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Abstract
Background

A hypoxic tumor microenvironment promotes the recruitment and transformation of macrophages and facilitates tumor
progression. Hypoxia-induced factor-1a (HIF-1a) is a key factor in hypoxia. It is not clear whether HIF-1a and tumor associated
macrophages (TAMs) play a synergistic role in neoplastic progression. Here we investigated potential synergism between HIF-
1a and TAMs in the progression of Kazakh esophageal squamous cell carcinoma (ESCC).

Methods

We used immunohistochemistry (IHC) verify the expression of HIF-1a and vascular endothelial growth factor (VEGF) in tumor
tissue. CD163 was used as a marker for TAMs, and the density of TAMs in tumor tissues were determined. Kazakh ESCC
samples exhibited higher expression of HIF-1a and VEGF and greater density of TAMs compared to cancer adjacent normal
(CAN) tissues.

Results

Overexpression of HIF-1a was significantly correlated with vascular invasion, lymph node metastasis and the clinical tumor
stage of Kazakh ESCCs. Overexpression of HIF-1a was also associated with poor prognosis of Kazakh ESCC. Moreover,
overexpression of HIF-1a was positively correlated with high TAM density and overexpression of VEGF (P<0.05). Furthermore,
the correlation between VEGF overexpression and high density of TAMs was very significant (P<0.001).

Conclusions

These data suggest that overexpression of HIF-1a may increase the infiltration of TAMs in Kazakh ESCC, thereby increasing
VEGF expression, which may in turn promote the progression of Kazakh ESCC.

Background

Esophageal carcinoma is one of the most common malignant tumors in the world. The incidence and mortality rate of
esophageal cancer in China are high; in particular, the Kazakh national ethnic minority in Xinjiang (northwest of China)
exhibits the highest incidence of ESCC, which is higher than the average rate in China of 15.23/100,000 '. According to its
etiological and pathological features, esophageal carcinoma is divided into two major types: esophageal squamous cell
carcinoma (ESCC) and esophageal adenocarcinoma (EAC). In China, ESCC comprises more than ninety percent of all
esophageal carcinomas. Despite great improvements in diagnosis and treatment, the prognosis for ESCC patients remains
poor due to high rates of recurrence, metastasis, and resistance to adjuvant therapy 2°.

Hypoxia is one of the most common stresses in the tumor microenvironment 4, and hypoxia-inducible factor-1 (HIF-1) plays a
crucial role in response to hypoxic stress °. The HIF-1 transcription factor complex consists of two subunits; an oxygen-
sensitive HIF-1a subunit and a constitutively active HIF-1B subunit ®. HIF-1a is overexpressed in many cancers, including
gastric cancer, breast cancer, prostate cancer, and colon cancer. Furthermore, overexpression of HIF-1a significantly influences
the tumor cell biology, and modulates the recruitment of immune and inflammatory cells in tumor microenvironment 7.
Macrophages are the most abundant immune cell type recruited to the tumor microenvironment of hypoxic tumors.

Macrophages can be phenotypically polarized by the microenvironment to exhibit characteristics of classically activated

macrophages (M1 macrophages) or alternatively activated macrophages (M2 macrophages) °. M1 macrophages exhibit

potent microbicidal properties, while M2 play a detrimental and pro-tumor role, and are also called tumor-associated
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macrophages (TAMs) 1917 Our previous studies demonstrated that TAMs in Kazakh ESCCs are closely associated with tumor
invasion and metastasis '2'3. The hypoxic microenvironment exhibits stably elevate expression of HIF-1a, and M2 TAMs
comprise the primary immune cell components of the hypoxic tumor microenvironment. However, whether HIF-1a and
macrophages play a synergistic role in the progression, invasion, metastasis of Kazakh ESCC is not clear. In the present study,
we examined the distribution of HIF-1a and M2 TAMs in Kazakh ESCC tissues. We evaluated the association of HIF-1a
expression and M2 TAM distribution with patient clinical parameters, pathological parameters, and outcome data to explore
the potential synergistic effects of HIF-1a and M2 TAMs in the invasion, metastasis, and prognosis of Kazakh ESCC.

