
Non-reciprocal phase transition enables swarming
motility in biological active matter
Askin Kocabas 

Koç University https://orcid.org/0000-0002-6930-1202
Sahin Ozdemir 

Pennsylvania State University https://orcid.org/0000-0002-2625-3992
Mustafa Basaran 

Koç University
Tev�k Yüce 

Koç University
Ali Kecebas 

Department of Engineering Science and Mechanics, and Materials Research Institute
Baha Altın 

Koç University
Yusuf Yaman 

Koç University
Esin Demir 

Koc University
Coskun Kocabas 

University of Manchester

Article

Keywords:

Posted Date: March 12th, 2024

DOI: https://doi.org/10.21203/rs.3.rs-3956047/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.  
Read Full License

Additional Declarations: There is NO Competing Interest.

https://doi.org/10.21203/rs.3.rs-3956047/v1
https://doi.org/10.21203/rs.3.rs-3956047/v1
https://orcid.org/0000-0002-6930-1202
https://orcid.org/0000-0002-2625-3992
https://doi.org/10.21203/rs.3.rs-3956047/v1
https://creativecommons.org/licenses/by/4.0/


1 

 

Non-reciprocal phase transition enables swarming motility in biological active 1 

matter 2 

 3 

Authors  4 

Mustafa Basaran1,2,3, Tevfik Can Yüce2, Ali Keçebaş4, Baha Altın1, Yusuf Ilker Yaman1,3, Esin 5 

Demir2 , Coşkun Kocabaş5, Şahin K. Özdemir5†, and Aşkın Kocabaş1,2,6,7† 6 

1Department of Physics, Koç University, Sarıyer, 34450 Istanbul, Turkey  7 

2Bio-Medical Sciences and Engineering Program, Koç University, Sarıyer, 34450 Istanbul, Turkey  8 

3Current adres: Sciences and Engineering Program, Harvard University, Cambridge 02138, MA 9 

4Department of Engineering Science and Mechanics, The Pennsylvania State University, 10 

University Park, 16802, PA 11 

5Department of Materials, University of Manchester, Manchester, M13 9PL, UK 12 

6Koç University Surface Science and Technology Center, Koç University, Sarıyer, 34450 Istanbul, 13 

Turkey  14 

7Koç University Research Center for Translational Medicine, Koç University, Sarıyer, 34450 15 

Istanbul, Turkey  16 

†Corresponding author: sko9@psu.edu , akocabas@ku.edu.tr 17 

 18 

 19 

 20 



2 

 

Abstract 21 

Nonreciprocal interactions break action-reaction symmetry in systems of interacting bodies. 22 

This process inevitably introduces non-Hermitian dynamics which with its hallmark 23 

signature called exceptional points (EPs) has been a subject of intense research across 24 

different disciplines ranging from photonics to metamaterials. Whether non-Hermiticity and 25 

EPs are a fundamental property of nature and if so, how nature utilizes them to gain 26 

competitive advantage have remained largely unanswered. Although biological systems 27 

feature many examples of non-reciprocal interactions with the potential to drive non-28 

Hermitian dynamics, these are often theoretically overlooked and not experimentally 29 

investigated. Here, we demonstrate in an active matter composed of social animal 30 

Caenorhabditis elegans and bacteria, non-Hermitian dynamics, and the emergence of EPs 31 

owing to the nonreciprocal nature of oxygen sensing, nonequilibrium interfacial current, and 32 

bacterial consumption. We observed that when driven through the EP, the system 33 

collectively breaks parity-time (PT) symmetry leading to traveling waves and arrested phase 34 

separation. We further find that these features enable the collective ability to localize 35 

interfaces between broken and exact PT-phases. Remarkably, this ability provides a strong 36 

evolutionary advantage to animals living in soil. Altogether our results provide mechanistic 37 

insights into the detailed symmetries controlling the collective response of biological systems; 38 

answer a long-standing problem; and give an example of the EP-enabled dynamics in a 39 

biological system.   40 

 41 

 42 

 43 
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Introduction 44 

Active matter systems consist of numerous energy-generating or consuming components, thus they 45 

are intrinsically out-of-equilibrium1,2. In these intricately coupled systems, independent interaction 46 

channels such as drift-diffusion processes, sensing, and social norms, naturally give rise to non-47 

reciprocity3-10 where the constituents of the system affect each other differently. This apparent 48 

violation of Newton’s third law11, which states action-reaction symmetry, is a common feature in 49 

active matter. This is especially true for biological systems which generally have multiple active 50 

and passive components (e.g., cells, dense swarming animals, growing tissues, and environmental 51 

matrix). Recent studies have shown that nonreciprocity (i.e., action-reaction symmetry breaking) 52 

plays a key role in collective behaviors in active matter and leads to many exotic phenomena, 53 

ranging from synchronization and flocking to dynamic pattern formation. Combining the 54 

framework of nonreciprocity and the interacting active material platforms promises to provide a 55 

powerful toolbox to dissect the complexities of living biological materials.  56 

While nonreciprocity arises naturally in active material and biological systems, in many fields of 57 

science and engineering (e.g., optics, electronics, acoustics, etc.) one has to deliberately break 58 

time-reversal symmetry to induce nonreciprocal electromagnetic wave transmission or 59 

nonreciprocal interaction between the subcomponents of a system. This is often achieved through 60 

strong nonlinearities, space- and/or time-dependent modulation of constitutive material properties, 61 

and magneto-optical components. Most recently, nonreciprocal interactions and coupling have 62 

emerged as a resource for building highly sensitive sensors12-14; achieving unidirectional perfect 63 

absorbers; and suppressing and enhancing spontaneous emission, to name a few. Nonreciprocal 64 

interactions bring about non-Hermitian dynamics, which suggests the toolbox developed for 65 
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studying non-Hermitian systems and the exotic features emerging from their EPs could be utilized 66 

in understanding and controlling complex active matter and biological systems.   67 

 Non-Hermiticity has its roots in quantum mechanics15,16 and has been extensively studied in 68 

photonics17, electronics, acoustics, optomechanics18,19, superconducting qubits20, trapped ions21,22, 69 

single-spin systems23, and in light-matter interactions24. Although in the majority of classical and 70 

quantum systems, non-Hermiticity and EPs emerge by judiciously controlling gain-loss balance as 71 

in active parity-time (PT) systems, dissipation- or loss-imbalance as in passive PT systems, and 72 

coupling strength among the couples, most recent studies have highlighted nonreciprocal coupling 73 

and interactions engineered using precisely located and controlled asymmetric scatterers or 74 

reflectors as a resource for non-Hermiticity12,25,26. In contrast to these artificially induced non-75 

Hermiticity and PT symmetry, the majority of biological interactions are inherently nonreciprocal 76 

or asymmetric, and thus their dynamics can be modeled using effective Hamiltonian and 77 

dynamical matrix formalism widely used for non-Hermitian systems. Clearly, having 78 

nonreciprocal interactions, the active matter and biological systems should also have EPs and 79 

associated processes. Establishing this connection does not only allow studying complex 80 

biological systems using the well-known techniques utilized in non-Hermitian physics but it also 81 

will help answer the foundational question: How does the presence of EPs affect the dynamics of 82 

active matter and biological systems? Do presence of EPs and PT-symmetry breaking bring any 83 

advantage in biological systems? Despite significant progress in non-Hermitian physics and 84 

separately in active matter and biological systems, there is still a need for experimental platforms 85 

that bring together all these concepts to answer the above questions and reveal the potential 86 

biological implications of PT-symmetry, non-Hermiticity, and EP physics. Here we address this 87 

need and present experimental signatures of what happens to a biological system if it is driven 88 
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through an EP between exact- and broken-PT phases, and how this affects the system’s collective 89 

behavior.    90 

In this study, we investigated the detailed nonequilibrium process together with the concept of 91 

nonreciprocity controlling the collective behavior of animals using C. elegans as a model 92 

organism. These animals come together and feed on bacteria lawns. This intriguing collective 93 

response is known as social feeding behavior27-29. The physics of this collective routine is 94 

remarkable because the mixture of active worms and passive bacteria forms a highly interacting 95 

multi-component condensate. This active mixture forms social groups during feeding. Previous 96 

genetic studies have linked this feeding behavior to oxygen sensing28,30, which promotes tracking 97 

low oxygen levels to locate bacteria as food. More interestingly, during their domestication 98 

process31 as model organisms in the lab, the natural isolates of these social worms acquired several 99 

genetic mutations that significantly altered their oxygen preferences. As a result, social strains 100 

became solitary in the lab. Taken together, this collective behavior and the variability of their 101 

social response provide a valuable experimental system to study the detailed non-equilibrium 102 

dynamics of this interacting active matter system. 103 

We found that all theoretically predicted non-Hermitian features, some of which are already 104 

observed in non-biological systems, including arrested coarsening, transitions between traveling 105 

and standing waves, and edge localization and delocalization emerge in these social animal groups. 106 

Using the approach learned from non-Hermitian physics in a non-equilibrium regime, our findings 107 

shed light on understanding the complex behaviors of biological systems including their 108 

evolutionary significance.   109 
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 110 

Figure 1 Emergence of a traveling wave state in an active worms-bacteria mixture. a) The image 111 

of a worm aggregate overlaid with a GFP-labeled bacterial field, where a group of worms is 112 

swarming together. b) Densities of the worm 𝑊 and bacteria 𝐵 fields, revealing the asymmetric 113 

profile during the traveling state. 𝑉 represents the forward velocity of the animal group.  c) 114 

Schematic representation of how active worm aggregates concentrate bacteria by coming together 115 

on a bacteria lawn and reducing oxygen levels. Conversely, aggregated worms can drift bacteria 116 

across the interface. This process could be represented by two material currents JD and Jneq . d) 117 

The size of the worm aggregate as a function of time indicates the arrested coarsening during the 118 

traveling state. e) Splitting of worm aggregate into smaller parts limiting the growth of the 119 

aggregate size. Scale bar, 1mm. 120 

 121 

 122 

 123 
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Results 124 

Experimental observation of the traveling state of coupled worms and bacteria mixture 125 

