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Abstract
The utility of spatial omics in leveraging cellular interactions in normal and diseased states for precision
medicine is hampered by a lack of strategies for matching disease states with spatial heterogeneity-
guided cellular annotations. Here we use a spatial context-dependent approach that matches spatial
pattern detection to cell annotation. Using this approach in existing datasets from ulcerative colitis
patient colonic biopsies, we identi�ed architectural complexities and associated di�cult-to-detect rare cell
types in ulcerative colitis germinal-center B cell follicles. Our approach deepens our understanding of
health and disease pathogenesis, illustrates a strategy for automating nested architecture detection for
highly multiplexed spatial biology data, and informs precision diagnosis and therapeutic strategies.

Introduction
Ulcerative colitis (UC) is a gastrointestinal immune-mediated disease that occurs due to a combination of
environmental stressors in a genetically predisposed individual. Endoscopically and histologically, UC is
characterized by visible erythema, friability, and ulcers with in�ammatory in�ltrate. The clinical pattern of
the disease itself presents with highly variable phenotypes, disease progression, and responsiveness to
different therapies. Therapies targeting in�ammation are modestly effective, but rates of primary non-
response (13–40%) and loss of response (46% of the remainder) are relatively high[1–2]. Response rates
could potentially be improved by more precise UC molecular subtype strati�cation[3–4].

Recent insights from spatial omics demonstrate that emergent properties from changes in tissue
structural modules called architectures[5–6] are associated with disease subtypes, therapeutic response,
and disease pathogenesis. This suggests that cell-type and tissue architectures serve as modular,
functional building blocks. However, little is known about how changes in tissue structures are linked to
disease initiation, progression, and therapeutic response. Improving our understanding of the role that
architectural changes play in disease progression and recovery can enhance precision diagnostics and
therapy by identifying potential functional relationships between patient therapy outcomes and their
underlying tissue architectures. To accurately identify disease-associated cell-types and their relevant
architectures, one must appropriately select the level of granularity for their cell annotations[7].

Spatial omics technologies historically applied to UC cell annotation were developed using analysis
pipelines modi�ed from dissociated single-cell analyses that lack explicit spatial information[8]. This
critical step was determined by dimensional reduction and clustering, automatic cell-type identi�cation
based on a labeled reference from publicly available databases or datasets, or supervised learning[9].
Spatial considerations were only incorporated while validating cell identity by directly displaying those
annotations on the multiplexed �uorescent image or when interrogating the spatial distributions of
functional markers. Recent advances build on these historical approaches by incorporating spatial
information such as neighboring cell types[10]. Their results, which concluded that classi�cation
accuracy is increased by taking neighboring cell types into account, suggest that biological architectures
and spatial compartmentalization may also be promising candidates for re�ning cellular annotation.
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Another critical challenge in cell-type annotation arises from marker intensities that are not readily
thresholded when presented in a dissociated-cell format[11]. Approaches that incorporate spatial
considerations at the cellular level can address this challenge. By using patterns of spatial
heterogeneities as a guide, marker intensities are evaluated in the context of speci�c, local architectures
rather than the tissue as a whole. However, these new methods rely on deep learning technologies
coupled with novel cell-type detection capabilities and may rely on manually annotated datasets[7].
Depending on the speci�c experimental or clinical question and because of its reliance on trained
datasets, this approach may not adequately address the multiple levels of cell labeling details, also
known as annotation granularity[7], necessary for a deeper understanding of a dataset across multiple
spatial scales.

New technologies to identify and analyze architectures in tissues are crucial for a deeper understanding
of the increasingly abundant publicly available spatial omics datasets. Many similar approaches have
been pioneered in the geospatial sciences, including ecology and landscape ecology, as reviewed in
Newman et al.[12]. Just as recent advances in spatial imaging technologies require the development of
analytical tools and strategies for identifying, characterizing, and understanding tissue architectures and
cellular interplay[5, 8, 10, 13], the development and proliferation of aerial photography in the 1930s
inspired the development of tools for identifying and characterizing landscapes at multiple scales. These
exploratory landscape analysis techniques offer insight into complex systems containing many spatially-
resolved interacting components that interact across multiple scales to produce emergent properties. One
critical parameter used in landscape analysis to represent the complexity of a system is physical entropy,
which represents the spatially-resolved disorder in a system[12].