Methods
Patients and specimens

Two hundred cases of therapeutic resection and paraffin-embedded human tissue were obtained from the Department of
Pathology of Xinjiang Yili Friendship Hospital, including 100 cases of Kazakhstan ESCC and 100 cases of Kazakh adjacent
normal tissue (CANs) (samples were collected from 2008 to 2014). Each participant provided written informed consent, and
the study was approved by the participating hospital. Of the cancer patients, sixty-four were male and thirty-six were female,
their ages ranged from thirty-four to seventy-four years old, all had been diagnosed with ESCC, but none had received
radiotherapy or chemotherapy prior to surgery. CAN group participants consisted of fifty-six males and forty-four females,
ranging in age from thirty-three to seventy-three years old. All tissue specimens were cut into 5 pm sections and subjected to
conventional hematoxylin and eosin staining. Tumor pathological diagnosis was performed by two independent pathologists
and according to the World Health Organization's histological tumor classification. Among the ESCC cases, thirty-two cases
were well-differentiated, forty-eight cases were moderately differentiated, and twenty cases were poorly differentiated. Of the
ESCC cases, thirty-three cases had an invasion depth of T1-T2 and sixty-seven cases had an invasion depth of T3-T4. There
were forty-eight cases with lymph node metastasis, fifty-two without lymph node metastasis. Sixty-three cases were clinical
stage | or ll, and thirty-seven cases were clinical stage Il or IV. CAN specimens were sampled more than 5 cm away from the
cancer region, and were confirmed to have no cancerous tissue. The health status of all patients was followed until December
2015. The median follow-up time for surviving patients was 26 months (range 1-78 months). The overall survival (0OS) was
defined as the interval between surgery and death or between surgery and the final follow-up for living patients. Of the 100
patients, 55 (55.0%) died of tumor-related causes and 45 (45.0%) were alive at the time of final follow-up.

Immunohistochemistry

Paraffin-embedded tissues sections were cut into 4 pm thick slices and mounted on polylysine-coated slides. The samples
were dewaxed in xylene and rehydrated through a series of graded ethanol solutions. After dewaxing, endogenous peroxidase
activity was inhibited by incubation in a 3% peroxide-methanol solution for 10 minutes at room temperature (RT). Antigen
retrieval was carried out in an autoclave at 100° C for seven minutes. The samples were then incubated for 30 minutes at
room temperature. The sections were then washed three times in phosphate buffered saline (PBS) for five minutes each time.
Samples were then incubated with rabbit anti-human HIF-1a monoclonal antibody (1:200 dilution; Abcam, USA), mouse anti-
human VEGF monoclonal antibody (1:300 dilution; Santa Cruz Biotechnology, Santa Cruz, CA, USA), and mouse anti-human
CD163 antigen monoclonal antibody (1:100 dilution; Zhongshan Goldenbridge Biotechnology Co., LTD., Beijing, China).
Samples were then thoroughly washed with PBS, and primary antibody binding was visualized using a DAKO EnVision kit
(DAKO, Glostrup, Denmark), according to the manufacturer's instructions. Finally, sections were faintly counter-stained with
hematoxylin and mounted with glycerol gelatin. For negative staining controls, PBS was used instead of primary antibody.

Immunoreactivity evaluation

HIF-1a and VEGF immunohistochemistry (IHC) reactivity were evaluated referring to previously described methods /. Positive
IHC stains were defined as yellow-brown color, in accordance with the manufacturer's guidelines (Fig. 3). Tissue sample
stained for IHC were scored as positive or negative based on the percentage and intensity of positively stained cells; the
percentage of positively stained cells was classified as 0, 1, 2, 3, and 4, representing positive staining in < 5%, 6—25%, 26—
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50%, 51-75%, and 76—100% of cells; staining intensity was classified as 0, 1, 2, and 3, corresponding to absent, weak,
moderate, and strong staining. A final score was determined by multiplying both scores from an individual slide (Table 1),
where: 0-1 was negative (-), 2—3 was weakly positive (1+), 4—6 was moderately positive (2+), and 8—12 was strongly
positive (3+). We divided these four classifications of expression into two groups: a low expression group (-/1+) and a high
expression group (2+/3+).