To study the physics of social feeding behavior involving bacteria, we used time-lapse microscopy 126 

to observe worms (W) and bacteria (B) densities together (Fig. 1). We used the Green Fluorescent 127 

protein (GFP) to label the bacteria so that we could observe the worms and bacteria separately. 128 

Over the course of several days of imaging starting from a single worm, we observed the formation 129 

of small groups of animals traveling on the bacteria lawn (Figure 1a, Supplementary Video1-2). 130 

During this traveling state, the worms and bacterial fields showed various configurations, 131 

including colocalization, delocalization, and asymmetric density distributions (Figure 1b). Of 132 

particular interest is the asymmetric density profile, which arises when the animals are placed on 133 

a flat and uniform bacterial lawn. In this scenario, the swarming animals can spontaneously 134 

develop a bacterial gradient and move towards regions with higher bacterial density.  135 

In a previous study32, we observed that when worms aggregate, they can cause bacteria to 136 

concentrate within the aggregates, leading to the formation of complex dynamical patterns. 137 

Initially, we attributed this to the low oxygen taxis behavior of the worms, which caused the 138 

bacteria to co-locate due to the sponge-like structures in the animal groups (Figure 1c). However, 139 

it turned out that the process was more exotic, and was purely driven by their activity. This 140 

colocalization process was the first dynamical feature that prompted us to investigate the active 141 

matter nature of the worm-bacteria mixture, which was likely responsible for the observed 142 

phenomena. In this study, we further focused on several other experimental observations that 143 

suggested that this process was particularly triggered by a nonequilibrium and hence non-144 

Hermitian process in the animal groups. 145 
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Another signature of non-equilibrium behavior we noticed in this animal model is the arrested size 146 

of the active worm aggregates (Figure 1d). Animal groups can merge together, but if they form 147 

larger groups, they later split into smaller parts (Figure 1e, Supplementary Video 3). The arrested 148 

coarsening dynamics of the active system is of special importance because the process limiting the 149 

universal coarsening event requires critical dynamics. The most parsimonious hypothesis 150 

explaining this observation is that the interface of the worm aggregates generates a nonequilibrium 151 

bacterial current (Jneq) that could limit the coarsening process33. 152 

Finally, we observed that the worm-bacteria condensates were highly vulnerable to local depletion 153 

of bacterial densities, leading to the formation of bubbles (Supplementary Video 4). These 154 

observations share some similarities with the recently developed active model B+34, also known 155 

as bubbly phase separation, which is based on a single active component. However, it is important 156 

to note that our system differs from one-component active platforms due to the coupling of the 157 

worm and bacterial fields. Despite this difference, the macroscopic dynamics of hole formation in 158 

the worm-bacteria mixture were found to be similar. These three experimental findings support 159 

the idea that the worm-bacteria active system exhibits special nonequilibrium dynamics that 160 

control their collective behaviors, but they do not tell whether EPs exist in this model system and 161 

what roles EP, if exist, and PT-symmetry breaking play in the observed behaviors. 162 
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 163 

Figure 2: Spatial activity gradient generates non-equilibrium interfacial current on the passive 164 

component. a) Numerical simulation demonstrating the drift process driven by a velocity gradient 165 

in space. b) Simulation result showing the aggregating active worms generate a velocity gradient 166 

across the interface, resulting in a drift current 𝐽𝑛𝑞. c) The cross-sectional profile of worm density 167 

and the corresponding nonequilibrium drift current. d) Experimental results demonstrating the 168 

interfacial drift current of passive beads from the oxygen-lacking edge to the oxygen-depleted 169 

center of the group. Aggregating worms and self-consumption decrease oxygen concentration and 170 

generate a spatial activity gradient. Green (initial) to blue (final) colors indicate the time and bead 171 

distribution towards low oxygen regions where the animals are slow. e) A typical image of a worm 172 

aggregate overlaid with concentrated passive green fluorescent beads at the center of the group. 173 

Note that worm and bead densities are colocalized. Oxygen and velocity profiles are given in 174 

Supplementary Figure1. 175 

 176 

 177 

 178 

 179 
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Spatial activity gradient generates non-equilibrium interfacial current  180 

To further assess the nonequilibrium process at the interface of the worm-bacteria mixture, we 181 

performed numerical simulations. We found that the speed of the worms was strongly dependent 182 

on the oxygen concentration, while the bacteria were passive constituents of the system that 183 

exhibited only small fluctuations. Due to hydrodynamic coupling with the bacteria, the worms 184 

were capable of inducing strong activity at large scales, leading to bacterial drift and spatial 185 

variations in the speed at the interface35-37 (Supplementary Video5). 186 

It is important to note that this process involves the coupling of large active worms (~1mm) and 187 

small passive bacteria (~5μm), which is critical due to the different types of drift mechanisms that 188 

originate from the size difference between the interacting components. First, under a spatial 189 

activity gradient, small active matter can apply active phoretic pressure to larger passive 190 

components, as seen in the centering of the nucleus in a cell, where the activity gradient around 191 

the cortex pushes large particles towards the center38,39. Additionally, at the cellular membrane, 192 

the dynamic coupling between large cargo proteins and the active MinB system can also be 193 

described as an example of phoretic active pressure40. From this perspective, our system exhibits 194 

different dynamic processes. The second type of drift originates from the spatial activity dictated 195 

by large active particles. It is worth noting that the response of particles to activity gradients has 196 

received significant scientific attention and has been theoretically well-studied35,41. Our system 197 

should be considered in this class. 198 

To better understand the dynamics of the interaction between large active worms and small passive 199 

bacteria at interfaces, we simulated bacterial diffusion, where the speed of the passive bacteria is 200 

dictated by the active worms. The worms can also self-aggregate due to local oxygen depletion, 201 

which we modeled by using the same principle of motility-induced phase separation, resulting in 202 
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negative effective diffusion42,43 (𝐷𝑒𝑓𝑓 < 0, Supplementary Note section 1, Supplementary Video 203 

6). This self-aggregation condition can be seen as the first of two instabilities required for non-204 

reciprocal phase transitions. As expected, the activity gradient at the interface generates a drift 205 

current, causing the passive particles to be pumped toward the center of the aggregates (Figure 2a-206 

c, Supplementary Video 6). We observed the same process even when bacteria were replaced with 207 

polymer beads, further confirming the nonequilibrium nature of the process (Figure 2d-e, 208 

Supplementary Figure 1). The dense worm aggregates depleted oxygen, leading to the formation 209 

of oxygen and velocity gradients at the interface, which pumps the passive beads toward the center. 210 

We observed similar nonequilibrium interface currents and co-localization of active and passive 211 

components at a larger scale (Figure 2e). Based on these experimental findings and numerical 212 

results, the dynamics of the entire process can be reduced to a flux term at the interface, which we 213 

modeled using Jneq = ζB∇W (Supplementary Note section 2). 214 

 215 

Emergence of exceptional points and traveling state in worm-bacteria mixture  216 

To gain more intuition about the coupled dynamical system between worms and bacteria and study 217 

how EPs emerge in this dynamics, we formulated a set of coupled drift-diffusion equations for two 218 

conserved density fields, W and B. The time evolution of the worm density is influenced by both 219 

oxygen-dependent motility and the interaction between worms and bacteria. These dynamics can 220 

be expressed mathematically as follows: 221 

𝜕𝑊𝜕𝑡 =  ∇ ⋅ [𝐷𝑒𝑓𝑓𝛻𝑊 + βW𝛻𝐵] − 𝛾𝑊𝛻4𝑊 222 

𝜕𝐵𝜕𝑡 = ∇ ⋅ [𝐷𝐵∇𝐵 − 𝐽𝑛𝑒𝑞] − 𝜆𝑊𝐵 − 𝛾𝐵∇4𝐵 223 
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       224 

where Deff represents the motility-dependent dispersion of worms which is negative and promotes 225 

self-aggregation, DB is the diffusion coefficient of bacteria induced by active worms, and β =  𝑣𝜏 𝜕𝑣𝜕𝐵 226 

is the aerotactic coupling coefficient indicating the strength of the animal response to the bacteria-227 

dependent oxygen gradient. Note that  is the bacterial consumption by the worm and   is the 228 

phenomenological surface tension parameter. 𝑣 and 𝜏 are the velocity and reversal rates of the 229 

animals. 230 

As a new cross-coupling term we added non-equilibrium flux (𝐽𝑛𝑒𝑞⃗⃗ ⃗⃗ ⃗⃗  ⃗ = ζB∇W) which is the first 231 

term breaking the reciprocity between worms and bacteria. When we linearize the system around 232 

equilibrium points, the dynamical matrix can be simplified to the version given below, which 233 

shares the common form of the coupled dynamical system widely used in non-Hermitian physics 234 

(Supplementary Note section 3) 235 

𝜕𝜕𝑡 [𝜌𝑊𝜌𝐵 ] =  [𝐷𝑊𝑊 𝐷𝐵𝑊𝐷𝑊𝐵 𝐷𝐵𝐵 ] [𝜌𝑊𝜌𝐵 ] 236 

DBW is the cross-diffusion term and represents the chemotactic drift of the worms across the 237 

bacterial gradient. This term is controlled by the oxygen concentration which is defined by the 238 

local bacterial density. Further, the other cross-diffusion term DWB, absorbs non-equilibrium 239 

interface flux (𝐽𝑛𝑒𝑞⃗⃗ ⃗⃗ ⃗⃗  ⃗)  promoting colocalization and also the consumption rate of bacteria () by the 240 

worms which acts as a delocalization term in the system. The schematic representation of these 241 

interactions between worms and bacteria is given in Figure 3a. Eigenvalues 𝜎± =242 (𝐷𝑊𝑊 +𝐷𝐵𝐵)/2 ± √𝜉 2⁄  where 𝜉 =  (𝐷𝑊𝑊 − 𝐷𝐵𝐵)2 + 4𝐷𝑊𝐵𝐷𝐵𝑊 reveals the pseudo-243 