Since tissue architectures by de�nition represent compartmentalized function and chemistry, tissue
architectures are therefore regions of decreased local entropy, or disorder. We anticipate that the
quanti�cation and ordering of multi-scale phenomena as addressed by hierarchical patch dynamics[14–
15] and their emergent properties[16] will be widely used in spatial biology, especially once extended to
multivariate parameter screens. Here we perform a proof-of-principle implementation of spatial metrics
for the purpose of demonstrating the method’s applicability. We use spatial analysis by distance indices
(SADIE) for pattern-dependent feature extraction based on observed randomness, regularity, or
aggregation[17]. We generate both global and local metrics of randomness, regularity, and aggregation,
allowing for architecture detection and visualization by thresholding as well as minimizing the need for
assumptions regarding the spatial scale of cellular interactions. Here SADIE iteratively adjusts two-
dimensional maps containing the x,y coordinates of individuals–in this case thresholded marker-positive
cells, until the adjusted spatial distribution nears regularity. SADIE then assigns both global and local
indices of aggregation summarizing the total distance individuals move[17–19]. We envision this
strategy will be most effective for automated architecture-guided cell-type annotation, and should be
implemented in formal work�ows as a user-tuned add-on module that re�nes existing, rapid annotations
by more generalized automated approaches (Fig. 1A)[10, 13].
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Beyond label-transfer, we implement additional strategies for integrating spatially-resolved single cell
technologies with existing single cell datasets. We integrate existing UC datasets from single-cell RNA
sequencing (scRNA-seq), cytometry by Time of Flight (CyTOF), and Co-detection by Indexing (CODEX)
datasets available in literature. The integration of these three technologies (scRNAseq, CyTOF and
CODEX), each of which has distinctive yet complementary strengths and weaknesses (Fig. 1B), gives
additional certainty to conclusions drawn from any one technology. Of the three technologies, only
CODEX explicitly addresses spatial resolution. As shown by Zhao et al. [20], single tissue sections from a
biopsy are unlikely to be statistically representative of that biopsy at scales ranging from the cellular to
tissue levels. This consideration dominates when interrogating rare cell-types, rare architectures, and
large but spatially complex architectures. Unlike CODEX, both scRNA-seq and CyTOF dissociate tissues
into single cells and perform a random sampling prior to data acquisition. Aside from known differential
cell sensitivity to the dissociation process, both scRNA-seq and CyTOF yield data that are statistically
representative of the original biopsy[21–22].

CyTOF observations are more similar to CODEX in that both examine functional protein-level data while
scRNA-seq provides regulatory transcript-level data. Integrating CyTOF and CODEX datasets can be
challenging because of dimensional mismatch in the choice of observed parameters. Generally, there are
relatively few (< 100) observed dimensions in comparison to scRNA-seq. These parameters are selected
as an a priori panel. When datasets from different investigators are not speci�cally constructed to
complement each other, the probability of marker overlap is low outside of core canonical cell
markers[23–24]. In contrast to CyTOF and CODEX, scRNA-seq datasets often contain an order of
magnitude (> 2000) greater observed dimensions. The probability of marker overlap is therefore
increased. The well-known bias towards high-abundance transcripts in scRNA-seq poses an additional
challenge[25]. We develop and demonstrate a work�ow strategy that makes use of surrogate
observations and superordinate architectures coupled with spatially-resolved per-architecture analysis
rather than per-patient analysis to overcome the aforementioned dimensional mismatch challenges.

