PPP pathway, increased. It should be noted that stable isotope tracing experiments found that
glycolytic PC cells mainly use the carbon source of glucose to meet the needs of glycolysis, The TCA
cycle is maintained by ingesting the carbon source of glutamine[17]. In our study, we constructed a risk
model combined with immune status, stromal status and metabolic change which could predict the risk
ratio of pancreatic cancer patients. Finally, PLPP2 was selected a targeted one which was inversely
correlated with the survival probability of PC patients; and our research provided a new insight on
estimating the microenvironment status of PC.

Materials and Methods

The samples for single cell RNA sequencing in our center
Thirteen resected samples from PC patients who received the Whipple-procedure operation were
performed the single cell RNA sequencing and subsequent analysis. The specimen was collected
following the patient's informed consent and received ethical committee approval. The detailed
information of the acquisition of single cell suspension was listed below: sample collection: First, it is
recommended that sterile sample handling be used, including the use of nuclease-free reagents and
consumables. In order to reduce damage to cells, transfer and centrifugation should be kept to a
minimum. At a given centrifugal speed, time and temperature, the cell concentration and size directly
affect the e�ciency of preparation. Tightly packed cell deposits may require additional manipulation, but
may therefore damage cells through shear effects. Of course, centrifugal conditions need to be adjusted
at this time. In addition, the use of a su�ciently sized vessel during cell cleaning and resuspension
avoids cell agglomeration and agglomeration at high concentrations. Single cell suspension preparation:
Entity tissues require mechanical separation or enzymatic digestion at the outset. First, the tissue needs
to be physically cut or bladed, and then the cells are isolated by enzymatic digestion. Speci�c tissue
digestive enzymes and digestion time need to be carefully selected. The sample preparation process may
cause changes in gene expression patterns in cells, particularly the activation of some stress-related
genes. In addition, some sensitive cell subtypes may be harmed in this process. So, the shorter the
sample preparation process, the better. On the contrary, if the digestion time is too short, it may lead to
incomplete cell separation, and these closely linked cells need to be excluded during subsequent single-
cell analysis. The addition of DNase I during cell dissociation prevents the formation of cell aggregates.
The single-cell RNA sequencing data produced by our institution has been archived in the Genome
Sequence Archive for Human (GSA-Human) under the accession number HRA000433.

The samples for bulk RNA sequencing in our center
We performed bulk RNA sequencing and subsequent analysis on ten resected samples from PC patients
who underwent the Whipple procedure. The samples were collected with the informed consent of the
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patients and received approval from the ethics committee.

Data acquisition in public database
We enrolled two distinct cohorts of PC patients, each with comprehensive genetic expression pro�les and
clinical data: The Cancer Genome Atlas (TCGA) cohort, accessible at https://portal.gdc.cancer.gov/, and
the GSE62452 cohort from the Gene Expression Omnibus (GEO) database, available at
https://www.ncbi.nlm.nih.gov/geo/. All cohorts provide detailed clinical and pathological information,
accessible through the GEO database. For our project, we utilized single-cell RNA sequencing data with
the accession number GSA: CRA001160, which has been submitted to the Genome Sequence Archive
under the project PRJCA001063. Our study incorporated metabolism-related gene sets derived from
established gene sets within the Gene Set Enrichment Analysis (GSEA) database. We meticulously
adhered to the access regulations of publicly accessible databases, and as the data were sourced from a
public database, local ethics committee approval was not required.

Energy Metabolic Molecular Subtypes
In our study, we conducted a comprehensive analysis of PC metabolism-related molecular subtypes
utilizing a set of 594 genes. To effectively group all PC samples within the GSE62452 dataset, we
employed NMF consensus clustering technique from the R package "NMF". This approach enabled us to
obtain robust clustering results. Subsequently, we performed survival analysis and independence tests on
the clustered subtypes. To gain further insights, we compared the GSVA scores among different groups.
Additionally, we utilized the TIMER tool to derive immune scores for the identi�ed subtypes. This
multifaceted analysis provided us with a comprehensive understanding of the metabolic and immune
characteristics of the different PC subtypes.

DEG Identi�cation and Bioinformatics Analysis
We employed the "DESeq2" R package to calculate the differentially expressed genes (DEGs) within the
identi�ed subtypes. Speci�cally, we focused on DEGs with false discovery rate (FDR) values below 0.05
and an absolute log2-fold change exceeding 1. Subsequently, we performed Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analyses using these selected
DEGs. These analyses allowed us to elucidate the biological pathways and molecular processes
associated with the observed transcriptional differences between the subtypes