Hermitian44 characteristic of the system (Supplementary Note section 3,4) with the emergence of 244 
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an EP at  𝜉 = 0 where both the eigenvalues and the associated eigenvectors coalesce. EP divides 245 

the parameter space into three: i) 𝜉 = 0 where eigenvalues are degenerate (i.e., critically damped 246 

harmonic oscillator); ii) ) 𝜉 < 0 eigenvalues become complex conjugate pairs (i.e., underdamped 247 

harmonic oscillator) and the system oscillates; and iii) ) 𝜉 > 0 where two distinct eigenvalues 248 

emerge and the system approaches the equilibrium position without any oscillation (i.e., 249 

overdamped harmonic oscillator). We note that the emergence of EP is the second instability 250 

indicating the Parity-Time (PT) symmetry-breaking conditions (Figure 3b, Supplementary Note 251 

section 4,5 ). The eigenvalues of the system be simply controlled by two critical external 252 

parameters; consumption rate 𝜆 of bacteria by worms which can balance the bacterial pumping 253 

into the worm aggregates and also ambient oxygen level that controls the activity and the 254 

sensitivity of the worms. The corresponding phase space has three major domains, uniform 255 

densities, static pattern forming, and traveling state regions (Figure 3b top). To further test the 256 

theoretical predictions, we numerically solved the coupled system in two dimensions (2D) 257 

(Supplementary Video 7). We observed that static colocalized (aligned), delocalized (antialigned) 258 

patterns, and traveling (chiral) states emerged during the simulation (Figure 3c). We then repeated 259 

the simulations by implementing local initial noise to trigger the first aggregation instability and 260 

observed the dynamics of localized individual groups traveling toward bacteria-available regions 261 

(Figure 3d). The system spontaneously breaks spatial symmetry and develops a self-generated 262 

bacterial gradient profile (Figure 3e). This broken symmetry further guides animal groups into 263 

spontaneously picked outward directions (Supplementary Video 8,9).  When we plot the density 264 

profiles of worms (W) and bacteria (B) the broken symmetry and stable phase difference between 265 

these fields become more evident (Supplementary Note section 4). This phase difference also 266 
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indicates the chiral state formed by the worm bacterial fields. Simply, worms are chasing the self-267 

generated bacterial gradient profile. 268 

 269 

Figure 3: Emergence of exceptional points (EPs) in nonreciprocally interacting worm and 270 

bacterial active mixture. a) Schematic representation of a two-component active matter system 271 

consisting of worms (W) and bacteria (B). Non-equilibrium fluxes control the time evolution of the 272 

system by promoting colocalization and bacterial consumption λ drives the delocalization process 273 

of worm and bacterial fields. Due to aerotaxis, the depletion of oxygen by the bacteria controls 274 

the worm's activity. b) Numerical simulation of the phase diagram of the coupled active matter 275 

mixture indicating three different domains. The system dynamics depends on the critical coupling 276 

parameter λ and the ambient oxygen level. Above a critical level, the eigenvalues of the system 277 

develop complex conjugate pairs (bottom). The emergence of the complex conjugate pairs drives 278 

the traveling state of the patterns (PT broken region). c) Worm and bacterial fields show aligned 279 

(colocalized) and antialigned (delocalized) profiles before forming the traveling state (chiral). 280 

Intensities are measured across the arrows. d) Numerical simulation of the worm aggregates 281 

traveling across uniform bacterial density (contour). e) Simulation results of worm and bacterial 282 

densities indicating the asymmetric density profile above EP indicating the PT-symmetry breaking 283 

between worm bacteria fields. f) The coarsening process of the worm aggregation is arrested 284 

(Blue). Numerical simulation indicates the separate impact of bacterial consumption (red) and 285 

interface current on the coarsening dynamics. Black dots represent the result of the universal 286 

coarsening process without bacterial current and consumption.  287 
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 288 

   289 

As a final stage of the numerical simulations, we analyzed the coarsening dynamics of the worm 290 

bacteria mixture under various conditions. We first tested the characteristic size of the groups 291 

above the EP where the aggregates are moving. As expected in this regime the coarsening is 292 

arrested (Figure 3f). This arrested state is easily understood by considering the bacterial flux 293 

around the periphery of the groups. As groups grow in size the interface has to pump more bacteria 294 

to maintain the low oxygen level around the favorable range. Above the critical size; however, 295 

bacteria get depleted due to high consumption and oxygen level increases which further promotes 296 

high motility. The increase in the motility increases the diffusion and finally breaks the groups into 297 

small parts as we observed in our experiments. In the case of worm condensate (Supplementary 298 

Video 4), high consumption of bacteria could locally trigger the oxygen increase and the final 299 

system could drive the formation of holes. This point is the similarity between our system and the 300 

active Model B+. The susceptibility of the system against local noise is mainly triggered by the 301 

imbalance between inward bacterial pumping and oxygen increase. We also tested the coarsening 302 

scenario without bacterial consumption ( = ) while keeping nonequilibrium pumping on (𝐽𝑛𝑒𝑞⃗⃗ ⃗⃗ ⃗⃗  ⃗). 303 

Interestingly the system shows different scaling. We hypothesize that this suppression is controlled 304 

by the interface current of bacteria in the aggregates. Finally, we noticed that removing all the 305 

cross-coupling terms between worms and bacteria gave rise to the formation of regular motility-306 

induced phase separation with a universal coarsening profile ~t1/3 (Figure 3f).  All these numerical 307 

results support that the active worm and bacteria mixture has non-Hermitian features and shows 308 

all expected dynamical properties including EPs, traveling state, and arrested coarsening process. 309 

Nonequilibrium interface current and bacterial consumption together spontaneously breaks PT 310 

symmetry leading to the emergence of a collective traveling state of the worm aggregates across 311 
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uniform bacterial density. The similarities between theoretical expectations and the experimental 312 

results are remarkable.  313 

Edge localization and evolutionary significance 314 

One of the interesting observations in topological physics is the formation of localized edge states 315 

at the interface of two topologically different domains45-49. Such edge states could also emerge in 316 

non-Hermitian systems. Recent theoretical studies have elaborated on the possibility of such 317 

dynamics in various biological networks47-49. In this study, we aim to bring a different perspective 318 

to this concept. We realized that interfaces are very common environmental features in nature, 319 

such as water-soil interfaces in lake sediments or air-soil interfaces on the ground surface of 320 

forests. These interfaces are the main battlegrounds between competing animal species. Different 321 

regions of these interfaces may have separate challenges or predators, and staying locally around 322 

them could provide specific advantages. Similarly, soil nematodes, C. elegans, live in wet soil 323 

where the fluids are decomposing. Understanding the collective response of the worms at these 324 

interfaces (Figure 4a) may link the physics of localized edge states and their potential biological 325 

implications. 326 

In order to elucidate topology in interacting biological systems, we studied the dynamics of worms, 327 

specifically their behavior around interfaces representing different symmetries in the phase space. 328 

We selected the interface between exact and broken PT domains which were obtained by partially 329 

blocking oxygen penetration from the air. The numerical results showed the localization of animals 330 

along the interface (Figure 4b and Supplementary Video10). In our experiment, we placed a cover 331 

glass on a bacteria lawn with swarming animals and observed their collective responses. Our 332 

findings indicate that interfaces can lead to the emergence of localization at the sharp interface 333 

where oxygen concentration quickly shifts from high (normoxic) to low (anoxic) levels. Neither 334 
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side of the interface is favorable for single worms; the open region has high oxygen levels (i.e., 335 

broken PT phase) and is open to predators, while the closed region has very low oxygen levels 336 

(i.e., exact PT phase) due to the presence of bacteria and blocked oxygen penetration. However, at 337 

the interface, animals can spot favorable conditions and localize by slowing down (Figure 4c, 338 

Supplementary Video11). This raises the question of whether localization provides an evolutionary 339 

advantage. To test this hypothesis, we designed a new experiment to mimic the granular structure 340 

of the soil, the natural habitat of C. elegans. We used gel-based beads (Sephadex 50) soaked in 341 

bacterial suspension (as shown in Figure 4d), which has low oxygen levels but provides more 342 

interfaces for worms to stay around. To test the worms' preference, we extended the bacterial lawn 343 

to an open region without interfaces. We found that the majority of social worms (npr-1) quickly 344 

found and preferred staying in the granular region when placed away from it, while solitary strains 345 

(N2) showed a different response, spreading around without a clear preference for this region 346 

(Figure 4e, Supplementary Video12). Based on these observations we can conclude that the natural 347 

isolate of C. elegans, aka social strain, prefers staying at the interfaces where they can get sufficient 348 

oxygen while keeping themselves from open regions. When they get into the open region they 349 

come together and collectively form groups by decreasing internal oxygen levels. Interestingly 350 

solitary strain N2 which evolved in the lab on a flat surface lost this collective response and 351 

interface tracking ability.  352 
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  353 

Figure 4: Evolutionary significance of edge localization of social animals at the interface 354 

between different domains. a) Schematic representation of an air-soil interface corresponding to 355 

uniform and traveling states of the phase diagram. b) Numerical results of the coupled worm-356 

bacteria system localizing around the edge of the air-soil interface are shown. c) Experimental 357 

result of the localized edge state at the interface generated by blocking oxygen penetration. d) 358 

Image of the experimental platform used to test the ability to localize around the edge. Polymer 359 

beads are used to generate a multilayered structure to mimic the soil-air interface. e) Social 360 

animals prefer staying in the granular region where they can hide and stay around the edges. 361 

However, solitary animals spread around and do not show any edge preference. 362 

 363 

Discussion  364 

Nonreciprocity, a characteristic phenomenon observed in interacting biological entities—from 365 

bacteria to birds in flight—is inevitable in nature. Influenced by various factors like social 366 

interactions, restricted perceptual abilities, or hydrodynamics, this nonreciprocity plays a crucial 367 

role and serves as a bridge, linking the dynamics of biological systems to non-Hermitian physics, 368 

a field with significant applications in areas such as optics, electronics, acoustics, and quantum 369 
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mechanics. Such a combination provides a powerful toolbox for probing the complex dynamics of 370 

active matter, offering fresh insights into the intricacy of biological systems. 371 