Table 1

Scoring of HIF-1 and VEGF IHC
a
Staining % positive cells Staining intensity Final score product
Percent (%) Scorel Intensity Score?2 Scorel x Score?2 Score3
<5% 0 Absent 0 0-1 0()
6%-25% 1 Weak 1 2-3 1(1+)
26%-50% 2 Moderate 2 4-6 2(2+)
51%-75% 3 Strong 3 8-12 3(3+)
76%-100% 4
Note: Slides stained with IHC were scored as positive or negative by the percentage and intensity of positive cells. Scoring
the percent of positively stained cells: Score 1 (0 =< 5%; 1 =6%-25%; 3 = 51%-75%; and 4 = 76%-100%). Scoring the
intensity of the staining: Score 2 (0 = absent; 1 = weak; 2 = moderate; 3 = strong). For final scores: 0-1 was negative (-), 2-
3 was weakly positive %1 +), 4—6 was moderately positive (2+), and 8—12 was strongly positive (3+).

The numbers of CD163-positive macrophages were analyzed as described previously 4. For evaluation of IHC staining, the
five most representative hot spots from low-power fields (LPFs,100x%) per slide were selected used an Olympus BX51TF
microscope (Olympus, Japan). The tumor nest and stroma areas were defined, and the numbers of CD163-positive
macrophages were counted in high-power fields (HPFs, 400x) by two independent pathologists blinded to patients clinical
data. If cell counts differed by over 10 cells per HPF, samples would be recounted after one week, until the independent counts
were within 10 counts. The average number of macrophages per HPF across five hot spots for each sample (tumor nest and
tumor stroma) was defined as the TAMs density.

Bioinformatics analyses

The ONCOMINE database (www.oncomine.org) was used to evaluate differential gene expression of HIF-1a and CD163
between cancer samples and corresponding normal control esophagus tissue. Differences with P < 0.05 were considered to be
statistically significant. Heat maps of HIF-1q, CD163, and VEGF expression were generated using R heatmap package.

Statistical analysis

Statistical analyses were performed using SPSS 17.0 software. Nonparametric test was used to compare the difference of
HIF-1a, VEGF and CD163 expression between ESCC and CAN groups. The Chi square test or the Fisher's exact test were to
analyze the correlation between HIF-1a expression and clinicopathological parameters. The cumulative survival rate was
calculated by the Kaplan—Meier method and Cox proportional hazards modeling. Univariate and multivariate analyses were
performed using the Cox proportional hazard regression model. Spearman'’s rank correlation method was used to evaluate the
correlations between the HIF-1a and both CD163-positive TAMs and VEGF. Each cell experiment was repeated at least 3 times,
and the differences between the two groups were tested by Student's test. p-Values were calculated using the Epi-Info
program, and P values less than 0.05 were considered significant in all analyses.

Results
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Evaluating HIF-1a expression in Kazakh ESCCs and CANs, and exploring its association with clinicopathological parameters
and prognosis in Kazakh ESCC

IHC staining indicated that HIF-1a was generally present in the cytoplasm of cancer cells, and the percentage and intensity of
positively stained cells varied greatly among cases (Fig. 1A-D). HIF-1a positive cells were diffusely distributed in tumor nests,
and tumor stromal cells exhibited little HIF-1a expression. Only 9.0% of ESCC tissue cases were negative for HIF-1a antibody
staining, and 50.0% cases showed strong staining (2+/3+). In contrast, 40.0% of CAN cases were negative for HIF-1a staining,
and only 35.0% of CAN tissues showed strong staining (2+/3+) (x°=29.659, P<0.001, Table 2).