Risk Model Construction and Validation
We employed the expression data of the identi�ed DEGs from the training cohort to construct a risk score
model. Our initial step involved assessing the in�uence of each DEG on the overall survival (OS) of PC
patients. And we employed the univariate Cox proportional risk regression model, utilizing a signi�cance
threshold of log-rank P < 0.01. Subsequently, we utilized LASSO-Cox regression to streamline the selection
of genes in our model, effectively reducing their number. The risk score model was constructed by
incorporating individual normalized gene expression values adjusted by their respective LASSO-Cox
coe�cients. To ensure the robustness of our model, we subjected it to validation using both internal and
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external validation cohorts. To calculate the risk score of each sample, we applied our formulated
equation, and we visually represented the distribution of risk scores using the "timeROC" R package. By
leveraging the Gordon index, we determined a cutoff value to classify samples into high- and low-risk
groups. We employed a log-rank test to compare survival differences between these two groups, and their
overall survival (OS) was visually depicted through Kaplan-Meier (KM) survival curves. This
comprehensive methodology facilitated the development of a reliable risk score model for predicting
patient outcomes based on the gene expression pro�le.

Prognostic value of the risk signature in training and
validation group
Patients were strati�ed into two distinct groups, namely high- and low-risk, using the median value of the
risk score. To evaluate the prognostic capacity of the risk signature, we generated Kaplan-Meier (K-M)
survival curves employing the Log-rank test. Additionally, we harnessed the "survival ROC" R package to
compute the area under the curve (AUC) values for the receiver operating characteristic (ROC) curves
corresponding to 1-, 2-, 3-, and 5-year survival periods. These analyses provided a comprehensive insight
into the predictive performance of the risk score model across different time frames. These evaluations
were conducted to assess the performance of the two signatures. To avoid redundancy, different
sentence structures and words were used, and some keywords were replaced.

Gene set enrichment analysis (GSEA)
To elucidate the intrinsic molecular mechanisms linked to the high- and low-risk clusters, we conducted
Gene Set Enrichment Analysis (GSEA). For this purpose, we employed the reference gene set
h.all.v7.2.symbols.gmt (Hallmarks) extracted from the Molecular Signature Database. GSEA serves as a
potent analytical technique, facilitating the identi�cation of biologically signi�cant gene sets that exhibit
enrichment within a designated phenotype or sample group. This approach aids in unraveling the
functional pathways and biological processes that underlie the observed differences between the high-
and low-risk categories. By comparing the high- and low-risk groups, GSEA can reveal the potential
molecular pathways that contribute to the different clinical outcomes observed between the two groups.
The results of the GSEA analysis will provide insights into the biological processes that are driving the
differential prognosis in pancreatic cancer.

Analysis of Immune In�ltration Characteristics in Relation to
Metabolism-Related Risk Score Subgroups in PC
We investigated the immune in�ltration patterns in pancreatic cancer using the RNA-seq data from the
GSE62452 database (GEO) and explored the potential associations between immune cells and our
prognostic signature consisting of six genes. To analyze the immune in�ltration characteristics, we
utilized seven online tools, including CIBERSORT and TIMER. We then compared the relative proportions
of immune cells in the six genes that constituted our prognostic signature, providing further insight into
the potential role of immune cells in pancreatic cancer prognosis. By investigating the immune in�ltration
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patterns and potential associations with our prognostic signature, we aimed to uncover potential
therapeutic targets and improve the clinical management of pancreatic cancer.

Cell culture
The KPC cell line was cultivated in RPMI 1640 cell culture medium supplemented with 10% fetal bovine
serum and 1% penicillin-streptomycin, within a specialized cell incubator maintained at 37°C under a
controlled atmosphere of 2% carbon dioxide. The construction of KPC-PLPP2-sh cell line was based on
NM_001302389.

Subcutaneous tumor model
C57BL/6J mice, aged between 4 and 6 weeks, were procured from GemPharmatech. All mice were
anesthetized with iso�urane and lower abdominal hair was cleared. Disinfect the injection site with 75%
alcohol before inoculation. The needle was inserted from the left inguinal region of the mouse and
punctured forward about 1cm for subcutaneous injection. All animal experiments were conducted in
accordance with protocols that received approval from the Ethics Committee and Institutional Review
Board of Tianjin Medical University Cancer Institute & Hospital.

Flow cytometry
Fresh tumor tissue was mechanically homogenized to obtain a single-cell suspension. This suspension
was subsequently centrifuged at 500 g for 10 minutes, after which the supernatant was removed. The
resulting pellet was then resuspended in a phosphate buffer solution. 200ul single cell suspension was
drawn into a �ow tube, and �ow antibodies such as CD45, CD3, CD8, PD-1 were added, and incubated on
ice for 30–60 minutes in the dark. Granzyme B and TNFα were labeled according to the protocol by BD.

