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Abstract
The quantitative nature of Fusarium Head Blight (FHB) resistance requires further exploration of the
wheat genome to identify regions conferring resistance. In this study, we explored the application of
hyperspectral imaging of Fusarium-infected wheat kernels and identify regions of the wheat genome
contributing significantly to the accumulation of Deoxynivalenol (DON) mycotoxin. Strong correlations
were identified between hyperspectral reflectance values for 204 wavebands in the 397 nm to 673 nm
range and DON mycotoxin. Dimensionality reduction using principal components was performed for all
204 wavebands and 38 sliding windows across the range of wavebands. PC1 of all 204 wavebands
explained 70% of the total variation in waveband reflectance values and was highly correlated with DON
mycotoxin. PC1 was used as a phenotype in GWAS and a large effect QTL on chromosome 2D was
identified for PC1 of all wavebands as well as nearly all 38 sliding windows. The allele contributing
variation in PC1 values also led to a substantial reduction in DON. The 2D polymorphism affecting DON
levels localized to the exon of TraesCS2D02G524600 which is upregulated in wheat spike and rachis
tissues during FHB infection. This work demonstrates the value of hyperspectral imaging as a correlated
trait for investigating the genetic basis of resistance and developing wheat varieties with enhanced
resistance to FHB.

Introduction
Fusarium head blight (FHB) results in significant grain quality and yield reductions that limit profits for
wheat farmers and presents challenges in managing mycotoxins and affects wheat production
worldwide. During FHB infection by the ascomycete fungus Fusarium graminearum Schwabe,
Deoxynivalenol (DON) mycotoxin accumulates in wheat kernels (Mirocha et al., 1994). DON is harmful to
both humans and animals when ingested (Foroud et al., 2019) and is tightly regulated by testing grain at
the point of sale prior to entering the marketplace. Increasing the level of genetic resistance to FHB
through breeding is a highly effective mechanism to minimize DON levels on individual farms and limit
the amount of mycotoxin entering the grain marketplace (Mesterhazy 2014).

Type III resistance to FHB, resistance to DON accumulation, remains a challenge in FHB-improvement
programs. As a quantitative trait, Type III resistance is controlled by multiple QTLs (Bai et al., 2018).
Several QTLs for lower DON accumulation have been reported with da Silva et al. (2019) reporting a large
effect QTL in 5A accounting for 13% phenotypic variation for DON. He et al. (2019) identified two major
QTLs in 3B and 3D and Larkin et al. (2020) identified ten significant marker trait associations across the
genome. Recently, Haile et al. (2023) identified nine QTLs associated with DON accumulation using a
multi-locus GWAS model.

Phenotyping DON mycotoxin in grain samples relies on GC/MS (Gas Chromatography/Mass
Spectrometry) (Tacke and Casper, 1996) methods that require extensive logistics that are time consuming
and labor intensive. Obtaining samples for DON analysis requires a FHB nursery with disease pressure,
extensive sampling in the field followed by threshing and milling of grain samples. High throughput
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imaging technologies have been explored and exploited to improve the overall process and accuracy in
phenotyping DON levels in wheat kernels (Ropelewska, 2019; Jaillais et al., 2015; Cambaza et al., 2019;
Shi et al., 2020). However, DON phenotyping remains a bottleneck in elucidating the genetic basis of
resistance to DON accumulation during FHB infection.

Recently, hyperspectral imaging has been explored to further increase accuracy and intensity in
evaluating DON content in barley (Su et al., 2021), oats (Tekle et al., 2015; Teixido-Orries et al., 2023), and
wheat (Femenias et al, 2022). At a single kernel resolution, Shen et al. (2022) and Femenias et al. (2022)
imaged grain samples using wavebands at the NIR range to quantify DON. Mobile handheld
hyperspectral cameras like the Specim IQ (Specim, Oulo, Finland) detect reflectance values at wavebands
from the visible to near infrared (VIS/NIRS) regions (Behman et al., 2018) and have been used for disease
detection of root rot in grapevine (Calamita et al., 2021), powdery mildew in wild rocket (Pane et al.,
2021), and root and crown rot in sugar beet (Barreto et al., 2020).