Table 2
The Expression of HIF-1 in Kazakh ESCC and CAN tissues
a
Tissue Type Negative Positive
N 0(%) 1+ (%) NT 2+ (%) 3+ (%) N2 2 P

ESCCs 100 9 41 50 34 16 50

9.0% 41.0% 34.0%  16.0% 17120  <0.000*
CANs 100 40 39 79 19 2 21

40.0%  39.0% 33.0%  2.0%
Note: ESCCs: Esophageal squamous cell carcinoma tissues. CANs: Cancer adjacent normal tissues. P< 0.05.

Using the Oncomine esophagus sample data, we evaluated the correlation between HIF-1a expression and ESCC occurrence,
and we found that the expression of HIF-1a was significantly higher in ESCC than in normal tissue (Fig. 1E). In our study, we
also found that expression of HIF-1a was higher in Kazakh ESCC than in CAN tissue (Fig. 1F). In order to better compare
differential expression of HIF-1a to clinical parameters of ESCC, we divided the cases into two groups based on HIF-1a
expression; a low HIF-1a expression and a high HIF-1a expression group. We found that cases with overexpression of HIF-1a
showed more vascular invasion (60.0% vs. 26.7%, P=0.005), lyphoid metastasis (pN * vs pN ~ = 72.9% vs. 28.8%, P< 0.001,
Table 3), and present at more advanced ESCC stages (IlI=1V vs. I-11=81.1% vs. 31.7%, P<0.001). These results indicated that
HIF-1a expression may be associated with invasion and progression of Kazakh ESCC.
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Table 3

Correlation between expression of HIF-1 and clinicopathological parameters in Kazakh ESCC

Variable

Age(y)
<Median(58y)
OMedian

Sex

Male

Female

Tumor
location

Upper
Middle
Low

Histologic
grade

Well
Moderate
Poor

Depth of
invasion

T1-T2
T3-T4

Cases

47

64
36

74
25

32
48
20

33
67

Vascular invasion

Absent
Present
Nodal status
PN -

pN +

Clinical stage
HI

-V

30
70

52
48

63
37

HIF-Ta low
expression

0/1+ (%)

26(49.1%)
24(51.1%)

29(45.3%)
21(58.3%)

1(100%)
36(48.6%)
13(52.0%)

16(50.0%)
28(58.3%)
6(30.0%)

20(60.6%)
30(44.8%)

22(73.3%)
28(40.0%)

37(71.2%)
13(27.1%)

43(68.3%)
7(18.9%)

HIF-1a high
expression

2+/3+ (%)

27(50.9%)
23(48.9%)

35(54.7%)
15(41.74%)

0(0%)
38(52.4%)
12(48.0%)

16(50.0%)
20(41.7%)
14(70.0%)

13(39.4%)
37(55.2%)

8(26.7%)
42(60.0%)

15(28.8%)
35(72.9%)

20(31.7%)
30(81.1%)

XZ

0.000

1.085

1.094

4.631

1.628

8.048

16.058

20.764

1.000

0.298

0.579

0.099

0.202

0.005"

0.000"

0.000"

Note: pN~: no lymph node metastasis; pN*: node metastasis. P<0.05.