Statistical analysis
In this study, statistical analyses and graphical representations were carried out using R (version 3.6.3) or
GraphPad Prism (version 8.3.0). Continuous variables were analyzed using the t-test, while Fisher's exact
test or the chi-square test was used for categorical variable comparisons. To assess disparities among
Kaplan-Meier (K-M) survival curves, the log-rank test was applied. A signi�cance threshold of less than
0.05 (two-tailed) was considered indicative of statistical signi�cance. These rigorous analyses upheld the
credibility and robustness of our �ndings.

Results

Identi�cation and analysis of metabolism and immune-
related differentially expressed genes in PC
Pancreatic cancer cells are prone to construct a metabolically vigorous microenvironment for providing
an enriched nutritional requirement. Besides, the formation of immune suppressive environment is
positively correlated with the development of PC. For further exploring an immune and metabolism-
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related gene set, we made a systematic and precise screened strategy combined with both immune and
metabolism factors (Figure. 1A). First, RNA bulk sequencing was conducted using resected tissue
samples obtained from ten patients diagnosed with PC. These patients were closely monitored through
the utilization of ultrasonography (Figure. 1B). The staining intensity of CD8 + T cells was assessed using
immunohistochemistry (IHC), and immune in�ltration analysis was conducted using the CIBERSORT
software. These methods were employed to enhance the quanti�cation of CD8 + T cells within archived
tissues. Subsequently, a selection of 1242 Differentially Expressed Genes (DEGs) was made based on the
"L_CD8 + T cell" group. Following this, a separate cohort of thirteen PC patients who had undergone
resected Whipple surgery was subjected to single-cell RNA sequencing (Figure. 1C). Subsequently, we
performed reduction and cell cluster identi�cation analysis with the expression matrix. Combined with the
stained intensity of CD8 + T cell, six PC patients were divided into “L_CD8 + T cell” and “H_CD8 + T cell”
groups; and then 1132 DEGs were selected from “L_CD8 + T cell” group comparing with “H_CD8 + T cell”
group. Finally, we then performed differential gene analysis (DEGs) according to the proportion of CAF in
ten PC patients with EPIC software, and 972 differential genes were obtained in the high �brosis group
(Figure. 1D). Totally, 34 intersected genes in “L_CD8 + T cell’ group between the single cell RNA
sequencing and bulk RNA sequencing were identi�ed. Finally, we collected 1385 metabolism-related
genes (protein metabolism, sugar metabolism, lipid metabolism) in MSigDB database to perform the
Sperman’s correlation analysis with 254 intersected genes, and 54 targeted genes were identi�ed (Figure.
1E). Subsequently, we conducted Gene Set Enrichment Analysis (GSEA) based on the Kyoto Encyclopedia
of Genes and Genomes (KEGG) to delve into the potential functions of these genes and gain insights into
the modi�ed metabolic landscape within PC. The outcomes of functional enrichment analysis using
KEGG indicated a signi�cant correlation between metabolic differentially expressed genes (mDEGs) and
various pathways. Notably, these pathways encompassed Carbon metabolism, Glycerophospholipid
metabolism, Biosynthesis of amino acids, and Spinocerebellar ataxia pathways, as depicted in Fig. 1G.
Furthermore, the 5 most enriched Gene Ontology (GO) terms associated with metabolic mDEGs included
fatty acid metabolic process, small molecule catabolic process, glycerol-lipid metabolic process,
phospholipid metabolic process, and organic acid biosynthetic process. These �ndings are visually
depicted in Fig. 1F.

Correlation analysis between clinicopathological
characteristics and the metabolism-related gene signature
To construct a robust and comprehensive metabolism-related risk model (MRM) for prognostic prediction,
we initiated the process by identifying 222 common genes from the pool of metabolic differentially
expressed genes mDEGs. Subsequently, we employed LASSO Cox regression analysis to scrutinize the
key mDEGs linked to DFS. This approach ensured the inclusion of crucial genes while minimizing
potential over�tting and optimizing the predictive capacity of the model. Through cross-validation, we
identi�ed six genes (MGLL, MET, MBOAT2, PLPP2, DDIT4, B4GALT2) that demonstrated the lowest partial
likelihood deviance (supplementary Figure. 1A-B). Moreover, an array of correlation analyses was
executed to explore the relationship between the metabolism-related gene signature and various
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clinicopathological features. Notably, the DFS and overall survival (OS) rates were notably lower in cases
exhibiting high expression of these metabolism-related genes, as opposed to those with low expression.
This observation strongly suggested that elevated expression of these markers was indicative of a
heightened likelihood of recurrence (supplementary Figure. 2). For further validating the function of these
metabolism-related genes in different subgroups, K-M survival analysis in subgroups of clinical
characteristics (T stage, histological grade, pathologic stage, N stage) indicated that the selected
metabolic and immune-related genes were closely and inversely correlated with OS (Figure. 2 and
supplementary Figure. 3).