Results
Datasets

We used three publicly available single-cell resolution UC datasets–CODEX, CyTOF, and scRNA-seq– to
demonstrate the effectiveness of our approach (Supplemental Table S1). The CODEX dataset was
derived from colonic biopsies from 24 UC patients and 8 healthy HC patients[23]. The scRNA-seq dataset
was derived from 10 HC and 10 UC patients, with samples from both tissue biopsies and patient
blood[26]. The CyTOF dataset includes peripheral blood mononuclear cells (PBMCs) from 20 UC and 12
matched HC patients, as well as mononuclear cells from paired blood and colon tissue biopsy samples
from an additional 12 UC patients [24]. Blood samples were classi�ed as being from HC, UC-�are, or UC-
remission. In�amed biopsy samples were further matched to unin�amed control tissues from the same
patient.
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Work�ow

Our analytical work�ow supplements canonical cell-type markers with B-cell follicle architecture-
dependent features. We de�ne a tissue landscape as “an area that is spatially heterogeneous in at least
one factor of interest”[27]. Thus, our approach identi�es marker-dependent spatial heterogeneities in
cellular level representations within B-cell follicles. Architecture-dependent features are identi�ed through
a modi�ed version of SADIE[17]. Once key cell populations are identi�ed, we perform a secondary
parameter screen for markers representing cell types that are indicative of architectures and their
associated lower-granularity cell annotations. We assign increased weights to markers with high
aggregation values ( Ia ) that are associated with only a small number of marker-positive cells
(Supplemental Table S2), for clustering purposes.

By visualizing these screened parameters using scRNA-seq and CyTOF, we are able to characterize
biological differences between UC and control (Fig. 2A).

CODEX automated feature selection identi�es complex architectures contributing to UC germinal center B
cell follicles.

In order to simplify our analysis pipeline, we only selected cells that lay within follicle-associated regions
of interest (RoIs) as determined by CD21 + cell aggregates visible in �uorescent images. Altogether, this
process resulted in a total of 4 control and 51 UC-associated follicle RoIs (Supplemental Table S3), one of
which is displayed in Fig. 2B.

Of a total of 53 �uorescent marker parameters, 13 were selected for cell identi�cation based on canonical
cell type markers, marker staining quality, and spatial distribution within representations of the follicles as
assessed by SADIE. Spatial-associated parameters were selected based on their Ia values and statistical
signi�cance, weighted by the fraction of cells above the designated marker intensity value (Supplemental
Table S1). By directly incorporating spatial coordinates and sequential sub-clustering steps into the
clustering work�ow followed by annotation re�nement (Fig. 2C), we identify 10 different architecturally-
relevant cell annotations (Fig. 2D), of which two are of particular interest. The �rst of these identities is
CD56 + B cells which also express elevated levels of the established proliferation marker Ki67. This
suggests that the CD56 marker on B-cells is either directly associated with proliferation or early stages of
peripheral B-cell maturation. The second of these identities is a, to our knowledge previously unreported,
rare cell population of CD57 + CD279 + CD4 + T cells (Fig. 2D) (Supplemental Figure S2) that lies
exclusively within the proliferating center of germinal-center B cell follicles. We therefore select CD56 and
CD57, Ki67-like proliferation markers (such as PCNA), and established markers of T-cell activation and
exhaustion like CD279 for downstream validation in the representative technologies scRNA-seq and
CyTOF, to support our CODEX observations. Although the rarity of these cells renders them di�cult to
detect using standard dissociated-cells single cell omics technologies analysis platforms–they comprise
fewer than 1 in 50,000 total cells–the spatial resolution of CODEX renders them easily identi�able.
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We then performed neighborhood and pairwise analysis to determine relevant architectural ‘zones’ within
our follicle. Six such zones were determined (Fig. 2F), though one was discarded due to artifact proximity.
The innermost zone, zone 1, is characterized by a core of proliferating Ki67 + CD56 + B cells. Zone 2 is
similar to zone 1, but is interspersed with CD4 + CD279 + T cells, a small minority of which also express
CD57. Zone 3 expresses higher levels of CD45RA relative to zone 1 and begins to lose CD19 expression
while retaining CD21 expression. Zone 4 exhibits reduced numbers of CD4 + CD279 + T cells, and we
further begin to observe the presence of eosinophils and Foxp3 + T regulatory cells. Finally, zone 5 is
marked by the encroachment of CD8 T cells. Together, these results suggest that germinal center B cell
follicles in UC are highly complex architectural structures with numerous zones of development and
maturation that are regulated by numerous different classes of T cells.