VEGF low
expression

0/1+ (%)

15(28.3%)
11(23.4%)

9(14.1%)
17(47.2%)

0(0%)
19(25.7%)
7(28.0%)

6(18.8%)
14(29.2%)
6(30.0%)

14(42.4%)
12(17.9%)

17(56.7%)
9(12.9%)

23(44.2%)
3(6.3%)

25(39.7%)
1(2.7%)

VEGF high
expression

2+/3+ (%)

38(71.7%)
36(76.6%)

55(85.9%)
19(52.8%)

1(100.0%)
55(74.3%)
18(72.0%)

26(81.3%)
34(70.8%)
14(70.0%)

19(57.6%)
55(82.1%)

13(43.3%)
61(87.1%)

29(55.8%)
44(93.8%)

38(60.3%)
36(97.3%)

X2

0.108

11.50

0.407

1.343

5.690

18.733

18.714

16.568

0.742

0.001"

0.816

0.511

0.017"

0.000"

0.000*

0.000"

Page 7/17




To assess the association of HIF-1a expression with the prognosis of Kazakh ESCC, Kaplan—Meier survival analysis was
performed. A significant difference in the survival curves was observed, and higher HIF-1a expression in Kazakh ESCC
predicted low overall survival (¥2=8.121, P=0.004, log-rank test, Fig. 2A). Furthermore, patients with HIF-1a overexpression
had worse overall survival and were at greater risk of death after surgery than patients with negative or weak HIF-1a
expression (P=0.004, Fig. 2B)

In addition, univariate survival analysis indicated that high levels of HIF-1a expression, lymph node metastasis, and TNM
stage were associated with poor overall survival. Multivariate analysis incorporating all the statistically significant prognostic
factors in the univariate analysis demonstrated that HIF-1a overexpression and lymph node metastasis were both
independent prognostic indicators (all P<0.05, Table 4). Together, these data indicate that overexpression of HIF-1a may a
potential prognostic biomarker of poor overall survival for patients with ESCC.

Univariate and multivariate Cox regression ar-:-:lty)/lsii of the prognostic variables in ESCC patients

Variables Univariate analysis Multivariate analysis
HR 95%Cl P value HR 95%Cl P value

HIF-1a expression 1.781 1.265 2508  (oo1* 1.481 1.007 2178 (046"
Sex 1.220 0.699 2128  0.485 1.621 0.893 2943 0.112
Age (>59) 0616 0355 1.070 0.086 0.688 0.394 1.203 0.190
Differentiation 1.014 0.678 1.517  0.945 0.811 0.516  1.275 0.364
Depth of invasion 1.654 0.925 2957 0.090 1.583 0.832 3.012 0.162
Lymph node metastasis 2978  1.641 5404 000" 2.441 1.083 5499  031*
TNM stage(lll-1V) 2.554 1442 4522  (o01* 1.006 0434 2332 0.989
Note: Significant difference that 95% Cl of HR was not including; HR: hazard radio; Cl: confidence interval; P< 0.05.

Evaluating VEGF expression in Kazakh ESCCs and CANSs, and exploring its relationship with clinicopathological features of
ESCC

Analysis of the Oncomine esophagus sample data revealed that expression of HIF-1a is closely associated with expression of
VEGF mRNA (Fig. 3A-B) in ESCC. Furthermore, overexpression of VEGF mRNA is also associated with ESCC occurrence
(Fig. 4E). These data suggest that HIF-1a may promote the occurrence and progression of esophageal cancer through VEGF.

In this study, we observed VEGF staining mostly in cell membranes and cytoplasm (Fig. 4A-4D), and VEGF staining was most
prominent in tumor stroma cells, including macrophages and endothelial cells. Based on the VEGF IHC scoring, the expression
of VEGF protein in ESCC tissues was significantly higher than in CAN tissues (P< 0.001, Fig. 4F). In order to compare the
relationship between VEGF expression and clinical parameters of ESCC, we divided the cases into low VEGF expression (-/1+)
and high VEGF expression groups (2+/3+). VEGF expression levels significantly higher in males than in females (85.9% vs.
52.8%, P=0.001). Cases with high VEGF expression had higher invasiveness, including the depth of invasion (T3-T4 vs. T1-
T2=82.1% vs. 57.6%, P=0.017), vascular invasion (present vs. absent = 87.1% vs. 43.3%, P< 0.001), lymph node metastasis
of Kazakh ESCC (pN * vs. pN ~ = 93.8% vs. 55.8%, P<0.001), and advanced ESCC clinical progress (Ill-1V vs. I-11=97.3% vs.
60.3%, P<0.001) (Table 3).