Construction of a metabolism-related risk model to predict the overall survival and disease-free survival
of PC patients

Following the computation of the MRS using the developed model, we classi�ed PC patients into two
distinct subgroups: high- and low-risk categories. This categorization was achieved by utilizing the
median value of the MRS as a threshold to demarcate the two subgroups (Figure. 3A). Our analysis
unveiled a signi�cant �nding: patients exhibiting higher MRS exhibited notably lower DFS and OS rates in
comparison to those with lower MRS values. This compelling evidence indicates that MRS holds the
potential to serve as a valuable prognostic factor for PC (Figure. 3B-C). We also examined the expression
levels of the six genes in the model across the two risk subgroups. Furthermore, we found that MRS was
positively associated with several clinicopathological features, including T stage, histological grade,
pathologic stage, residual tumor, and N stage, which was demonstrated using a nomogram (Figure. 3D).
ROC curve analysis suggested that MRS could effectively predict patient survival. The Area Under the
Curve (AUC) values for predicting 1-, 3-, and 5-year overall survival (OS) were 0.686, 0.726, and 0.799,
respectively (Figure. 3E). Moreover, multi-variate cox analysis identi�ed MRS as an independent
prognostic factor for pancreatic cancer (Figure. 3F).

Validation of the prognostic value of metabolism-related
risk model in internal and external cohorts
To verify the predictive value of this model, we performed internal validation with partial data from
dataset GSE62452. According to Figure. 4A, the e�cacy of our Metabolism-Related Risk Model (MRM) in
prognosticating the outcomes of PC patients was substantiated through meticulous validation using
both internal and external validation datasets. Our �ndings consistently demonstrated that individuals
with elevated MRS exhibited decreased DFS and OS durations, heightened susceptibility to recurrence,
and overall poorer prognosis. These conclusions were corroborated by the results of Kaplan-Meier
survival analysis (Figure. 4B). Subgroup analysis reinforced the observation of a strong and adverse
correlation between the risk score and OS. In other words, higher risk scores were consistently associated
with diminished OS across different clinical subgroups (Figure. 4C-D). To enhance the precision of
prognosticating PC patient outcomes, we formulated a nomogram integrating variables linked to OS. This
nomogram exhibited commendable performance, as evidenced by the calibration curve. This tool offers
an effective means to quantitatively estimate individual patient prognoses, facilitating more accurate
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clinical predictions (Figure. 4E-F). In the validation cohort of GSE62452, the AUC values for predicting 1-,
2-, 3-, and 5-year BCR (Biochemical Recurrence) were 0.634, 0.750, and 0.939, respectively. These
impressive AUC values signify that the MRM holds the potential to serve as a robust and precise clinical
tool for forecasting DFS outcomes in patients with PC (Figure. 4G).

Furthermore, the outcomes of KEGG enrichment analysis unveiled a signi�cant correlation between
upregulated DEGs in the high-risk group and several pathways, including Carbon metabolism,
Glycerophospholipid metabolism, Biosynthesis of amino acids, and Spinocerebellar ataxia pathways.
Equally noteworthy, the top �ve enriched GO terms for these DEGs encompassed fatty acid metabolic
process, small molecule catabolic process, glycerol-lipid metabolic process, phospholipid metabolic
process, and organic acid biosynthetic process (Figure. 4H-I).

Identi�cation of PLPP2 as a key regulator in the immune
suppressive environment of PC
WGCNA, which stands for weighted gene co-expression network analysis, is a method used to analyze
gene expression patterns across multiple samples. It facilitates the grouping of genes that exhibit similar
expression pro�les, enabling the examination of correlations between gene modules and distinct
phenotypes or traits. This technique aids in uncovering potentially meaningful biological insights and
associations within complex datasets. In this study, WGCNA was used to analyze PC patients in the
TCGA database. The clustering tree (Figure. 5A) revealed no signi�cant differences between the samples
included in the WGCNA analysis. By applying the scale-free topological model and average connectivity,
the optimal soft threshold of 8 was selected (Figure. 5B-C). The WGCNA analysis resulted in a gene
cluster tree (Figure. 5D) where each leaf and branch represented a gene and a co-expression module,
respectively. The heat map generated from the WGCNA analysis (Figure. 5E) illustrated the correlation
between different modules and clinical characteristics. Five modules, including the yellow module, were
obtained from the WGCNA analysis, with the yellow module exhibiting the highest correlation with
immune suppressive traits (correlation value = -0.33; p < 0.05, number of module members = 22). The
characteristic key genes in the yellow module were plotted in a scatter plot (Figure. 5F), with PLPP2 being
identi�ed as the most important gene for further exploration (Figure. 5G).