Phenomics and imaging technologies have been integrated with genome wide association studies
(GWAS) to elucidate the genetic architecture of quantitative traits (Xiao et al., 2022). Several studies have
reported the integration of phenomics and high-throughput phenotyping for GWAS in wheat (Jiang et al.,
2019; Rasheed et al., 2014; Yates et al., 2019), rice (Barnaby et al. 2020; Feng et al., 2017; Sun et al.,2019),
soybean (Herritt et al., 2016; Dhanapal et al., 2016; Xavier et al., 2017), and maize (Muraya et al., 2017;
Gage et al., 2018; Wang et al., 2019). While the genetic basis of hyperspectral imaging-derived
phenotypes has been investigated in rice (Feng et al., 2017; Barnaby et al., 2020), and soybean (Wang et
al., 2021; Yoosefzadeh-Najafabadi et al., 2021), great potential exists to leverage imaging technologies to
investigate the genetic basis of quantitative traits.

This study leverages hyperspectral imaging in the identification of genomic regions associated with DON
accumulation in soft winter wheat adapted to the Eastern United States. DON-infected wheat kernels of
diverse wheat varieties and elite breeding lines were imaged using a mobile handheld hyperspectral
imaging system. The hyperspectral reflectance values generated were used to 1) determine the
relationship of the hyperspectral phenome with DON mycotoxin levels in wheat kernels and 2) identify
genomic regions associated with mycotoxin levels and variation in the hyperspectral phenome of DON-
infected kernels.

Results

Deoxynivalenol concentration
Wheat genotypes show variation for DON concentration (p-value: 3.016x10− 7) based on non-parametric
Kruskal-Wallis Rank Test (Fig. 1a; Supplementary Table 2). Pairwise comparison of means revealed 227
genotypes (72.3%) having significantly lower DON content in comparison with susceptible check
Ambassador. In comparison 248 genotypes (79.3%) were not significantly different from the resistant
check, MI14W0190 and 21 genotypes (6.7%) have significantly lower DON content than MI14W0190.
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Hyperspectral reflectance values and dimensionality
reduction of the hyperspectral phenome
Significant variation among the genotypes based on Kruskal-Wallis Rank Test and ANOVA F-Test for
wavebands meeting normality and variance homogeneity assumptions, were observed in each of the 204
wavebands generated (Supplementary Table 2; Supplementary Fig. 1). Of the 204 wavebands evaluated,
only 15 wavebands (7.35%) met the normality and variance homogeneity assumptions (Supplementary
Table 2). Significant positive correlations were found between the 204 wavebands generated and DON
content, with 97 wavebands in the 455 nm to 739 nm range demonstrating a correlation of greater than
0.5 with DON content (Supplementary Table 3). The 584 nm to 673 nm waveband range demonstrated
the highest correlations with DON greater than 0.6 (Supplementary Table 3).

Principal component analysis was performed for all 204 wavebands and the first two principal
components accounted for 74.0% and 6.0% of variation in hyperspectral reflectance values
(Supplementary Table 6), respectively. Genotypes having lower PC1 values demonstrated lower DON
content and PC1 of all wavebands was correlated with DON at 0.57. The waveband at 502 nm
demonstrated the highest component loading (0.101) and was also found to be the most discriminatory
among the wavebands, followed by 499 nm, 505 nm, 508 nm, and 511 nm (Supplementary Table 4).
Wavebands in the 397 nm to 780 nm demonstrated higher component loading than most wavebands
beyond 780 nm (Supplementary Table 4).

Principal component analysis was also carried out for binned wavebands using a sliding window
approach. The first principal component for each of the 38 binned wavebands (windows) explained 51–
99% of the variation in hyperspectral reflectance values within each bin (Supplementary Table 6). PC1 of
each waveband bin was found to be significantly correlated with DON content (Fig. 2, Supplementary
Table 7). Windows 1 to 10 spanning wavebands 397 nm to 584 nm demonstrated significant positive
correlations of 0.50 to 0.58 with GC/MS-derived DON content, while Windows 11 to 25 spanning
wavebands 542 nm to 810 nm demonstrated a significant negative correlation from − 0.40 to -0.64
(Fig. 2; Supplementary Table 7). The sign of the correlation between waveband window PC1 values and
DON inverted six times across the waveband spectrum (Fig. 2). The correlation of PC1 with DON inverted
from positive in Window 1 to 10 to negative from Windows 11 to 25. Correlation with DON inverted again
from Windows 25 to 26, 27 to 28, 29 to 30 and 33 to 34.