Distributions of TAMs in Kazakh ESCC, and the correlation between HIF-1a expression, the density of TAMs, and the
expression of VEGF in Kazakh ESCC
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Macrophage aggregation in hypoxic microenvironments and HIF-1a expression may play a synergistic role in promoting the
progression of Kazakh ESCC. To explore this possibility, we used CD163, a marker of TAMSs, to evaluate TAM distribution
(Fig. 5A-5D). We found the density of TAMs in Kazakh ESCC tumor nests (approximately 15/HPF, 0—45) and stroma
(approximately 58/HPF, 9—-139) were significantly higher than in CAN epithelia (approximately 2/HPF, 0-10) and stroma
(approximately 19/HPF, 3-54) (all P<0.001, Fig. 5F and 5G).

Oncomine data analysis showed that overexpression of CD163 was closely related with occurrence of ESCC (Fig. 5E), and
that expression of HIF-1a was positively correlated not only with expression of VEGF, but also with expression of CD163
macrophages (Fig. 3C). In this study, Spearman correlation analysis was used to analyze the relationship between these three
factors. Interestingly, we found that HIF-1a expression positively correlated with the amount of CD163-positive TAMs density
in the tumor stroma. (r=0.266, P< 0.05). The expression of VEGF was also positively correlated with the HIF-1a expression (r
=0.221, P=0.027) and the distribution of CD163-positive macrophages (r=0.363, P<0.001). As the correlation between the
expression of VEGF and TAMs is stronger than HIF-1a and TAMs (r=0.363 vs. r= 0.221, respectively), the regulation of HIF-1a
on the expression of VEGF in ESCCs may be mediated through regulation and recruitment of TAMs (Table 5).

Table 5

Cross correlation analyses reveal strong relationships among density of TAM in tumor nest, tumor stroma and the expression
of HIF-1 and VEGF in Kazakh ESCCs

a

Characteristics HIF-1a TAM density in tumor nest TAM density in VEGF
tumor stroma

HIF-Ta 1 0.161 0.266™ 0.221*

TAM density in 0.167 1 0.487™ 0.177

tumor nest

TAM density in 0.266™ 0.481" L 0.363"

tumor stroma

VEGF 0.221* 0.177 0.363™ 1

Note: ESCCs: Esophageal squamous cell carcinoma tissues. The numbers shown in the table are correlation coefficient r

values. Spearman rank correlation analysis was used. P<0.05.

Discussion

Hypoxia is a common characteristic of the tumor microenvironment that occurs in the early stages of tumor development and
promotes tumor progression '°. The transcription factor hypoxia-inducible factor-1 (HIF-1), a dimeric transcription factor
encompassing a HIF-1a and a HIF-18 subunit, plays a pivotal role in this process. HIF-1a is the foremost control switch for low
oxygen response, and boosts the transcription of downstream genes required for tumor growth, angiogenesis, and metastasis
6 In breast cancer and renal cancer 718, high expression of HIF-1a is closely related to VEGF expression and angiogenesis,
which promotes tumor invasion and migration. These data suggest that HIF-1a promotes cancer through VEGF.

In the hypoxic tumor microenvironment, there are a large number of macrophages. Macrophages can undergo phenotypic
transformation due to tumor microenvironmental queues to exhibit an M2 polarization phenotype, and then promote tumor
progression by enhancing angiogenesis and metastasis '°. Macrophages preferentially cluster in hypoxic/necrotic areas of
the tumor microenvironment and their presence in large numbers is strongly correlated with poor clinical outcomes 2%27. In
previous studies we have demonstrated that macrophages are involved in the occurrence and progression of ESCC; this may
be mediated by macrophages promoting the expression of VEGF 22. Whether HIF-1a is involved in the regulation of M2
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phenotype TAMs, and whether it promotes the invasion and metastasis of Kazakh ESCCs by regulating VEGF expression,
remains unclear.