scRNA-seq veri�es changes in proliferating B cells and associated T cell phenotypes

Due to the low number of visibly (Ki67+) germinal center B cell follicles in the CODEX dataset relative to
the number of tissue sections, we con�rmed the increased presence of germinal center B cell follicles and
potential follicular T cell subsets using scRNA-seq. When visualized using UMAP using gold standard
approaches[28–29], we are able to identify clusters corresponding to visually evident topographical
features (Fig. 3A). Broadly, cells readily separate into three primary groups: plasma cells, T cells, and B
cells (Fig. 3B). We then proceeded to map our candidate CODEX markers onto our scRNA-seq dataset
visualization.

Critically, neither of the transcripts associated with candidate markers Ki67 and CD57 were present in the
scRNA-seq dataset. Instead we used cell division-associated PCNA as a surrogate marker for CD56/Ki67,
and PDCD1 (CD279) as a marker for the parent cell population of our CODEX CD4 + CD278/279 + CD57 + 
population (Fig. 3C). When visualized using UMAP topography, none of these markers were well-captured
in their own clusters nor during subsequent subclustering. This indicates that gold-standard scRNA-seq
analysis methods would have failed to identify these populations as being different between UC and
control. This consequence re�ects both limitations on data analysis as well as sequencing depth.
However, because these markers are indicated as being spatially-segregated components, we are able to
selectively visualize them in our scRNA-seq dataspace. We can therefore conclude that these cell types
are increased, in the case of the CD56+/Ki67 + B cell population, and that the permissive environment of
parent cell populations is increased, in the case of the CD4 + CD278/279 + CD57 + T cell population, in UC
patients.

Mass cytometry veri�es mucosal immune dysregulation in UC

When using CODEX, we observed that germinal-center B cell follicles predominantly existed in tissue
sections from in�amed biopsies, although the proliferative center was only visible in a small subset of
sections. Our scRNA-seq analysis con�rmed the elevation of these architectures in UC versus healthy
control biopsies. Similarly, when examining the CyTOF dataset, substantial numbers of CD56 + B-cells
were observed in UC patients indicating the presence of germinal center follicles, even though direct
proliferation-associated markers were not included in the panel. Unexpectedly, these cells were even more
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abundant in adjacent, unin�amed biopsies from UC patients (Fig. 3D). This appears to suggest that
adjacent unin�amed biopsies are fundamentally different from biopsies from healthy controls and may
retain disease-associated B-cell dependent architectural motifs. Exhausted CD4 + T-cells, not present in
appreciable numbers in healthy controls, were similarly observed to be present in both in�amed and
unin�amed UC biopsies. While the depletion of CD56 + cells from blood is observed during UC �are
(Fig. 3E), suggesting that �are may involve additional tra�cking from the blood to local sites of
in�ammation, these cell types do not appear to be represented by a dedicated cluster in our scRNA-seq
analysis of blood samples as they were in our analysis of colonic biopsies (Supplemental Figure S2).
Furthermore, these cells lack proliferation-associated markers.

Discussion
Spatial omics hold great promise for precision medicine due to the possibility of linking multiscale
cellular interactions to aggregate functions that may underlie disease heterogeneity. However,
architecture detection is sensitive to cell annotations, especially with respect to annotation granularity,
and there is a lack of methods that directly incorporate spatial heterogeneities in cell-type annotation.
Here we show in Ulcerative Colitis (UC) that combining computational landscape ecology methodologies
with spatial omics enables the ability to extract rare cell types. This approach is especially useful for cells
that occupy restricted spaces within larger architectures such as germinal-center B-cell follicles that are
likely to be of importance but would be otherwise missed due to their spatial distribution. We developed
an automated pipeline to optimize existing cell annotation strategies for the characterization of tissue
architectures. We demonstrate its success for increasing con�dence in imaging results and bypass
random-sampling weaknesses through the incorporation of existing, publicly available data from other
single-cell omics technologies.