The clinical characteristics and molecular biological
functions of PLPP2 in PC
In the data set of 178 cases of pancreatic cancer in TCGA database, we con�rmed that PLPP2 expression
signi�cantly predicted poor survival and prognosis in patients (HR = 1.769, P value = 0.028) (Figure. 6A-C,
Supplementary table1, Supplementary table2)). In order to further explore the function of PLPP2 in PC, we
continued to use the single cell transcriptome dataset in GEO database (GSE12345). In the preceding
analysis, we substantiated that ductal cell 2 exhibited traits of a malignant ductal cell type, whereas
ductal cell 1 demonstrated characteristics consistent with normal ductal epithelium. The identi�cation of
KRT19 and EPCAM con�rmed the distinctive features of the ductal epithelial subgroup. Concurrently, the
validation of MUC1 and FXYD3 further a�rmed the malignant attributes of ductal cells exhibiting
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malignancy (Figure. 6D-E). To investigate the subcellular distribution of PLPP2 within pancreatic cancer
cells, we established that PLPP2 predominantly localizes within the nucleus (Figure. 6F) with the U, M cell
lines in the human protein atalas website, and the expression of this molecule was also found to be
signi�cantly higher in cancer than that in precancerous tissues from the immunohistochemical level
(Figure. 6G). We continue to con�rm by timeROC analysis that PLPP2 molecules have considerable
predictive e�ciency for the survival rates of pancreatic cancer :1 (AUC = 0.626), 3 (AUC = 0.647) and 5 -
year (AUC = 0.766) (Figure. 6H). Given that the PLPP2 screening process primarily accounted for immune
cell in�ltration, tumor cell stemness, and the ratio of cancer-associated �broblasts within the
microenvironment, we conducted Spearman’s correlation analysis between PLPP2 molecules and
established stemness genes (SOX9, POU5F1, NANOG, PROM1), genes linked to Epithelial-Mesenchymal
Transition (EMT) (ZEB1, SNAI1, SNAI2, VIM), and genes associated with Activated Pancreatic Stellate
Cells (PSCs) (COL1A1, ACTA2, PDGFB, TGFB1). This correlation analysis aimed to uncover potential
associations and interactions between PLPP2 and these speci�c molecular characteristics. A signi�cant
positive correlation among them was presented with co-expressed heatmap, and the correlation was
statistically signi�cant (Figure. 6I-K). Through the assessment of immune in�ltration in patients
categorized into high- and low- PLPP2 expression groups, a noteworthy observation emerged. Elevated
PLPP2 expression exhibited a notably and signi�cantly negative correlation with the levels of in�ltrating
T cells, Tgd, Tfh, pDC, NK cells, cytotoxic cells, CD8 + T cells, and B cells. This correlation demonstrated
statistical signi�cance with a p-value < 0.05. This �nding implies a potential role of PLPP2 in in�uencing
immune cell in�ltration within the tumor microenvironment (Figure. 6L). The obtained results strongly
imply that PLPP2 exerts a crucial role within the microenvironment, contributing to the advancement of
pancreatic cancer. To comprehensively understand its function, our next steps involve delving into in vitro
and in vivo investigations. These experiments will shed light on the speci�c mechanisms through which
PLPP2 in�uences pancreatic cancer development and provide deeper insights into its potential as a
therapeutic target.