Genome wide association study for deoxynivalenol
accumulation
GWAS was performed to identify marker trait associations (MTAs) associated with DON content
(Supplementary Table 8). Five significant MTAs were identified in chromosomes 2A, 2B, 3A, and 5A
explaining 1.96–4.03% of the variation in DON (Table 1, Supplementary Table 8, Supplementary File 1).
Favorable alleles at all five loci demonstrated a reduction in DON content (Fig. 3)
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Table 1
Marker-trait associations identified using GC/MS-derived DON content as phenotypic input influencing

DON accumulation.
Significant SNP
(MTA)

Chromosome Position
(mb)

Allele* p.value Alleles
Effect

PVE
(%)

S2A_PART2_18053 2A 642.9 A/G 6.11 x
10− 8

3.77 3.85

S2B_PART2_24719 2B 700.4 T/C 6.68 x
10− 7

2.47 1.39

S3A_PART2_25234 3A 706.4 C/T 6.32 x
10− 7

3.64 2.65

S3A_PART2_25425 3A 708.4 C/T 9.82 x
10− 7

4.24 4.03

S5A_PART1_18813 5A 18.81 C/T 4.65 x
10− 7

2.88 1.96

*Alleles in bold reduce DON accumulation

PVE = Phenotypic Variance Explained

GWAS using PC1 of all 204 wavebands identifies a single locus on chromosome 2D (S2D_PART2_15090)
at 613.12 Mb on chromosome 2D was identified using PC1 explaining 26.4% of the phenotypic variation
in the hyperspectral phenome of DON-infected wheat kernels (Fig. 3). Genotypes carrying the A allele
demonstrate a 6.3 ppm reduction in DON compared with genotypes bearing the G allele (Fig. 4c,
Supplementary Table 8). The A allele at the 2D locus is the minor allele with a high frequency of 0.47.

GWAS using the PC1 value for all 38 waveband bins consistently identifies the 2D locus in 35 of the 38
waveband bins, explaining 6.4–28.3% of the phenotypic variation in PC1. The S2D_PART2_15090 SNP
demonstrates a negative allele effect from Windows 1 to 10 (397 nm to 584 nm) and a positive allele
effect from Windows 11 to 25 (543 nm to 811 nm). The inversion of allele effect is consistent with the
observed change in sign in the correlation between waveband bin PC1 values and DON content.

An additional 18 MTAs were identified across the hyperspectral phenome of DON infected wheat kernels
on chromosomes 1A, 1B, 1D, 2B, 2D, 3A, 3B, 4A, 4B, 7A, 7B and 7D (Supplementary Table 8,
Supplementary File 1) across different waveband ranges. A locus on 1B was identified from 396 nm to
467 nm explaining 18.8% and 17.6% of variation in PC1 of waveband reflectance values and reducing
DON by 2.0 ppm and 2.2 ppm at waveband bins 1 and 2, respectively (Supplementary Table 8). Other
MTAs explained 0.2–7.6% of variation in PC1 of reflectance values within individual waveband bins.

Several SNPs significantly associated with waveband bin PC1 values were found to be in LD
(Supplementary Table 9). On chromosome 2D, the SNPs S2D_PART2_13700 and S2D_PART2_15090,
were found to be in high LD with r2 = 0.88 at substantial distance of 13.9 mb (Supplementary Table 9).
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Weaker LD was detected between SNPs S2B_PART2_28124 and S2B_PART2_27654 on chromosome 2B
at a distance of 4.69 mb (r2 = 0.72), and between SNPs S1B_PART2_24837 and S1B_PART2_24652 on
chromosome 1B (distance: 1.85 mb) (r2 = 0.25).