Non-Hermitian, including PT-symmetric, toolbox, and features offer a beneficial macroscopic 372 

metric to understand a system's response. In our study, we noted that PT symmetry breaking 373 

manifests as an arrested travel state of animal groups. This observation is critical since pattern-374 

forming systems typically generate standing wave patterns with a universal coarsening response50. 375 

Traveling wave patterns akin to these have been studied in various physical systems, like viscous 376 

fingering51, which necessitates two successive instabilities to produce traveling waves. The 377 

primary difference in active biological systems is their self-aggregating behavior, corresponding 378 

to the first instability. The role of nonreciprocity becomes particularly significant for the second 379 

instability, which spontaneously breaks PT symmetry and provides collective motility. 380 

Moreover, we discovered that interface localization is a crucial difference between social and 381 

solitary animals. This response is indeed vital in nature but not in the lab due to the absence of the 382 

predators, and this finding illuminates why the solitary strain lost this ability during the lab 383 

domestication process. The most captivating aspect of physical systems is edge localization at the 384 

interface of two topologically different systems (i.e., the interface of systems with trivial and 385 

nontrivial topologies). This characteristic, emerging from topological constraints, allows for 386 

unidirectional propagation along the interface, showing resilience against external disturbances. 387 

Our findings also introduce new questions, like the chirality of localized animals at the interfaces 388 

having varying symmetries. We hypothesize that fluctuations of the localized state around the 389 

interface should propagate unidirectionally. Future investigations are necessary to explore these 390 

intriguing collective behaviors of animals. 391 
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In conclusion, different forms of nonreciprocity can be simultaneously observed in large microbial 392 

populations. Our findings hold potential relevance for comprehending the complex dynamics of 393 

these populations, from gut microbiota to ecological systems. We further speculate that the 394 

principles derived from non-Hermitian physics could illuminate the understanding of interactive 395 

biological systems. 396 

Data availability 397 

The critical experimental data generated or analyzed during this study are provided as supporting 398 

video files. We did not generate additional data sets. 399 

Software availability 400 

All the codes used in the study will be available online. 401 

 402 

Materials and Methods 403 

Microscopy imaging. Fluorescence time-lapse imaging was performed using Stereo SMZ18 404 

microscopes. Images were obtained using Andor EMCCD camera. Time intervals between 405 

successive images were set to 5-15 minutes.  406 

Oxygen Measurement 407 

Oxygen level was measured by using a florescence-based fiber optic oxygen sensor 408 

(PreSens, Microx TX3). During [O2] measurements the sensor probe was precisely inserted 409 

between the cover and NGM surface by using a motorized stage. The fiber optic sensor has a 410 

polymer coating and the presence of O2 quenches the fluorescence signal.   411 

 412 



21 

 

 413 

Numerical Simulation 414 

COMSOL Multiphysics and finite element methods were used to solve the coupled partial 415 

differential equations. The coupled partial differential equations are implemented by using the 416 

general form of coupled differential equations. 417 

C. elegans strains  418 

Strains were grown and maintained under standard conditions. Nematode growth media (NGM) 419 

plates having a diameter of 9 cm were used for maintaining the worms. NGM plates were seeded 420 

with 1 ml of GFP labeled OP50 culture.  To eliminate the thick edge formation of the bacteria 421 

lawn, 100 g/l ampicillin was added to the ngm plates. All the strains were obtained from 422 

Caenorhabditis Genetics Center (CGC). Two primary strains npr1 (DA609), and N2 were used in 423 

the study. 424 
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 442 

Video Captions 443 

Video 1 Time-lapse imaging of growing worms (strain npr-1, light1) on an OP50-seeded NGM plate. The video shows 444 

both bright-field images of the worms (left) and fluorescence images of the bacteria (OP50:GFP, right). As the animals 445 

form aggregates, they concentrate bacteria in the groups. Due to bacterial consumption, both concentrated and depleted 446 

bacterial profiles occur. At later stages, the groups begin to swarm after developing an asymmetric bacterial profile. 447 

The video is associated with Figure 1a. 448 

Video 2 Magnified time-lapse imaging of swarming animal groups on a bacterial lawn. The fluorescence images of 449 

bacterial density show an asymmetric profile. As animal groups grow in size, they split into smaller parts. The video 450 

is associated with Figure 1b. 451 

Video 3 Time-lapse imaging of a splitting event within an animal group. As animal groups grow in size, they split 452 

into smaller parts. The fluorescence image shows the asymmetric profile of the bacterial distribution within the group. 453 

The video is associated with Figure 1e. 454 

Video 4 Time-lapse imaging of dense worm-bacteria condensate, where the worms are forced to form a dense 455 

swarming body around the edge of the bacterial lawn. Instead of forming a complete phase separation, the dense 456 
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swarm spontaneously forms holes triggered by local depletion of bacteria, leading to an increase in oxygen levels. 457 

This feature highlights the susceptibility of swarming animal groups to bacterial fluctuations. 458 

Video 5 Simulation results of concentration and polarization of passive particles under a spatial velocity profile. The 459 

velocity profile is Gaussian, and particles slow down at the center. The video is associated with Figure 2a. 460 

Video 6 Simulation results of self-aggregating animals and the emerging interface current of passive particles 461 

(streamline) around the edge of the groups. The video is associated with Figure 2b. 462 

Video 7 Simulation result of a 2D coupled worm (color) and bacteria (contour) active mixture. Self-aggregation is 463 

triggered by initial spatial noise, and as animals aggregate, they gradually form traveling groups. This video 464 

demonstrates that the coupled worm-bacteria mixture forms a traveling state. The video is associated with Figure 3c. 465 

Video 8 Simulation result of traveling multiple groups. Self-aggregation is triggered by local spatial initial noise. 466 

Traveling groups move outward. 467 

Video 9 Simulation results of a single traveling group of animals. The animal group develops a bacterial gradient and 468 

travels towards the region with higher bacterial concentration. This video demonstrates the arrested group size and 469 

asymmetric bacterial profile. The video is associated with Figure 3e. 470 

Video 10 Simulation result of an edge state localized at the interface between traveling and uniform domains of the 471 

phase diagram. The domains are established by modulating the ambient oxygen level, changing it from 21% to 0%. 472 

Video 11 Experimental observation of the localization of animals around the edge of the glass cover, which blocks 473 

oxygen penetration on a bacterial lawn. The video is associated with Figure 4. 474 

Video 12 Time-lapse imaging of solitary (N2, left) vs. social (npr-1, right) animals moving on a bacterial lawn with 475 

gel beads. Social animals quickly disperse and prefer staying in the granular region. Solitary animals disperse but do 476 

not show a clear preference. 477 

 478 

 479 

 480 
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 481 

 482 

Supplementary Figures 483 

 484 

Supplementary Figure 1 Oxygen measurement vs speed distribution and colocalization of worms and 485 

passive beads. a) Radial oxygen profile measured by fiber optic sensor across the worm droplet. A 486 

dense worm population generates oxygen gradient across the droplet by consumption. b) The 487 

velocity of the worms shows strong swimming activity around the edge of the droplet where oxygen 488 

is available. c) Active worms generate a velocity gradient across the interface, resulting in a drift 489 

current. Initially, uniform beads (green profile) accumulate around the center of the droplet. d) e) 490 

and f) are the images of the worms' activity and fluorescence beads in the droplet 491 

 492 

 493 

 494 

 495 

 496 
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Suplementary Notes 497 

I.General Equations of Worm and Bacteria Densities 498 

We previously observed that the velocity of the social C. elegans strain depends on the oxygen 499 

level of the environment32. Animals slow down at favorable oxygen levels and the typical 500 

velocity profile is given below. 501 

 502 𝑣(𝑂) = 𝛼(𝑂 − 𝑂𝑖𝑛)2 + 𝑣0 503 

 504 

Supplementary Figure 2; Velocity profile of active worms as a function of ambient oxygen level. 505 

Worms slow down at an intermediate oxygen level. 506 

 507 

The time evolution of the oxygen density is determined by the diffusion, penetration, and 508 

consumption of the oxygen by both the bacteria and the worms. These dynamics can be modelled 509 

as  510 𝜕𝑂𝜕𝑡 = 𝐷𝑂𝛻2𝑂 − 𝑘𝐵𝐵 − 𝑘𝑤𝑊 + 𝑓(𝑂𝑎𝑚 − 𝑂) 511 

We assume that oxygen has a fast dynamical response compared to other timescales of active 512 

worm W and passive bacteria B. We can simplify the oxygen kinematics in a static manner as  513 

𝑂(𝑊,𝐵) =  𝑂𝑎𝑚 − 𝑘𝐵𝑓 𝐵 − 𝑘𝑊𝑓 𝑊 + Ο(𝛻2𝑂) 514 
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Further, we can use a static version of the oxygen level to define the velocity profile of the worm 515 

depending on both the worm and bacteria densities:  516 

𝑣(𝑊,𝐵) =  𝛼(𝑂𝑎𝑚 − 𝑂𝑖𝑛 − 𝑘𝐵𝑓 𝐵 − 𝑘𝑊𝑓 𝑊)2 + 𝑣0 517 

Finally, the drift-diffusion equation for the worm density using the Schnitzer’s equation37 as 518 𝜕𝑊𝜕𝑡 = 𝛻 ⋅ [∇(𝑣22𝜏𝑊)] − 𝛾𝑊𝛻4𝑊 519 

𝜕𝑊𝜕𝑡 = 𝛻 ⋅ [𝑣22𝜏 𝛻𝑊 + 𝑣𝜏 𝑊𝛻𝑣] − 𝛾𝑊𝛻4𝑊 520 

Implementing the defined velocity profile of the worms and its dependence on bacterial 521 

densities, we can modify the time evolution equation as follows 522 𝜕𝑊𝜕𝑡 = 𝛻 ⋅ [𝑣22𝜏 𝛻𝑊 + 𝑣𝜏 𝜕𝑣𝜕𝑊𝑊𝛻𝑊 + 𝑣𝜏 𝜕𝑣𝜕𝐵𝑊𝛻𝐵] − 𝛾𝑊𝛻4𝑊 523 