Expression of PLPP2 predicted the e�cacy of anti-PD-1
therapy
Our results indicated that high expression of PLPP2 could result in a signi�cant immune-suppressive
microenvironment which may be tightly correlated with metabolic and �brosis factors. Then we next
evaluated the effect of PLPP2 on immune checkpoint inhibitor therapy in public datasets. We found that
high expression of PLPP2 could signi�cantly predict the worse response to anti-PD-1 and CTLA-4 therapy
comparing with low expression of PLPP2 in Riza cohort 2018(Anti-PD-1/CTLA-4), Gao cohort 2018(Anti-
PD-1/CTLA-4), Van cohort 2021(Anti-PD-L1) datasets (Figure. 7A-C). Subsequently, receiver operating
characteristic curve (ROC) shown that high expression of PLPP2 predicted more non-responders of
immune checkpoint inhibitors in Dizier cohort 2013(AUC = 0.527), Van cohort 2021(AUC = 0.607), Riaz
cohort 2018(AUC = 0.650) and Kim cohort 2019(AUC = 0.553) (Figure. 7D-G). And then the effect on drug
sensitivity analysis in two obvious datasets with different expression of PLPP2 showed that high
expression of PLPP2 indicated the therapy resistance of immune checkpoint inhibitors (Figure. 7H).
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Tumoral PLPP2 promoted tumor proliferation and
suppressed immune microenvironment in PC
The diversity in the immune microenvironment signi�cantly contributes to chemotherapy resistance,
recurrence, and unfavorable prognoses. Recent advances in immunotherapy and associated combination
treatments have instilled optimism for patients with advanced tumors. A systematic exploration of tumor
immune microenvironment heterogeneity plays a pivotal role in guiding treatment choices, predicting
effectiveness, optimizing strategies, and identifying novel immunotherapy targets. We hypothesized that
the heightened expression of tumoral PLPP2 triggers a reshaping of the suppressive immune
environment, chie�y propelling the proliferation of pancreatic malignant tumors. To con�rm these effects,
we established stable KPC-PLPP2-scramble/sh cell lines expressing PLPP2. Subsequently, we executed in
vivo experiments to examine the correlation between tumoral PLPP2 and CD8 + T cell in�ltration.
Remarkably, our results echoed the same trend, with decreased tumor burden observed in the KPC-PLPP2-
sh group within the subcutaneous C57BL/6 tumor mice model. This signi�es a promising direction for
further research on the role of PLPP2 in shaping the tumor immune microenvironment and its
implications for potential therapeutic interventions (Figure. 8A-B). Furthermore, our inference suggests
that one of the primary mechanisms underlying the suppression of tumor proliferation could be linked to
the modulation of the immune microenvironment through upregulation of PLPP2. To delve deeper into
these immune microenvironment changes, we conducted a thorough investigation into the in�ltration and
functional alterations of CD8 + T cells within the two groups, utilizing �ow cytometry. The preliminary
results, as depicted in Figure. 8(C-D), indicated a higher percentage of CD8 + T cells in the PLPP2-sh
group. This observation marks a signi�cant stride in unraveling the intricate interplay between PLPP2 and
the immune response, providing a promising avenue for unraveling potential therapeutic strategies. Next,
we further explored the effect of PLPP2 de�ciency on function of CD8 + T cell (TNFα, Granzyme). As
shown in Figure. 8E-F), the CD8 + T cell function in PLPP2-sh group was signi�cantly elevated compared
with PLPP2-scramble group. Additionally, we extended our investigation to assess the alterations in PD-1
expression levels within CD8 + T cells. The �ndings revealed that the PLPP2-scramble group exhibited
elevated PD-1 expression, a characteristic associated with reduced sensitivity to anti-PD-1 therapy.
Conversely, the PLPP2-sh group demonstrated a notable reduction in PD-1 levels within CD8 + T cells,
especially when compared to the PLPP2-scramble group. This observation suggests that the de�ciency
of PLPP2 might render the tumor microenvironment more responsive to anti-PD-1 therapy. This insight
could hold signi�cant implications for optimizing treatment strategies and enhancing therapeutic
responses (Figure. 8I-J). The success of immunotherapy largely hinges on the interplay between tumor
cells and immune regulation within the TME. In this dynamic interplay, the TME can either facilitate or
suppress the immune response, thereby playing a pivotal role in determining the effectiveness of
immunotherapy. Therefore, comprehending the complex relationship between immunotherapy and TME
not only sheds light on the underlying mechanism of action, but also offers valuable insights into
developing novel strategies to enhance the therapeutic e�cacy of immunotherapy.
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Discussion
Cell metabolic reprogramming is a key characteristic of tumor cells and plays a critical role in tumor
initiation and progression[18]. Indeed, the changes in intracellular and extracellular metabolites exert a
profound impact on various biological aspects, including gene expression, cellular diversity, and the
TME[19]. PC undergoes metabolic reprogramming during disease progression, from initial PanIN to
advanced PC[20]. Indeed, while PC can exhibit a self-limiting tendency, individuals with high-risk PC
encounter notably low survival rates. This underscores the urgency for the development of a reliable
prognostic signature, which holds signi�cant potential in assessing and guiding the treatment of this
challenging disease. Such a signature could play a crucial role in identifying patients at higher risk and
tailoring therapeutic strategies accordingly, ultimately aiming to improve patient outcomes and enhance
overall survival.

In our study, we focused on identifying and analyzing metabolic mDEGs in the PC database GSE62452,
which were found to be enriched in lipid and amino acid-related metabolic processes. Through consensus
clustering analysis based on these mDEGs, we were able to classify patients into two subgroups with
signi�cant differences in DFS dindicating that PC metabolism is heterogeneous and that patients with
different metabolic patterns have distinct clinical outcomes.

After identifying mDEGs enriched in lipid and amino acid-related metabolic processes in the PC database
GSE62452, LASSO Cox regression analysis was used to screen for critical mDEGs associated with
survival. Among the six genes identi�ed (MGLL, MET, MBOAT2, PLPP2, DDIT4, B4GALT2), MGLL plays a
crucial role in pain and nociception and is linked to cancer tumorigenesis and metastasis[21–23]. the
proto-oncogene MET encodes a protein with tyrosine kinase activity and is implicated in various cellular
processes, including cell growth, proliferation, and migration. Mutations or aberrant activation of the MET
gene have been linked to the development of several cancers, including papillary renal carcinoma. The
dysregulation of MET signaling can contribute to tumor progression by promoting cell survival,
angiogenesis, and metastasis, making it an important target for cancer research and potential therapeutic
interventions[24, 25]. MBOAT2, a major yeast lysophospholipid acyltransferase, has similarities to
mammalian membrane-bound O-acyltransferase (MBOAT) proteins. DDIT4 is a mitochondrial and tumor-
related protein involved in anti-tumor therapy resistance, proliferation, and invasion[26, 27]. B4GALT2 is
one of seven beta-1,4-galactosyltransferase (beta4GalT) genes, encoding type II membrane-bound
glycoproteins that appear to have exclusive speci�city for the donor substrate UDP-galactose[28–31].
However, the speci�c mechanisms of these key genes in PC metabolism, immunotherapy, and drug
response are yet to be fully understood.