Putative candidate gene identified on chromosome 2D
The SNP identified on 2D associated with PC1 of the entire hyperspectral phenome of DON infected
wheat kernels and PC1 of nearly all sliding windows, S2D_PART2_15090, is located in the single exon of
a 1,104 kb gene, TraesCS2D02G524600, coding for a protein with an F-box domain.
TraesCS2D02G524600 is upregulated in the spikelets and rachis in response to inoculation with F.
graminearum in near-isogenic lines (NILs) bearing a 2DL introgression conferring FHB resistance (Biselli
et al. 2018) (Supplementary Fig. 5) and has been implicated in Fhb1 resistance with higher expression in
NILs carrying Fhb1 (Ma et al., 2021) (Supplementary Fig. 6). The expression of TraesCS2D02G524600
and 17 adjacent genes within a 2Mb region, 1Mb upstream and downstream, was investigated across
tissues and developmental stages under F. graminearum infection (Wheat Expression Browser, Ramirez-
Gonzalez et al., 2021) (Supplementary Fig. 7). TraesCS2D02G524600 is inducible by infection with F.
graminearum and highly expressed in the spike at the reproductive stage, which is consistent across gene
expression data sets. Only one gene in the 2Mb interval, TraesCS2D02G524400, located upstream of
TraesCS2D02G524600, demonstrates the exact same expression profile. TraesCS2D02G524600 is a likely
candidate gene for the large effect locus on 2D that reduces DON accumulation in wheat kernels during
infection by F. graminearum.

Discussion
Breeding for resistance to FHB requires evaluation of the multiple components of resistance (Steiner et
al., 2017). Each FHB resistance component has a different relationship to DON (Buerstmayr and
Lemmens, 2015, Mesterhazy et al., 2015, Paul et al., 2005) and evaluating multiple traits can lead to
better selection decisions in breeding. Visual observations of FHB severity and incidence are used to
develop an overall visual FHB index (Steiner et al., 2017). The proportion of Fusarium damaged kernels
can be estimated on samples of infected grain and a high correlation with DON has been demonstrated
for this resistance component (Mesterhazy et al., 2015).

In this study, we generate multiple visual FHB resistance phenotypes using the hyperspectral phenome of
DON infected wheat kernels. Reflectance values at individual wavebands can be considered unique
phenotypes and high correlations were found between DON and reflectance values at individual
wavebands, especially at the visible light spectrum range. PC1 of the reflectance values from all
wavebands compresses the entire hyperspectral phenome into a single phenotype that incorporates the
information from all wavebands. The hyperspectral phenome was dissected further into 38 sliding
windows and PC1 of each window was used as a separate phenotype that is correlated with DON.

In this study, we identified five MTAs on chromosomes 2A, 2B, 3A, and 5A that co-localize with previously
reported genomic regions conferring resistance to DON (Supplementary Table 10). Individually, each of
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the MTAs identified for DON content explain only 1–4% of the variation in DON and reduce DON by 2.5
ppm to 4.2 ppm. FHB resistance traits can differ in their genetic architecture. Developing the
hyperspectral phenome into a novel FHB resistance phenotype using PC1 of all wavebands, which is
correlated to DON, led to identification of a comparably large effect locus on 2D explaining 26% of the
variation in PC1 and reducing DON by 6.8 ppm. While several genomic regions were identified across
waveband ranges, the 2D locus was identified using PC1 across waveband ranges, further establishing
its association with the hyperspectral phenome of DON infected whet kernels. By leveraging the
hyperspectral phenome as a correlated trait, we were able to identify a locus influencing the target trait,
DON mycotoxin content.

The large effect locus on 2D localizes to the exon of an F-box protein encoding gene and captures a large
proportion of variation in the hyperspectral phenome of DON infected wheat kernels. Two SNPs were
identified in the exon of this gene; however, the BLINK algorithm removes SNPs that are in LD. Multiple
gene expression studies demonstrate the gene is inducible upon infection with F. graminearum and is
expressed exclusively in tissues of the spike and rachis as a component of the defense response. It may
be possible to select for the DON-reducing allele at 2D locus in a breeding context using a Kompetitive
Allele Specific PCR (KASP) marker assay (He et al., 2014).

Evaluation of DON production during infection by F. graminearum is an integral part in developing wheat
varieties with resistance to Fusarium Head Blight (FHB), which has long been done using GC/MS (Tacke
and Casper, 1996). Preparation and phenotyping of DON infected wheat kernel samples is time
consuming, tedious, and labor intensive (Steiner et al., 2017). This study demonstrates that hyperspectral
imaging can reduce the amount of time and physical resources necessary to make selection decisions in
breeding for lower DON.