Finally, the equation can be further simplified by defining effective diffusion for 𝑊 which can 524 

represent the self-aggregation process (negative effective diffusion). Further, the gradient of 525 

bacteria density drifts the worms and the sensitivity β is defined as 526 

𝐷𝑒𝑓𝑓 = 𝑣22𝜏 + 𝑣𝜏 𝜕𝑣𝜕𝑊𝑊 527 

β =  𝑣𝜏 𝜕𝑣𝜕𝐵 528 

Substituting the above expression into the time-evolution equation, we end up with 529 𝜕𝑊𝜕𝑡 =  ∇ ⋅ [𝐷𝑒𝑓𝑓𝛻𝑊 + βW𝛻𝐵] − 𝛾𝑊𝛻4𝑊 530 

 531 

II.Polarization of Bacteria field and Quasi Stationary Approximation 532 

The second component of our dynamical system is the drift-diffusion process of the passive 533 

bacterial density, denoted by B. In addition to the classic diffusion process, the non-equilibrium 534 
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bacterial interface flux 𝐽𝑛𝑒𝑞 plays a significant role in the dynamics of 𝐵. To represent this interface 535 

current, we used the modified Toner-Tu equations35, where �̅� is the average velocity of the 536 

bacteria. The time-evolution of 𝐵 can be written as 537 

𝜕𝐵𝜕𝑡 = ∇ ⋅ [𝐷𝐵∇𝐵 − 𝐽𝑛𝑒𝑞] − 𝜆𝑊𝐵 − 𝛾𝐵∇4𝐵 538 𝐽𝑛𝑒𝑞 = �̅� �⃗�  539 

The first term on the right-hand side of the equation represents the diffusion of the bacteria. This 540 

process is influenced by the motion of animals, and localized bacterial densities can simply 541 

disperse due to the random movement of animals. 542 

 543 

The second term represents the critical non-equilibrium flux resulting from the polarization of the 544 

bacteria due to hydrodynamic interactions with worms. Polarization represents the directional 545 

bacterial flux towards the center of the animal groups, caused by the spatial activity gradient. The 546 

third term is the non-conserved reaction term resulting from the consumption of bacteria by worms. 547 

The last term is the surface tension. The general equation for the polarization of bacteria is given 548 

as: 549 

𝜕�⃗� 𝜕𝑡 = −12 ∇(𝑣𝐵) − 𝛾1�⃗� − 𝛾2𝑃2�⃗� + 𝑘𝛻2�⃗� − 𝑤1(�⃗� ⋅ 𝛻)�⃗�  550 

For the equation of the polar order of passive bacteria, we can use the quasi-stationary assumption, 551 

this is because the polarization of the bacteria occurs faster than the time scales of the worms. 552 

Since there is no significant self-advection and no intrinsic alignment preference, we can express 553 

the polarization in terms of the bacteria density and the average velocity 𝑣, which is referred to as 554 

the active pressure term due to density and velocity gradient. 555 
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�⃗� = − 12𝛾1  ∇(𝑣𝐵) 556 

Bacteria in this system are considered as passive particles, therefore worm activity drives 557 

bacterial velocity, we can use the following assumption; 558 �̅� = 𝑣𝑊 559 

where 𝑣 is the velocity of the worms. If we use this velocity form in the polarization field of the 560 

bacteria, we then have the following expression for the bacteria order. 561 

�⃗� = − 12𝛾1  ∇(𝑣𝑊𝐵) 562 

�⃗� = − 12𝛾1  [WB∇𝑣 + 𝑣𝑊∇𝐵 + 𝑣𝐵∇𝑊] 563 

�⃗� = − 12𝛾1 [𝑊𝐵 (𝜕𝑣𝜕𝐵 ∇𝐵 + 𝜕𝑣𝜕𝑊∇𝑊) + 𝑣𝑊∇𝐵 + 𝑣𝐵∇𝑊] 564 

�⃗� = − 12𝛾1 [(𝑊𝐵 𝜕𝑣𝜕𝐵 + 𝑣𝑊)∇𝐵 + (𝑊𝐵 𝜕𝑣𝜕𝑊 + 𝑣𝐵)∇𝑊] 565 

Finally substituting the above equations in the expression for time evolution of the bacteria 566 

density, we obtain: 567 𝜕𝐵𝜕𝑡 = ∇ ⋅ [𝐷𝐵∇𝐵 + �̅�𝑊 (𝐵 𝜕𝑣𝜕𝐵 + 𝑣) ∇𝐵 + �̅�𝐵 (𝑊 𝜕𝑣𝜕𝑊 + 𝑣)∇𝑊] − 𝜆𝑊𝐵 − 𝛾𝐵∇4𝐵 568 

Note that inside the worm clusters, worm activity vanishes (v≈0) due to low oxygen levels, and 569 

outside the clusters, the density of worms vanishes (W≈0). Therefore, the bacterial velocity 570 

induced by worm activity creates a notable non-equilibrium flux only in the regions where the 571 

density of worms has a gradient. 572 
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 573 

Supplementary Figure 3: Simulation results of aggregating passive particles under a spatial 574 

velocity profile. (a) A Gaussian-shaped spatial velocity profile (vertical axis) drives radial 575 

order and aggregation (horizontal plane). (b) Snapshots of aggregating passive particles. 576 

Arrows indicate the direction of the flux of the particles under the spatial activity gradient. 577 

Furthermore, the activity of the worm inside and outside of the worm clusters can also be neglected 578 

as it does not create any significant flux due to the velocity of the bacteria becoming zero. Based 579 

on experimental observations and simulation results, for the simplicity of the model, we use the 580 

non-equilibrium flux term proportional to the gradient of the worm and the density of bacteria. 581 

Additionally, we assume that the diffusion of bacteria is constant. Therefore, we can finally write 582 

down this flux as follows 583 

𝐽𝑛𝑒𝑞⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝜁𝐵∇𝑊 584 

where 𝜁 is the term that determines the magnitude of the non-equilibrium flux of bacteria on the 585 

gradient of worm density. Finally, we can write down the time evolution equation of the bacteria 586 

density field as ; 587 

𝜕𝐵𝜕𝑡 = ∇ ⋅ [𝐷𝐵∇𝐵 + 𝜁𝐵∇𝑊] − 𝜆𝑊𝐵 − 𝛾𝐵∇4𝐵 588 
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III.Linear Stability Analysis 589 

In the equilibrium state, worm and bacteria density is uniform over space and their time derivatives 590 

are also zero. Then we add a small perturbation to each of these fields. 591 

𝑊 = 𝑊𝑒𝑞 + 𝛿𝑊 592 𝐵 = 𝐵𝑒𝑞 + 𝛿𝐵 593 

With perturbed densities, we can write down the equation as follows with higher-order terms 594 𝜕𝛿𝑊𝜕𝑡 =  𝛻 ⋅ [𝐷𝑒𝑓𝑓𝛻𝛿𝑊 + βWeq𝛻𝛿𝐵] − 𝛾𝑊𝛻4𝛿𝑊 595 𝜕𝛿𝐵𝜕𝑡 = ∇ ⋅ [𝐷𝐵∇δ𝐵 + 𝜁𝐵𝑒𝑞∇δ𝑊] − 𝜆𝑊𝑒𝑞𝛿𝐵 − 𝜆𝐵𝑒𝑞𝛿𝑊 − 𝛾𝐵∇4𝛿𝐵 596 

where effective diffusion and worm drift flux on bacteria density gradient is evaluated at their 597 

equilibrium  598 

𝐷𝑒𝑓𝑓 = 𝑣(𝑊𝑒𝑞, 𝐵𝑒𝑞)22𝜏 + 𝑣(𝑊𝑒𝑞 , 𝐵𝑒𝑞)𝜏 𝜕𝑣(𝑊𝑒𝑞, 𝐵𝑒𝑞)𝜕𝑊  599 

β =  𝑣(𝑊𝑒𝑞 , 𝐵𝑒𝑞)𝜏 𝜕𝑣(𝑊𝑒𝑞, 𝐵𝑒𝑞)𝜕𝐵  600 

Now assume that perturbations of bacteria and worm density have the following single Fourier 601 

modes. 602 𝛿𝑊 = 𝜌𝑊(𝑡)𝑒𝑖𝑘𝑥 603 𝛿𝐵 =  𝜌𝐵(𝑡)𝑒𝑖𝑘𝑥 604 

We can express the time evolution of the time-dependent part of the worm and bacteria density 605 

perturbations as a dynamical matrix form. 606 𝜕𝜕𝑡 [𝜌𝑊𝜌𝐵 ] =  [−𝑘2𝐷𝑒𝑓𝑓 − 𝑘4𝛾𝑊 −𝑘2𝛽𝑊𝑒𝑞−𝜆𝐵𝑒𝑞 − 𝑘2𝜁𝐵𝑒𝑞 −𝜆𝑊𝑒𝑞 − 𝑘2𝐷𝐵 − 𝑘4𝛾𝐵] [𝜌𝑊𝜌𝐵 ] 607 