In this study, we found that both HIF-1a and VEGF expression in Kazakh ESCC was significantly higher than in CANs (both P<
0.05). Furthermore, overexpression of HIF-1a and VEGF were both significantly associated with vascular invasion, lymph node
metastasis, and clinical stage (all P < 0.05). Moreover, HIF-1a expression was positively correlated with VEGF expression in
Kazakh ESCC. These results are consistent with those from previous esophageal carcinoma studies’23, and suggest that HIF-
Ta promotes ESCC through VEGF. We further analyzed the prognostic significance of HIF-1a protein expression in patients
with ESCC. We found that patients with higher HIF-1a expression in Kazakh ESCC tissues had poorer prognosis than those
with lower HIF-1a expression. These data are similar to reports in other solid tumors, including breast cancer 2° and
hepatocellular carcinoma 2'. Univariate survival analysis revealed that high levels of HIF-1a, lymph node metastasis, and
TNM stage correlated with shorter overall survival. However, in multiple regression analysis, only HIF-1a expression and lymph
node metastasis remained as independent variables significantly associated with poor overall survival. These results agree
with reports in non-small cell lung cancer and colorectal cancer 2425, Recent reports indicate that HIF-1a staining is prominent
at the advancing tumor border rather than in the central regions. Furthermore, stromal cells, such as immune and
inflammatory cells, can also exhibit different levels of expression of HIF-1q, especially macrophages >2°. These observations
indicated that HIF-1a may play an essential role in tumor progression, possibly through the regulation of macrophages.

CD163 as a marker of M2 TAMs to evaluate the distribution of M2 TAMs in Kazakh ESCCs. We found that the density of
TAMs in the Kazakh ESCC tumor stroma and nest was significantly higher than in CAN tissues (both P < 0.05). At the same
time, we observed that the density of CD163-positive TAMs in tumor stroma was positively associated with HIF-1a expression.
These data further indicate that HIF-1a may play a role in promoting the progress of tumors through regulating TAMs.

TAMs can facilitate tumor progression through a variety of mechanisms, including promoting of angiogenesis,
lymphangiogenesis, matrix remodeling, and suppressing adaptive immunity 2. These pro-tumor and pro-angiogenesis
phenotypes are generally thought to be associated with VEGF secreted by TAMs. Other studies have demonstrated that VEGF
plays an important role in the recruitment and polarization of macrophages in tumors, in the induction of macrophages to the
M2 TAM phenotype, and in tumor metastasis and progression 28. To better understand how TAMs and VEGF are connected in
ESCC, we assessed the expression of VEGF in Kazakh ESCCs and CANs. We found that VEGF was mainly expressed in tumor
stromal cells, including TAMs. Only a small amount of VEGF expression was seen in tumor cells, which is similar with
previous findings from models of hepatocellular carcinoma 2°. We found a significant correlation between high density of
TAMs and overexpression of VEGF (P <0.001). These results indicate that VEGF may be mainly secreted by tumor stromal
cells, especially by TAMs. These results are in agreement with previous studies on esophageal carcinoma 29, and illustrate
that TAMs may promote angiogenesis, invasion, and metastasis of ESCC by regulating VEGF expression.

HIF-1a participates in the regulation of VEGF in the hypoxic tumor microenvironment, which promotes the occurrence and
development of tumors. Our study shows that HIF-1a and TAMs play synergistic roles in the hypoxic tumor microenvironment.
TAMs present in the tumor stroma express more VEGF than cancer cells, and there are also synergistic interactions between
TAMs and VEGF in promoting tumor progression and metastasis. We found that the correlation between VEGF expression and
TAMs in Kazakh ESCCs is significantly higher than that between VEGF and HIF-1a (P<0.001 vs. P=0.027, Table 4). These
data suggest that HIF-1a may promote angiogenesis, invasion, and metastasis of ESCCs through the regulation of VEGF, and
that this process is mediated through M2 TAMs, rather than through direct regulation of VEGF by HIF-1a.