Methods

Plant materials
A set of 200 soft red and 114 soft white winter wheat genotypes (n = 314), comprised of advanced
breeding lines and commercial varieties (Supplementary Table 1) were used in this study. Genotypes
MI14W0190 and Ambassador were considered checks FHB-resistant, low DON and FHB-susceptible, high
DON checks, respectively. Wheat genotypes were planted in a misted and inoculated Fusarium screening
nursery in East Lasing, MI (º42.69 N, º84.48W, Elevation: 264 m) in one-meter rows using a completely
randomized designed with two to four replicates per genotype.

Fusarium inoculum

Fusarium graminearum cultures were collected in 2020 from Huron, Ingham, Monroe, Tuscola and
Sanilac counties in Michigan, USA. Initial cultures were grown by placing infected seed in Nash-Synder
Media for 5 to 7 days at room temperature. Isolates for field inoculation were cultured in spawn bags with
0.2-micron filter patch (Unicorn Bags, TX, USA) containing 1.5 kg corn kernels. Corn was soaked in
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deionized (DI) water for 24 to 48 hours and autoclaved three times for 90 minutes. One culture plate of a
four to six days-old culture and 100 ml autoclaved deionized water were added to each spawn bag.
Cultures developed over two to three weeks and were dried in biohazard hood for 48 hours at ambient
temperature. Isolates from different locations were cultured separately. After drying, F. graminearum grain
spawn cultures from the five locations were pooled in equal proportions by weight prior to inoculation.
Field inoculation was carried out five times beginning at approximately 5 weeks prior to flowering. A
misting system was run throughout the nursery 10 minutes every hour for 12 hours, 6 am to 6 pm, to
promote infection and disease development.

Deoxynivalenol evaluation
Wheat heads from the middle 0.3 meter of each row were sampled separately and harvested by hand.
The heads from each row were threshed together and all seeds were retained. A subsample of 10 grams
from each row was ball-milled using Restch MM 400 miller (Retsch, PA, USA) to generate flour meeting
the guidelines set by the US Wheat and Barley Scab Initiative (USWBI)
(https://scabusa.org/don_labs_umn_testinglab_protocol). Deoxynivalenol concentration of flour samples
was determined using Gas Chromatography / Mass Spectrometry (GC/MS) at the Department of Plant
Pathology, University of Minnesota.

Hyperspectral image acquisition
FHB-infected wheat kernels from each genotype sent for DON content measurement were imaged using,
a handheld, push broom hyperspectral camera, Specim IQ (Specim, Oulo, Finland). A sample of 50 to 80
wheat kernels from each replicate of each genotype were imaged. Seeds were placed against a black
background side-by-side with the white reference panel. Imaging was done inside a 51 x 51 x 51-
centimeter light box (Finnhomy, USA) using the attached LED light source. The hyperspectral camera was
mounted on a tripod and angled 45º facing downward over the kernels. Default Recording Mode was
used to capture reflectance values from 204 wavebands from 397 to 1004 nm with an integration time of
30 to 40 seconds and focus set at automatic.

Image processing and reflectance value extraction
Hyperspectral images were processed using QGIS 3.10.2 (QGIS, 2020). Image files (.dat) were imported
as raster layer. Rendering was carried out using multiband color with Band 088 (651.92 nm) as Red Band,
Band 057 (560.30 nm) as Green Band, and Band 037 (501.72) as Blue Band. Color enhancements were
set at Stretch to MinMax and normal blending mode. Raster calculation was carried out at 0.3 to 0.8
threshold. Raster calculated images were saved as GeoTIFF (.tif) file and converted to vector image
(Polygonize) using default settings. To determine region of interest (wheat kernels) and remove
unnecessary features, toggle editing by selecting features was used. Vectorized images with region of
interest determined were saved as ESRI Shape File (.shp). Spectral reflectance values were extracted from
each ESRI shape file using “raster” package (Hijmans et al., 2023) in R v4.2.2 (R Core Team, 2021) by
calculating mean reflectance values in each waveband.

Statistical analysis
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The normality of hyperspectral reflectance data was assessed using Shapiro-Wilk Test and variance
homogeneity assumption was carried out using Levene’s Test. Wavebands with p-values < 0.05 failed to
meet normality and homogeneity assumption. To test variation among the wheat genotypes for DON
content and spectral reflectance values in all 204 wavebands, ANOVA was carried out for reflectance
values at wavebands meeting normality and homogeneity assumptions, otherwise non-parametric
Kruskal-Wallis Rank Test was employed following the model:

y = G + e
Where y is the DON content or spectral reflectance value of each waveband, G is the fixed effect of
genotype, and e is the residual. Shapiro-Wilk Test, Levene’s Test, ANOVA F-Test, and Kruska-Wallis Rank
Test were carried out in R v4.2.2 (R Core Team, 2021).