This dynamical equation can be simplified to a common form of; 608 
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𝜕𝜕𝑡 [𝜌𝑊𝜌𝐵 ] =  [𝐷𝑊𝑊 𝐷𝐵𝑊𝐷𝑊𝐵 𝐷𝐵𝐵 ] [𝜌𝑊𝜌𝐵 ] 609 

where each term DWW, DBW, DWB, DBB represents the effect of worm to itself, bacteria to worm, 610 

worm to bacteria, and bacteria to itself respectively. Eigenvalues (𝜎) of the dynamical matrix 611 

reveal the characteristics of the system.  612 

IV.Single Mode Approximation 613 

The following section is particularly inspired by the analysis used to understand active and passive 614 

particle interactions performed by You.et.al. If we assume that our system is 1-D and apply 615 

periodic boundary conditions with the length of the domain being L, then the densities of the worm 616 

and bacteria fields can be decomposed into their Fourier components 617 

𝜙𝑊(𝑥, 𝑡) =∑𝜙𝑊�̂� (𝑡)𝑗 𝑒𝑖𝑞𝑗𝑥  618 

𝜙𝐵(𝑥, 𝑡) =∑𝜙𝐵�̂�(𝑡)𝑗 𝑒𝑖𝑞𝑗𝑥  619 

𝑞𝑗 = 2𝜋𝐿 𝑗 620 

in Fourier domain 621 𝜕𝜙𝑊𝜕𝑡 = 𝜕𝜕𝑥 [𝐷𝑒𝑓𝑓 𝜕𝜕𝑥 𝜙𝑊 + 𝛽𝜙𝑊 𝜕𝜕𝑥 𝜙𝐵  ] − 𝛾𝑊 𝜕4𝜕𝑥4 𝜙𝑊 622 𝜕𝜙𝐵𝜕𝑡 = 𝜕𝜕𝑥 [𝐷𝐵 𝜕𝜕𝑥 𝜙𝐵 + 𝜁𝜙𝐵 𝜕𝜕𝑥 𝜙𝑊] − 𝜆𝜙𝑊𝜙𝐵 − 𝛾𝐵 𝜕4𝜕𝑥4 𝜙𝐵 623 

The important terms of these equations are  624 𝐷𝑊 = 𝑣22𝜏 625 

𝜒 = 𝑣𝜏 𝜕𝑣𝜕𝑊 626 

𝛽 = 𝑣𝜏 𝜕𝑣𝜕𝐵 627 
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Then we express the time evolution of the 1-D worm and bacterial density 𝜙𝑊 and 𝜙𝐵 as : 628 𝜕𝜙𝑊𝜕𝑡 = 𝐷𝑊 𝜕2𝜕𝑥2𝜙𝑊 + 𝜒( 𝜕𝜕𝑥𝜙𝑊)2 + 𝜒𝜙𝑊 𝜕2𝜕𝑥2𝜙𝑊 + 𝛽𝜙𝑊 𝜕2𝜕𝑥2𝜙𝐵 + 𝛽 ( 𝜕𝜕𝑥𝜙𝑊) ( 𝜕𝜕𝑥 𝜙𝐵) − 𝛾𝑊 𝜕4𝜕𝑥4𝜙𝑊 629 𝜕𝜙𝐵𝜕𝑡 =  𝐷𝐵 𝜕2𝜕𝑥2𝜙𝐵 + 𝜁 ( 𝜕𝜕𝑥𝜙𝐵) ( 𝜕𝜕𝑥 𝜙𝑊) + 𝜁𝜙𝐵 ( 𝜕2𝜕𝑥2𝜙𝑊) − 𝜆𝜙𝑊𝜙𝐵 − 𝛾𝐵 𝜕4𝜕𝑥4𝜙𝐵 630 

Now, we can express these equations in the Fourier domain. While the linear terms can be dealt 631 

with directly and without complexity, the other terms demand the use of convolution. Initially, we 632 

provide a comprehensive expression for the convolution terms. However, with the application of 633 

the single-mode approximation, these terms will eventually be simplified. Our exploration 634 

commences with a detailed examination of the time evolution of each term in the worm density 635 

equation. 636 

𝐷𝑊 𝜕2𝜕𝑥2 𝜙𝑊 = 𝐷𝑊∑−𝑞𝑗2𝜙𝑊�̂�𝑗 𝑒𝑖𝑞𝑗𝑥 637 

𝜒 ( 𝜕𝜕𝑥 𝜙𝑊)2 = 𝜒∑∑−𝑞𝑗1𝑞𝑗−𝑗1𝜙𝑊𝑗1̂𝜙𝑊𝑗−𝑗1̂𝑗1𝑗 𝑒𝑖𝑞𝑗𝑥 638 

𝜒𝜙𝑊 ( 𝜕2𝜕𝑥2 𝜙𝑊) = 𝜒∑∑−𝑞𝑗12 𝜙𝑊𝑗1̂𝜙𝑊𝑗−𝑗1̂𝑒𝑖𝑞𝑗𝑥𝑗1𝑗  639 

𝛽𝜙𝑊 ( 𝜕2𝜕𝑥2 𝜙𝐵) = 𝛽∑∑−𝑞𝑗12 𝜙𝐵𝑗1̂𝜙𝑊𝑗−𝑗1̂𝑒𝑖𝑞𝑗𝑥𝑗1𝑗  640 

𝛽 ( 𝜕𝜕𝑥 𝜙𝑊) ( 𝜕𝜕𝑥 𝜙𝐵) = 𝛽∑∑−𝑞𝑗1𝑞𝑗−𝑗1𝜙𝐵𝑗1̂𝜙𝑊𝑗−𝑗1̂𝑒𝑖𝑞𝑗𝑥𝑗1𝑗  641 

𝛾𝑊 𝜕4𝜕𝑥4 𝜙𝑊 = 𝛾𝑊∑𝑞𝑗4𝜙𝑊�̂�𝑗 𝑒𝑖𝑞𝑗𝑥 642 

If we bring those terms together we will have a very long-expression which gives us the time 643 

evolution of each Fourier series coefficient of the worm density.  644 



33 

 

𝜕𝜕𝑡 𝜙𝑊�̂� = −𝑞𝑗2𝐷𝑊𝜙𝑊�̂� − 𝜒∑𝑞𝑗1𝑞𝑗−𝑗1𝜙𝑊𝑗1̂𝜙𝑊𝑗−𝑗1̂𝑗1 − 𝜒∑𝑞𝑗12 𝜙𝑊𝑗1̂𝜙𝑊𝑗−𝑗1̂𝑗1 − 𝛽∑𝑞𝑗12 𝜙𝐵𝑗1̂𝜙𝑊𝑗−𝑗1̂𝑗1645 

− 𝛽∑𝑞𝑗1𝑞𝑗−𝑗1𝜙𝐵𝑗1̂𝜙𝑊𝑗−𝑗1̂𝑗1 − 𝛾𝑊𝑞𝑗4𝜙𝑊�̂�  646 

Now we repeat the similar process for the time evolution of the bacterial density  647 𝐷𝐵 𝜕2𝜕𝑥2 𝜙𝐵 = 𝐷𝐵∑−𝑞𝑗2𝜙𝐵�̂�𝑗 𝑒𝑖𝑞𝑗𝑥 648 

𝜁 ( 𝜕𝜕𝑥 𝜙𝐵) ( 𝜕𝜕𝑥 𝜙𝑊) = 𝜁∑∑−𝑞𝑗1𝑞𝑗−𝑗1𝜙𝐵𝑗1̂𝜙𝑊𝑗−𝑗1̂𝑗1 𝑒𝑖𝑞𝑗𝑥𝑗  649 

𝜁𝜙𝐵 ( 𝜕2 𝜕𝑥2 𝜙𝑊) = 𝜁∑∑−𝑞𝑗12 𝜙𝑊𝑗1̂𝑗1𝑗 𝜙𝐵𝑗−𝑗1̂𝑒𝑖𝑞𝑗𝑥 650 

𝜆𝜙𝑊𝜙𝐵 = 𝜆∑∑𝜙𝑊𝑗1̂𝜙𝐵𝑗−𝑗1̂𝑒𝑖𝑞𝑗𝑥𝑗1𝑗  651 

𝛾𝐵 𝜕4𝜕𝑥4 𝜙𝐵 =∑𝑞𝑗4𝜙𝐵�̂�𝑒𝑖𝑞𝑗𝑥𝑗  652 

Arranging these terms together we find the time evolution of each of the Fourier coefficients of 653 

bacteria density 654 

𝜕𝜕𝑡 𝜙𝐵�̂� = −𝑞𝑗2𝐷𝐵𝜙𝐵�̂� − 𝜁∑𝑞𝑗1𝑞𝑗−𝑗1𝜙𝐵𝑗1̂𝜙𝑊𝑗−𝑗1̂𝑗1 − 𝜁∑𝑞𝑗12 𝜙𝑊𝑗1̂𝜙𝐵𝑗−𝑗1̂𝑗1 − 𝜆∑𝜙𝑊𝑗1̂𝜙𝐵𝑗−𝑗1̂𝑗1 − 𝑞𝑗4𝛾𝐵𝜙𝐵�̂�  655 

These equations include each coefficient of the Fourier series and include only periodic 656 

boundary condition assumptions. As a next step, we assume that domain length is 𝐿 = 2𝜋 for 657 

simplicity and make a single mode approximation which is 𝑗 = 0 and 𝑗 = 1 with all other modes 658 

equal to zero.  659 𝜙𝑊�̂� = 𝜙𝐵�̂� = 0   660 

In the following, we analyze the case of 𝑗 = 0. The components of the Fourier coefficients 661 

become  662 𝜙𝑊0̂ = ∫ 𝜙𝑊𝑑𝑥 = 𝜙𝑊0<𝐿>  663 
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𝜙𝐵0̂ = ∫ 𝜙𝐵𝑑𝑥 = 𝜙𝐵0<𝐿>  664 

For conserved fields, these components are constants, where worm density 𝜙𝑊 is a conserved 665 

quantity, but 𝜙𝐵 is not in our case which changes over time due to bacterial consumption by the 666 

worms, but for simplicity, we treat them as constant. By using these assumptions we rewrite the 667 

time evolution of the first Fourier coefficients As 668 

𝜕𝜕𝑡 𝜙𝑊1̂ = −(𝑞12𝐷𝑊 + 𝑞14𝛾𝑊 + 𝑞12𝜒𝜙𝑊0 )𝜙𝑊1̂ − 𝑞12𝛽𝜙𝑊0 𝜙𝐵1̂  669 𝜕𝜕𝑡 𝜙𝐵1̂ = −(𝑞12𝐷𝐵 + 𝑞14𝛾𝐵 + 𝜆𝜙𝑤0 )𝜙𝐵1̂ − (𝑞12𝜁 + 𝜆)𝜙𝐵0𝜙𝑊1̂  670 