Using the GSE62452 data set as the validation set, further analysis revealed a strong correlation between
MRS and the clinical characteristics and prognosis of PC patients, indicating that tumor metabolism
changes with disease progression. Our model based on metabolically related genes was found to be a
reliable independent prognostic indicator, as con�rmed by survival analysis, ROC curve analysis, and
univariate multivariate COX regression analysis. The model also exhibited a relatively high accuracy in
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predicting tumor prognosis, suggesting its potential as a clinical tool for PC evaluation and treatment.
However, one of the limitations of this study is the need for further in-depth research into the speci�c
mechanisms underlying the key genes' role in PC metabolism, immunotherapy, and drug response.

Cell metabolism and TME are closely related, as evidenced by numerous studies[32]. PC can be treated
with various methods, including surgery, chemotherapy, radiotherapy, and immunotherapy. Our study
aimed to establish a model-based risk score to quantify tumor metabolism and to objectively reveal its
correlation with the immune microenvironment, providing guidance for clinical treatment of PC patients.
The high-risk group showed an abundance of B cells, CD4 + cells, and CD8 + cells, which can inform
treatment decisions. We also investigated the correlation between the six genes in our model and immune
checkpoints such as CD44 and CD86. Using the Weighted Gene Co-expression Network Analysis
(WGCNA) method, we identi�ed PLPP2 as a potential marker, which is a critical member of the
Phospholipid phosphatase (PLPP) family. PLPPs are widely expressed in human tissues and play a role
in cell signal transduction, and their upregulation has been observed in various cancers, including
pancreatic adenocarcinoma, gliomas, and lung adenocarcinoma[33]. PLPP2, speci�cally, plays a crucial
role in breast cancer development and occurrence[34]. Our analysis revealed that PLPP2 participates in
tumor cell metabolic processes and affects the immune status of the TME. We evaluated PLPP2's clinical
relevance, metabolic relevance, immune landscape, and its potential for immune checkpoint therapy.
Furthermore, we used PLPP2 as a marker to predict the metabolic status, immune landscape, and
response to anti-PD-1 therapy in vivo experiments in PC patients. However, we need to conduct further in
vitro experiments to explore the speci�c mechanism of PLPP2.
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Figure 1
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(A): The �owchart of the screening of differentially expressed genes (DEGs). (B):Ten postoperative
tissues of PC patients who were monitored by ultrasonography were performed with RNA bulk
sequencing, and then the differentially expressed genes analysis was performed according to the stained
intensity of CD8+ T cells in corresponding patients. (C): The postoperative PC tissues of thirteen patients
who undergone the Whipple-procedure operation were performed with single cell RNA sequencing, and
then the differentially expressed genes analysis was performed according to the stained intensity of
CD8+ T cells in corresponding patients. (D): the differentially expressed genes analysis was performed
according to the proportion of CAFs in corresponding ten patients.(E): The intersection of DEGs was
shown with venn diagram; all differentially expressed genes were selected according to p.adj value
(p.adj<0.05) and LogFC (LogFC>1.5). (F): KEGG analysis was conducted with the DEGs. (G): GO analysis
was conducted with the DEGs.
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Figure 2

(A-F) the Kaplan–Meier analysis was performed with the metabolism-related gene signature in different
clinicopathological characteristics of pancreatic cancer (Pathological stage and Histological grade); A,
MET; B, MGLL; C, PLPP2; D, MBOAT2; E, DDIT2; F, B4GALT2.
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Figure 3

(A): The correlation analysis among these 6 genes was conducted and graphically represented with
heatmap; The overall survival rate of different MRS subgroup was calculated according to risk model; the
expression level of eight genes in the model was displayed. (B-C): The overall survival (OS) and disease
free survival (DFS) analysis were conducted between high risk score group and low risk score group. (D):
A receiver operating characteristic (ROC) curve was used for describing a prognostic clinical feature of
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MRM. (E): The nomo model was constructed with varieties of factors containing MRM. (F): Multi-variate
cox analysis was performed with critical clinical features; hazard ratio (HR)>1; P value<0.05.