Conclusions

Our study shows that overexpression of HIF-1a may increase the distribution of M2 TAMs in Kazakh ESCC, and promote the
expression of VEGF, a primary driver of angiogenesis that also plays an important role in the invasion and metastasis of
Kazakh ESCC.
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Figure 1

Immunohistochemical staining of HIF-1l in Kazakh ESCC and CAN tissues. HIF-1 staining is primarily observed in tumor
stroma (cell membranes and cytoplasm); some ESCC cells also exhibit staining (x200). (A) Negative HIF-10 staining is shown
in CAN tissues (scored as 0). (B) Weak HIF-1[l staining is shown in CAN tissues (scored as 1). (C) and (D) show moderate and
strong HIF-11 staining in Kazakh ESCC tissues (scored as 2 and 3, respectively). (E). Analysis HIF-1/ expression from
Oncomine (n = 53 samples). HIF-10 was overexpressed in ESCC tissue compared with normal tissue (P < 0.001) (F) Boxplot
showing that HIF-1/ expression levels are significantly higher in ESCC than in CAN tissue from the Kazakh population (P <

0.001).
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Figure 2

Overexpression of HIF-1[ is closely related with poor prognosis of Kazakh ESCC patients. (A) Kazakh ESCC patients with
overexpression of HIF-1l experienced significantly shorter survival period after surgery than those with low HIF-101 levels (P <
0.05). (B) Patients with overexpression of HIF-1[l had a greater risk of death than those with lower HIF-1[ levels (P < 0.05).
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Figure 3

The expression of HIF-1a, VEGF, and CD163 was compared between ESCC and normal esophagus tissues, and correlations
and interactions between the HIF-1q, VEGF, and CD163 were explored by Oncomine. (A) Heatmap and clusters of HIF-1q, VEGF,
and CD163 expression in 106 samples, including 53 cases (red) and 53 controls (blue) from the Oncomine database. (B)
There was a significant positive correlation between HIF-1a and VEGF expression in the esophagus samples from the

Oncomine data (r = 0.425, P < 0.001). (C) There was a significant positive correlation between HIF-1a and CD163 expression
in the esophagus samples from the Oncomine data (r = 0.414, P < 0.001).
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Figure 4

Immunohistochemical staining of VEGF in Kazakh ESCC and CAN tissues. VEGF staining was primarily observed in tumor
stroma (cell membranes and cytoplasm); some ESCC cells also exhibit positive staining (x200). (A) Negative VEGF staining
was shown in CAN tissues (scored as 0). (B) Weak VEGF staining was shown in ESCC tissues (scored as 1). (C) and (D) show
moderate and strong VEGF staining in Kazakh ESCC tissues (scored as 2 and 3, respectively). (E) Analysis of VEGF
expression from the Oncomine data (n = 35 samples). VEGF was overexpressed in ESCC tissue compared with the normal
tissue (P < 0.001). (F) Boxplot showing that VEGF expression levels in ESCC were significantly higher than in CAN tissue from
the Kazakh population (P < 0.001).
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Figure 5

Distribution of CD163-positive TAMs in Kazakh ESCC tumor nest tissue, CAN epithelia, and CAN stroma. (A) and (B) show the
density of TAMs in CAN epithelia and stroma, respectively; (C) and (D) show the distribution of TAMs in tumor nest and
stroma in ESCC, respectively (x200). (E) Analysis of CD163 expression from the Oncomine data (n = 35 samples). CD163 was
overexpressed in ESCC tissue compared with normal tissue (P < 0.001). (F) and (G) boxplots demonstrating that the density
of CD163-positive TAMs in Kazakh ESCC tumor stroma (F) and tumor nest (G) are significantly higher than in CAN stroma or
CAN epithelia (both P < 0.001).
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