Note that both coefficients are complex. i.e., 𝜙𝑊1̂ , 𝜙𝐵1̂ ∈ ℂ. Therefore, they can be represented as : 671 

𝜙𝑊1̂ (𝑡) = 𝜌𝑊(𝑡)𝑒𝑖𝜃𝑊(𝑡) 672 𝜙𝐵1̂(𝑡) = 𝜌𝐵(𝑡)𝑒𝑖𝜃𝐵(𝑡) 673 𝜃(𝑡) = 𝜃𝑊(𝑡) − 𝜃𝐵(𝑡) 674 

where both amplitudes 𝜌𝑊(𝑡), 𝜌𝐵(𝑡) ∈ ℝ and phases 𝜃𝑊(𝑡), 𝜃𝐵(𝑡) ∈ ℝ. Using these equations, we 675 

write the time evolution of the amplitudes and phases as  676 

𝜕𝜕𝑡 𝜙𝑊1̂ = 𝑒𝑖𝜃𝑊(𝑡) [ 𝜕𝜕𝑡 𝜌𝑊(𝑡) + 𝑖𝜌𝑊(𝑡) 𝜕𝜕𝑡 𝜃𝑊(𝑡)]  677 𝜕𝜕𝑡 𝜙𝐵1̂ = 𝑒𝑖𝜃𝐵(𝑡) [ 𝜕𝜕𝑡 𝜌𝐵(𝑡) + 𝑖𝜌𝐵(𝑡) 𝜕𝜕𝑡 𝜃𝐵(𝑡)]  678 𝜕𝜕𝑡 𝜙𝑊1̂ = 𝑒𝑖𝜃𝑊(𝑡)[−(𝑞12𝐷𝑊 + 𝑞14𝛾𝑊 + 𝑞12𝜒𝜙𝑊0 )𝜌𝑊(𝑡) − 𝑞12𝛽𝜙𝑊0 𝜌𝐵(𝑡)𝑒𝑖(𝜃𝐵(𝑡)−𝜃𝑊(𝑡))] 679 𝜕𝜕𝑡 𝜙𝐵1̂ = 𝑒𝑖𝜃𝐵(𝑡)[−(𝑞12𝐷𝐵 + 𝑞14𝛾𝐵 + 𝜆𝜙𝑤0 )𝜌𝐵(𝑡) − (𝑞12𝜁 + 𝜆)𝜙𝐵0𝜌𝑊(𝑡)𝑒𝑖(𝜃𝑊(𝑡)−𝜃𝐵(𝑡))] 680 

Now if we compose these equations we can find the time evolution of the both amplitudes and the 681 

phase of each worm and bacteria field: 682 
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𝜕𝜕𝑡 𝜌𝑊(𝑡) = −(𝑞12𝐷𝑊 + 𝑞14𝛾𝑊 + 𝑞12𝜒𝜙𝑊0 )𝜌𝑊(𝑡) − 𝑞12𝛽𝜙𝑊0 𝜌𝐵(𝑡)cos (𝜃) 683 𝜕𝜕𝑡 𝜌𝐵(𝑡) = −(𝑞12𝐷𝐵 + 𝑞14𝛾𝐵 + 𝜆𝜙𝑤0 )𝜌𝐵(𝑡) − (𝑞12𝜁 + 𝜆)𝜙𝐵0𝜌𝑊(𝑡)cos (𝜃) 684 𝜕𝜕𝑡 𝜃𝑊(𝑡) =  𝑞12𝛽𝜙𝑊0 𝜌𝐵(𝑡)𝜌𝑊(𝑡) sin (𝜃) 685 𝜕𝜕𝑡 𝜃𝐵(𝑡) = −(𝑞12𝜁 + 𝜆)𝜙𝐵0 𝜌𝑊(𝑡)𝜌𝐵(𝑡) sin (𝜃) 686 

Combing the last two equations yields a system of three coupled partial differential equations, 687 

which give the dynamics of the amplitudes and phase differences of the worm and bacteria fields 688 

as:  689 

𝜕𝜕𝑡 𝜌𝑊(𝑡) = −(𝑞12𝐷𝑊 + 𝑞14𝛾𝑊 + 𝑞12𝜒𝜙𝑊0 )𝜌𝑊(𝑡) − 𝑞12𝛽𝜙𝑊0 𝜌𝐵(𝑡)cos (𝜃) 690 𝜕𝜕𝑡 𝜌𝐵(𝑡) = −(𝑞12𝐷𝐵 + 𝑞14𝛾𝐵 + 𝜆𝜙𝑤0 )𝜌𝐵(𝑡) − (𝑞12𝜁 + 𝜆)𝜙𝐵0𝜌𝑊(𝑡)cos (𝜃) 691 𝜕𝜕𝑡 𝜃(𝑡) = [𝑞12𝛽𝜙𝑊0 𝜌𝐵(𝑡)𝜌𝑊(𝑡) + (𝑞12𝜁 + 𝜆)𝜙𝐵0 𝜌𝑊(𝑡)𝜌𝐵(𝑡)] sin (𝜃) 692 𝜕𝜕𝑡 Φ(𝑡) = [𝑞12𝛽𝜙𝑊0 𝜌𝐵(𝑡)𝜌𝑊(𝑡) − (𝑞12𝜁 + 𝜆)𝜙𝐵0 𝜌𝑊(𝑡)𝜌𝐵(𝑡)] sin (𝜃) 693 

We can use the formalism at Section 2, to make further simplification and convert these equations 694 

to the common form 695 

𝜕𝜌𝑊𝜕𝑡 = 𝐷𝑊𝑊𝜌𝑊 + 𝐷𝐵𝑊𝜌𝐵cos (𝜃) 696 𝜕𝜌𝐵𝜕𝑡 = 𝐷𝑊𝐵𝜌𝑊 cos(𝜃) + 𝐷𝐵𝐵𝜌𝐵 697 𝜕𝜃𝜕𝑡 = − [𝐷𝐵𝑊 𝜌𝐵𝜌𝑊 + 𝐷𝑊𝐵 𝜌𝑊𝜌𝐵 ] sin (𝜃) 698 𝜕Φ𝜕𝑡 = − [𝐷𝐵𝑊 𝜌𝐵𝜌𝑊 −𝐷𝑊𝐵 𝜌𝑊𝜌𝐵 ] sin (𝜃) 699 

 700 
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 701 

 702 

Supplementary Figure 4: Schematic representation of single mode and the stability of the 703 

phase shift between interacting worm and bacterial fields. Stability of the phase shift drive 704 

uniform aligned antialigned and chiral phases.  705 

If we look at the stable solutions of this equation system. To have a constant phase difference ( 706 �̇� = 0) the first possibility is to satisfy  sin(𝜃) = 0. There are two possible solutions, the first one 707 

is 𝜃 = 0 and the second one is 𝜃 = 𝜋 where they correspond to aligned (colocalized) and anti-708 

aligned (delocalized) cases respectively (Supplementary Figure4). Note that when sin(𝜃) = 0, we 709 

also have that Φ̇ = 0 which implies static patterns. Therefore, there are only two possible static 710 

cases, aligned and anti-aligned. Let’s look at the solution for aligned case 𝜃 = 0 and let the static 711 

solutions of the worm and bacteria field be 𝜌𝑊𝑠  and 𝜌𝐵𝑠  respectively, which is obtained as:  712 

𝜌𝑊𝑠𝜌𝐵𝑠 = − 𝐷𝐵𝑊𝐷𝑊𝑊 713 𝜌𝑊𝑠𝜌𝐵𝑠 = − 𝐷𝐵𝐵𝐷𝑊𝐵 714 

Note that 𝜌𝑊𝑠  and 𝜌𝐵𝑠  are amplitudes of the oscillations, therefore it is required that both of them 715 

should be positive. Therefore, for aligned stable solutions, the following equations should be 716 

satisfied: 717 
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𝐷𝑊𝑊𝐷𝐵𝐵 − 𝐷𝐵𝑊𝐷𝑊𝐵 = 0 718 𝐷𝐵𝑊𝐷𝑊𝑊 , 𝐷𝐵𝐵𝐷𝑊𝐵 < 0 719 

If we look at the case 𝜃 = 𝜋, which is the anti-aligned case, we will have similar conditions. It is 720 

possible to generalize the stable static solution condition as below. If the condition,  721 𝐷𝑊𝑊𝐷𝐵𝐵 − 𝐷𝐵𝑊𝐷𝑊𝐵 = 0 722 

is satisfied, then there is a stable solution with the following rate of amplitudes. 723 𝜌𝑊𝑠𝜌𝐵𝑠 = |𝐷𝐵𝑊𝐷𝑊𝑊| 724 

The stable phase difference is also given below. 725 𝐷𝐵𝐵𝐷𝑊𝐵 < 0 , 𝜃𝑠 = 0 726 𝐷𝐵𝐵𝐷𝑊𝐵 > 0,   𝜃𝑠 = 𝜋 727 

As a next step, we look for another family of solutions with constant phase amplitudes and constant 728 

phase difference and sin(𝜃) ≠ 0. The condition to have a constant phase difference is  729 

𝐷𝐵𝑊 𝜌𝐵𝑇𝜌𝑊𝑇 +𝐷𝑊𝐵 𝜌𝑊𝑇𝜌𝐵𝑇 = 0 730 

where 𝜌𝑊𝑇  and 𝜌𝐵𝑇 are constant amplitudes of traveling worm and bacteria density respectively. 731 

Satisfying this condition implies that there is a non-zero angular velocity of phases  𝜔 = Φ̇2  .  Note 732 

that the amplitudes are also constant, thus we will have the following equations.  733 

𝜌𝑊𝑇𝜌𝐵𝑇 = − 𝐷𝐵𝑊𝐷𝑊𝑊  cos (𝜃𝑇) 734 𝜌𝑊𝑇𝜌𝐵𝑇 = − 𝐷𝐵𝐵𝐷𝑊𝐵 1cos (𝜃𝑇) 735 

Finally, we have an expression for the phase difference between worm and bacteria fields for the 736 

traveling (chiral) state which indicates the PT symmetry breaking. 737 
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cos(𝜃𝑇) = ±√𝐷𝑊𝑊𝐷𝐵𝐵𝐷𝐵𝑊𝐷𝑊𝐵  738 