Means of DON content and spectral reflectance values for two to four replicates per genotype were
calculated using the “emmeans” package (Lenth et al., 2018). Pearson’s Correlation Coefficient was
computed between DON means and spectral reflectance values at all individual wavebands.

Principal Component Analysis of wavebands
Principal Component Analysis was carried out using reflectance values for all wavebands to
dimensionally reduce the spectral data and identify wavebands potentially associated with DON. To
evaluate the contribution of waveband ranges across the hyperspectral phenome of DON infected wheat
kernels, we employed a “Sliding Window” approach where the first twenty wavebands were binned and
subjected to Principal Component Analysis. The bin was then “slid” at five-waveband intervals and PCs
were generated for the next twenty wavebands to 1004 nm for a total of 38 windows (binned
wavebands). The resulting PC1 waveband reflectance values from the 38 windows were then correlated
to the GC/MS-derived DON content and used as predictors of DON. PCA and correlation was carried out in
R v4.2.2 (R Core Team, 2021).

DNA isolation and genotyping
Tissue was collected from all genotypes evaluated and DNA was isolated according to Wiersma et al.
(2016). Genotyping-by-sequencing libraries were prepared according to Poland et al. (2012) scaled to a
24uL volume in 384-well format. Libraries were sequenced at 384-plex on an Illumina HiSeq 4000
instrument. Single nucleotide polymorphisms (SNPs) were called using the TASSEL 5 GBS pipeline
(Glaubitz et al., 2014). Reads were aligned to the RefSeq v1.0 wheat reference genome assembly
(International Wheat Genome Sequencing Consortium) using default parameters. For the
GBSSeqToTagDBPlugin and ProductionSNPCallerPluginV2 steps, the k-mer length was set to 64 base
pairs and a minimum coverage of five reads was required for each k-mer. Default settings were used for
all other steps. SNPs were initially called using all families and parents. SNPs were subsequently filtered
for 0.85 call rate and 0.05 MAF.

Genome wide association mapping
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Phenotypes for Genome Wide Association (GWAS) included: 1) GC/MS-derived DON content, 2) PC1 of
all 204 wavebands and 3) PC1 of 38 waveband bins from the “Sliding Window” approach. GWAS was
carried out using the Bayesian-information and Linkage Disequilibrium Iteratively Nested Keyway (BLINK)
(Huang et al., 2019) model in GAPIT v3 (Genomic Association and Prediction Integrated Tool) (Lipka et
al., 2012; latest version: March 12, 2022). A total of 9,961 SNPs across all 21 chromosomes remained
after filtering at minor allele frequency (MAF) < 0.05 and 0.85 call rate. To address potential population
structure, three principal components were used in GWAS models with the exception of two principal
components for one phenotypic input, and four principal components for four phenotypic inputs
(Supplementary Table 7). Linkage disequilibrium between Marker-Trait Associations (MTAs) was
investigated using TASSEL 5 (Glaubitz et al., 2014).

Candidate gene identification
Significant SNPs identified in GWAS were assigned to high confidence gene models in IWGSC RefSeq
Annotation V1.0 (www.wheatgenome.org). Descriptions of putative candidate genes were derived from
the public wheat expression database Triticeae Multi-omics center (http://202.194.139.32) (Ma et al.,
2021) and Wheat Expression Browser (Ramirez-Gonzalez et al., 2021).
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Figure 1

Phenotyping of soft winter wheat genotypes for DON accumulation. Frequency distribution of GC/MS-
derived DON content of the 314 soft winter wheat genotypes (red line represents the population mean
DON content).
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Figure 2

Heatmap of correlations among PC1 between 38 sliding windows (binned wavebands) and DON content.
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Figure 3

Alleles reducing GC/MS-derived DON identified by GWAS.
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Figure 4

Genome wide association using PC1 of the 204 wavebands generated using hyperspectral imaging. (a)
Manhattan plot identifying the MTA on chromosome 2DL and (b) its corresponding quantile-quantile plot,
(c) variation in actual DON content of genotypes carrying the A and G allele in SNP S2D_PART2_15090.
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