Our method enables spatial feature-dependent annotations that were previously co-classi�ed into
overarching architectural categories[23]. We demonstrate that our method gives additional statistical
certainty to conclusions regarding tissue architectures in UC from spatial omics technologies. We also
demonstrate that by applying our method to CODEX we discover and localize rare cell types in UC patient
biopsies. By leveraging the conditional spatial distribution of these cells within permissive, superordinate
architectural structures that are more easily visualizable using scRNA-seq, we are able to conclude that
these rare cells are not present in healthy control biopsies. The ability to assess both cell type supersets
as well as cell architecture supersets for rare cell types provides a powerful advantage over dissociated-
cell technologies. Because of the lack of explicit spatial information, although some spatial information
may be implicitly encoded even in dissociated cells because of proximity-dependent changes to
transcriptomes[30], dissociated-cell technologies primarily allow assessments only through cell type
supersets.

Using these improved annotations, we obtain new insight into the spatial intricacies of peripheral colonic
B-cell follicles in UC colonic biopsies. We identify two rare cell types in addition to �ve architectural
components in these follicles. While the function of the �rst rare cell type is unknown, the spatial
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restriction of these T-cells to the follicle germinal center suggests a regulatory role associated with B-cell
maturation. The second rare cell type, an immature, proliferating follicle-associated B-cell population,
shares markers with a subpopulation of blood-associated circulating B cells. This suggests that this
fraction of circulating cells may ultimately migrate into the colon to form large, germinal center B-cell
follicles, consistent with recent reports[31–32]. Although B cells play key roles in the pathophysiology of
UC across peripheral, central, and mucosal immunological compartments, B-cells are relatively
understudied in IBD compared to T-cells and myeloid lineage cell populations[32–33].

While B-cells have not been uniquely targeted by the approved IBD therapies, B-cells are signi�cantly
affected by current treatments and are putative targets for future IBD therapies[33]. Additional
characterization of these structural components can potentially be used to develop therapies that
modulate germinal center B-cell follicles in UC. We also observe differences between our healthy patient
controls and our unin�amed tissues from UC patient controls, suggesting that regions designated as
unin�amed may carry either residual disease-associated tissue architectures or architectures that are
primed for disease �are. The formation and persistence of these architectures is potentially linked to the
cycles of �are and remission commonly encountered by UC patients as reviewed in Lissner et al.[34].

Our approach should be useful for architectural interrogation, with the goal of enabling precision
medicine by linking tissue architectures with disease phenotype or therapy response. While there are
limitations, the majority can be mitigated through careful data collection, processing, and analysis
work�ows. One area that should be addressed in future implementations involves the approach used for
marker thresholding. The thresholding approach assumes that marker intensities are readily thresholded;
this assumption may not hold true if markers exhibit a gradient or multimodal intensity distribution. Using
our CODEX dataset’s CD56, for example, although a subset of B cells were clearly CD56 positive, the fact
that CD56 intensities were much higher elsewhere rendered single-threshold determination ineffective for
architectural feature detection (Supplemental Figure S3).This limitation can be addressed through the
use of sliding spatial windows to determine spatial patterns in overall intensity represented at the cellular
level. Once the different spatial patterns are identi�ed, each channel can be split into pseudo-channels, in
which each pattern can be treated as its own marker channel for the purpose of assessing feature
selection by automated methods.

Our results demonstrate the power of directly leveraging marker spatial heterogeneities for automating
cell-annotation algorithms, for the detection of rare cell types, and for integrating different large datasets
even when direct label transfer is not possible. As spatial omics technologies become able to assess
thousands or tens of thousands of markers, manual annotation-re�nement becomes formidably labor-
and time-intensive[13]. With rapid advances in functional imaging, our automated approach should be
able to serve as a key part of the pipeline for identifying and characterizing modular tissue architectures,
as well as predicting how they locally contribute to the spectrum of health and disease.

Materials And Methods
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Data set acquisition
CyTOF and segmented and �uorescence-assigned CODEX datasets were acquired from the original
authors [23, 24]. The scRNAseq dataset was downloaded from GEO [26].