If we insert constant amplitude conditions into constant phase difference conditions, we can have 739 

the following equality with the condition 𝐷𝐵𝑊, 𝐷𝑊𝐵 ≠ 0. In addition, we need to satisfy that 740 0 ≤  cos(𝜃𝑇) ≤ 1, in order to have a physical solution. Therefore, our final conditions to observe 741 

traveling wave solution with constant amplitude and the phase difference is 742 

𝐷𝑊𝑊 + 𝐷𝐵𝐵 = 0 743 0 < 𝐷𝑊𝑊𝐷𝐵𝐵𝐷𝐵𝑊𝐷𝑊𝐵 ≤ 1 744 

Note that these conditions can only be satisfied with self-aggregating anmimals (negative 745 

effective diffusion of the worms) together with the nonreciprocity term (sufficient ) and the 746 

angular velocity of phases. 747 𝜔 = 12 (𝐷𝑊𝑊 − 𝐷𝐵𝐵)tan(𝜃𝑇) 748 

 749 

V.Travelling Region as PT Symmetry Breaking 750 

Linear stability analysis of the system reveals that there is a curve that separates PT-exact and PT-751 

broken regions. Points of this curve are called exceptional points. In this section, we will 752 

investigate this PT-exact and PT-broken region with parity and time inversion of eigenvectors of 753 

dynamical matrix 𝑀. The following calculations were used to analyze the PT symmetry breaking 754 

process of Kelvin-Helmholtz instability by H.Qin et.al. 52 . We applied the similar procedure to 755 

find the common form of PT operator starting from the linearized dynamical matrix form,   756 

𝜕𝜕𝑡 [𝜌𝑊𝜌𝐵 ] = 𝑀 [𝜌𝑊𝜌𝐵 ] 757 

𝑀 = [𝐷𝑊𝑊 𝐷𝐵𝑊𝐷𝑊𝐵 𝐷𝐵𝐵 ] 758 

This dynamical matrix is written for the basis given below. 759 
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𝑣1 = [𝑒𝑖𝑘𝑥0 ] , 𝑣2 = [ 0𝑒𝑖𝑘𝑥] 760 

An important point is that these basis vectors are invariant under PT transformation. Where 𝑥 →761 −𝑥 and 𝑖 → −𝑖, then 𝑣1 → 𝑣1 and 𝑣2 → 𝑣2. Therefore, general PT transformation is multiplying 762 

the vector or matrix from left by P (parity matrix) and complex conjugation (time reversal). For 763 

this basis, P is the identity matrix. 764 

𝑃 = [1 00 1] 765 

Now let’s look at the eigenvalues and eigenvectors of M, which are 𝜆+,− and 𝑣+,−.  766 𝜆± = 12 (𝐷𝑊𝑊 + 𝐷𝐵𝐵) ± 12√(𝐷𝑊𝑊 − 𝐷𝐵𝐵)2 + 4𝐷𝑊𝐵𝐷𝐵𝑊 767 

The region with (𝐷𝑊𝑊 − 𝐷𝐵𝐵)2 + 4𝐷𝑊𝐵𝐷𝐵𝑊 > 0 is characterized by two distinct real eigenvalues 768 

where 𝜆± ∈ ℝ, and is called the PT-exact regime. In this case 𝑀 ∈ ℝ2𝑥2 implies that 𝑣± ∈ ℝ2. 769 

First note that M is a real matrix, therefore it is PT symmetric. 770 

𝑀 𝑃𝑇→ 𝑀 771 

Having real eigenvectors, also implies that they are PT symmetric in this basis. 772 𝑣± 𝑃𝑇→ 𝑣± 773 

The region (𝐷𝑊𝑊 − 𝐷𝐵𝐵)2 + 4𝐷𝑊𝐵𝐷𝐵𝑊 < 0 is the broken-PT phase characterized by two 774 

complex conjugate eigenvalues where 𝜆± ∈ ℂ and  𝜆+̅̅ ̅ = 𝜆_. Noting that 𝑀 ∈ ℝ2𝑥2, we find 𝑣+̅̅ ̅ =775 𝑣− which implies that in the PT-broken phase eigenvectors are mapped to each other under PT 776 

transformation which shows the spontaneous breaking of PT symmetry.  777 

𝑣± 𝑃𝑇→ 𝑣∓ 778 

If we change the basis, we can obtain a different parity transformation matrix P. Let’s use the 779 

following basis. 780 
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𝑣1 = [𝑖𝑒𝑖𝑘𝑥0 ] , 𝑣2 = [ 0𝑒𝑖𝑘𝑥] 781 

This basis convention is equivalent to the following perturbation to uniform equilibrium worm and 782 

bacteria densities. 783 

𝛿𝑊 = 𝜌𝑊(𝑡)𝑖𝑒𝑖𝑘𝑥 784 𝛿𝐵 =  𝜌𝐵(𝑡)𝑒𝑖𝑘𝑥 785 

If we use these perturbations in our main equations and use DWW, DBW, DWB, DBB as before we 786 

will have the dynamical matrix 𝑀′ in a new basis as given below.  787 

𝑀′ = [𝐷𝑊𝑊 −𝑖𝐷𝐵𝑊𝑖𝐷𝑊𝐵 𝐷𝐵𝐵 ] 788 

We can see that eigenvalues are the same as the previous basis which are given below. 789 

𝜆±′ = 12 (𝐷𝑊𝑊 + 𝐷𝐵𝐵) ± 12√(𝐷𝑊𝑊 − 𝐷𝐵𝐵)2 + 4𝐷𝑊𝐵𝐷𝐵𝑊 790 

This is an expected result because the change of basis doesn’t change eigenvalues but it changes 791 

the eigenvectors and importantly it changes parity transformation P in our case. Note that because 792 

eigenvalues didn’t change, PT-exact and PT-broken regions are also the same. Let’s first look at 793 

the eigenvectors of the 𝑀′. 794 

𝑣±′ = [𝑖𝐷𝐵𝐵 − 𝑖𝜆±𝐷𝑊𝐵 ] 795 

Now let’s look at our basis vectors and find the corresponding parity transformation matrix P.  796 𝑣1 = [𝑖𝑒𝑖𝑘𝑥0 ] 797 

𝑣2 = [ 0𝑒𝑖𝑘𝑥] 798 

If we apply the PT transformation, we have the following transformation of basis vectors. 799 𝑣1 𝑃𝑇→ − 𝑣1 800 
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𝑣2 𝑃𝑇→ 𝑣2 801 

Then we finally have found the new parity transformation in this basis let it be P’. 802 𝑃′ = [−1 00 1] 803 

In PT-exact region, 𝜆± ∈ ℝ, which implies the following PT transformation. 804 𝑣±′ 𝑃𝑇→ 𝑣±′ 805 

This shows us that in the PT-exact region, PT transformation eigenvectors to itself. Now 806 

investigate the PT-broken region where 𝜆± ∈ ℂ where  𝜆±̅̅ ̅ = 𝜆∓. Now if we look at the 807 

transformation 808 

𝑃′𝑣±′̅̅̅̅ = [𝑖𝐷𝐵𝐵 − 𝑖𝜆∓𝐷𝑊𝐵 ] 809 

Finally, we showed that in the PT-broken region with a given basis, PT transformation maps 810 

eigenvectors to each other. 811 𝑣±′ 𝑃𝑇→ 𝑣∓′  812 

These parity transformation matrices are still not the same as the usual transformation P we are 813 

used to from quantum mechanics. In order to obtain the same parity transformation matrix, apply 814 

the following transformation 𝑄 to the altered dynamical matrix 𝑀′. 815 

𝑄 = 1√2 [−1 11 1] 816 

Again, changing the basis with transformation matrix 𝑄 doesn’t change the eigenvalues. But new 817 

eigenvectors are 𝑣± = 𝑄𝑣±′ . The new dynamical matrix becomes 𝑄𝑀′𝑄−1 and new parity operator 818 

P is 𝑄𝑃′𝑄−1.  819 

𝑃 = [0 11 0] 820 

𝑣± = 1√2 [𝐷𝑊𝐵 − 𝑖(𝐷𝐵𝐵 − 𝜆±)𝐷𝑊𝐵 + 𝑖(𝐷𝐵𝐵 − 𝜆±)]  821 
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Now in the PT-exact region, we have that 𝜆± ∈ ℝ, which implies that with given P and complex 822 

conjugation together each eigenvector is mapped to itself. 823 

𝑃𝑣±̅̅̅̅ = 1√2 [0 11 0] [𝐷𝑊𝐵 + 𝑖(𝐷𝐵𝐵 − 𝜆±)𝐷𝑊𝐵 − 𝑖(𝐷𝐵𝐵 − 𝜆±)] = 1√2 [𝐷𝑊𝐵 − 𝑖(𝐷𝐵𝐵 − 𝜆±)𝐷𝑊𝐵 + 𝑖(𝐷𝐵𝐵 − 𝜆±)]  824 

𝑣± 𝑃𝑇→ 𝑣± 825 

If we look at the PT-broken region where 𝜆± ∈ ℂ and  𝜆±̅̅ ̅ = 𝜆∓. 826 𝑃𝑣±̅̅̅̅ = 1√2 [0 11 0] [𝐷𝑊𝐵 + 𝑖(𝐷𝐵𝐵 − 𝜆∓)𝐷𝑊𝐵 − 𝑖(𝐷𝐵𝐵 − 𝜆∓)] = 1√2 [𝐷𝑊𝐵 − 𝑖(𝐷𝐵𝐵 − 𝜆∓)𝐷𝑊𝐵 + 𝑖(𝐷𝐵𝐵 − 𝜆∓)] 827 

𝑣± 𝑃𝑇→ 𝑣∓ 828 

In this regime, PT transformation maps eigenvectors to each other which explicitly shows the PT 829 

breaking in the traveling regime.  830 
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