Figure 4

(A-B): The external validation of risk model with partial data from dataset GSE62452; The Kaplan–Meier
(KM) survival analysis of disease-free survival (DFS; no recurrence/progression) and overall survival (OS)
between high risk score group and low risk score group was performed. (C): K-M survival analysis in
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subgroups of clinical characteristics (histological grade, pathologic stage) was conducted between high
risk score group and low risk score group. (D): A nomogram consisting of the variables associated with
OS was constructed; (E): The calibration curve showed good performance consistent with the
nomogram’s 1-3- or 5‐year OS estimates. (F): A receiver operating characteristic (ROC) curve was used for
describing a prognostic clinical feature of risk score. (G-H): the differentially up-regulated expressed
genes in the high risk score group were conducted with KEGG and GO analysis; P. adjust <0.05.

Figure 5
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(A-B): The power of β was calculated and selected as the soft threshold to establish the scale-free
network. (C): A total of 178 samples with clinical characteristics were included in WGCNA and were
clustered by machine learning. (D): Variable co-expressed modules were identi�ed after removing the gray
modules by combined dynamic tree cutting. (E): The relationship between variable modules and immune
score was calculated respectively. (F): A scatter plot was mapped between GS and MM (colored modules
and phenotypes) in PC patients. (G): The targeted gene was considered to be one of the critical genes
between the risk model and weighted co-expressed network through Venn diagram.
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Figure 6

(A-C): In the data set of 178 cases of pancreatic cancer in TCGA database, we performed the survival and
prognosis analysis in PC patients with differential expression of PLPP2. (D-E): In order to further explore
the function of PLPP2 in pancreatic cancer, we analyzed the characteristics of PLPP2 expression in the
ductal epithelial subgroup using the single cell transcriptome dataset in GEO database (GSE12345).
KRT19 and EPCAM were used as markers for the normal ductal epithelium; MUC1 and FXYD3 were used
to verify the malignant ductal cells. (F-G): We explored the subcellular localization of PLPP2 in pancreatic
cancer cells through the human protein atalas website, and the expression of PLPP2 in cancer and
precancerous tissues from the immunohistochemical level. (H): The predictive e�ciency of PLPP2 for the
survival rates of pancreatic cancer was performed by timeROC analysis. (J-K): The spearman’s correlation
analysis was performed between PLPP2 molecules and classical stemness genes (SOX9, POU5F1,
NANOG, PROM1). EMT-related genes (ZEB1, SNAI1, SNAI2, VIM) and Activated PSCs-related genes
(COL1A1, ACTA2, PDGFB, TGFB1). A signi�cant positive correlation among them was presented with co-
expressed heatmap, and the correlation was statistically signi�cant. (L): The correlation analysis of
immune in�ltration in patients was conducted between high- and low- PLPP2 groups.
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Figure 7

(A-C): The effect of PLPP2 on immune checkpoint inhibitor therapy in Riza cohort 2018(Anti-PD-1/CTLA-
4), Gao cohort 2018(Anti-PD-1/CTLA-4), Van cohort 2021(Anti-PD-L1) datasets. (D-G): The receiver
operating characteristic curve (ROC) shown that the effect of PLPP2 on immune checkpoint inhibitors in
Dizier cohort 2013, Van cohort 2021, Riaz cohort 2018 and Kim cohort 2019. (H): The effect on drug
sensitivity analysis in two obvious datasets with different expression of PLPP2.
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Figure 8

(A-B): KPC-PLPP2-scramble/sh cell lines were implanted subcutaneously in C57BL/6 immunocompetent
mice. Tumors implanted subcutaneously were detected in vivo by vernier caliper three times a week;
statistical analysis of the fold change of tumor size was calculated. (C-D): Subcutaneous tumors of
C57BL/6 immunocompetent mice were harvested after 4 weeks, and tumor tissues were taken for �ow
cytometry to detect CD8+T cell in�ltration ratio, the Y axis represents CD8 (CD45 +) gated, and the X axis
represents CD3; statistical analysis was shown by histogram; the mean + SD was used for statistical
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analysis between groups, * *, P < 0.01; n.s., no signi�cant statistical difference. (E-H): Flow cytometry was
used to detect the in�ltration ratio of CD8 + T cells / TNFα + (E-F) and CD8 + T cells / Grzmb + (G-H), the
Y axis represents CD8 + T cell, and the X axis represents TNFα / Grzmb , the data were statistically
analyzed by histogram; the mean + SD was used for statistical analysis between groups, * *, P < 0.01 ; n.
s., no signi�cant statistical difference ; (I-J): The in�ltration ratio of CD8/ PD-1 + T cells was detected by
�ow cytometry ; the Y axis represents CD8 + T cell, and the X axis represents total / int / high /PD-1+; the
mean + SD was used for statistical analysis between groups, * *, P < 0.01 ; n. s., no signi�cant statistical
difference.
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