CODEX Follicle Extraction
Follicle ROIs were identi�ed in FIJI based on CD19 + staining aggregation in the original images. Cell
centers within each ROI were extracted in R, using the original .csv �uorescent intensity text �le as well as
the follicle-determined spline exported from FIJI to rapidly determine which cells were within the ROI and
which were outside the ROI.

CODEX Data Pre-processing
Manual inspection of �uorescent image channels revealed that imaging “artifacts” were derived from two
primary sources: eosinophils, which exhibited broad cytoplasmic binding to the majority of antibodies but
membrane-staining for CD15 and CD66 and smaller, punctate sources that persisted across the majority
of channels. True (non-eosinophil) artifacts were identi�ed based on broad, high-level expression of many
markers except CD15 and CD66; cell center positions were retained but all marker intensities were set to
0. Due to high expression of many markers including membrane-stain signatures for CD15 and CD66,
eosinophils were identi�ed then temporarily removed from analysis. Residual artifact impacts, likely
derived from segmentation, were identi�ed by selecting a representative channel with minimal signal
other than artifact, determining average signal within a non-artifact-impacted stripe, �agging all cells with
signal higher than three times average background, then setting all marker intensities in �agged cells to 0.

SADIE Analysis
Per �uorescent channel and using a threshold of 0.33, all cells with �uorescent signal exceeding
0.33*max were set to a value of 1 (marker-positive); all others were set to a value of 0 (marker-negative).
SADIE analysis was then performed once for each �uorescent channel, coupled with the cell center-
associated x and y coordinates, using the epiphy package implementation of SADIE and the following
parameters: index = “Perry”, nperm = 100, method = “shortsimplex”, verbose = TRUE.

CODEX Feature Selection
After SADIE analysis, comparing the spatial distribution of marker-positive cells to 100 random
distributions using the same number of marker + cells (Perry), a core set of canonical cell markers was
supplemented by markers exceeding an Ia threshold of 2.0 or a Pa value of 0.05 (Supplemental Table
S2).
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CODEX Cell Clustering
Initial cell clustering was performed in R, using the built-in k-means function. The initial number of
clusters was determined using the fviz_nbclust implementation of elbow plots. After normalization,
architecture-associated features that were marker-positive in fewer than 25 cells were given additional
weight. Clusters were then displayed on the original multiplexed �uorescent image for validation using
code developed by Goltsev et al. [8], with parameters tuned accordingly.

CODEX Cell Annotation Re�nement
Cell annotation re�nement was performed using in-house software developed by M. Ferenc.

For the purposes of this study we built meaningful vector spaces with which we could observe well-
separated clusters. Brie�y, data were encoded using a one-hot approach. Principal Component Analysis
was then used to generate a latent space. Finally, data clusters were visualized using UMAP for
annotation re�nement.

Initial annotations for clustering were compiled into a single matrix per follicle in which each row is a
single cell and the columns correspond to feature-extracted arcsinh-transformed marker �uorescent
intensities, initial cluster ID, X, and Y coordinate. For initial data preprocessing, in order to address
imbalances in dataset cluster sizes (Supplemental Figure S4) 150 cells were randomly sampled from
each cluster.

Model training was performed using a basic MLP (Multi Layer Perceptron) model with an input of 15
neurons, a latent space of 16 neurons, and an output layer of 10 neurons. We performed 5-fold cross
validation with early stopping to avoid model over�tting. Cross-validation scores are shown in
(Supplemental Table S4).

Using the MLP’s dense layer to visualize its �nal transformation effect, we then generated visualizations
of its functional vector space based on the model’s latent space separating 10 cluster types. Latent
representations were visualized after applying PCA, UMAP, and t-SNE for dimensionality reduction to 3
dimensions. Final annotation re�nement was performed based on the UMAP visualization’s improved
cluster separation.

Generation of Voronoi images
Voronoi diagrams were created using custom code developed in Goltsev et al. [8].

Identi�cation of CODEX Neighborhoods
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For each cell in the follicle, the 10 nearest cells, including the original cell, were determined based on the
annotations from CODEX cell clustering and re�nement. The composition of these microenvironments
was clustered using X-shift clustering with supervised annotation, using publicly available software from
the Nolan lab Github. Neighborhood annotations were then re-displayed in Voronoi images.

CODEX Secondary Feature Selection for cross-platform comparison
Features for cross-platform comparison were selected based on association with architectural sub-
structures. In the event that these features were not present in the CyTOF or scRNA-seq datasets,
functionally similar markers were used instead–for example, PCNA instead of Ki67. Where this was not
possible, we used markers that demonstrated spatial colocalization, either directly or as a superset.

scRNAseq analysis
The R package Seurat [35] was used for analysis of scRNA-seq datasets, which had already been
subjected to standard pre-processing [26]. The selection of initial parameters was guided using elbow-
plots, with an initial clustering resolution of 1.5, then further tuned based on the visualization of
canonical markers on UMAP featureplots .

CyTOF analysis
Processed CyTOF data were obtained from the original authors and analyzed as previously described
[24]. In brief, FlowJo software was utilized to gate cellular events and calculate statistics according to
published conventions, and GraphPad PRISM 9 was utilized for conducting additional statistical tests
and plotting �gures. P-values were computed by unpaired Student’s T-test.
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Figures

Figure 1

Proposed Implementation And Datasets.

We propose to implement our add-on as a supplementary annotation module for existing annotation
methods, including rapid, high-throughput ML methods (1A). Characteristics the of different single-cell
technologies datasets used here (1B).



Page 16/19

Figure 2

SADIE Analysis Identi�es Rare Cell Types and Follicular Architectures.

SADIE-guided work�ow for cell annotation re�nement, in which channels are initially screened in a quality
control step. Aggregation values (Ia) are then obtained for each channel in the architecture of interest.
High Ia-value channels are selected and supplemented with known canonical markers (parameter
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selection) for annotation re�nement (2A). An example 7-channel �uorescent image of a proliferating UC
B-cell follicle (2B). Scale bar = 300 µm. Note the honeycomb-like pro�le of membrane markers that results
in segmentation di�culties and “bleed” into adjacent cells. Nonetheless, by directly incorporating spatial
coordinates for further annotation re�nement, we are able to re-annotate cells that appear to have been
mis-clustered (2C, red arrow). Data space is visualized using a UMAP reduction (2C). The result of SADIE-
guided parameter selection and subsequent annotation re�nement is displayed on the associated
Voronoi image, demonstrating the successful annotation even of rare cell types (2D). Associated cellular
neighborhoods are displayed in their Voronoi representation (2E). Pairwise interactions, in which the size
of each circle represents the fraction of all cells and the width of the line represents the thresholded ratio
of interactions (2F).
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Figure 3

Evaluation of CODEX Results using scRNA-seq and CyTOF

Initial clustering results for scRNA-seq of colonic biopsies (3A). UMAP representation and visualization of
canonical markers identi�es primary topographical features of interest: MS4A1 is a B-cell marker, CD3E is
a T-cell marker, CD38 is a plasma cell marker (3B). CD4 and PDCD1 (CD279) are displayed in the T-cell
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cluster (3C, red inset). Orange arrows indicate the PDCD1+ CD4+ T-cell region in UC samples (3C, red
inset, right), as well as the corresponding depleted region in healthy controls (3C, red inset, left). CR2
(CD21) and PCNA (Ki67 surrogate) are displayed in the proliferating B-cell cluster (3C, black inset). Blue
arrows indicate the PDNA+ area of the MS4A1+ B-cell island in UC samples (3C, black inset, right) as well
as the corresponding depleted region in healthy controls (3C, black inset, left). CyTOF reveals CD56+ B-
cells and exhausted CD4 T-cells in UC patient colonic biopsies, though adjacent unin�amed controls have
elevated proliferating B-cells (3D). CD56+ B-cells as a fraction of all plasmablasts are reduced in blood
during disease �are, relative to remission and healthy control (3E), though similar differences are not
observed as a fraction of all CD19+ cells.
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