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Abstract
Mendelian randomization (MR) plays an increasingly important role in drug discovery, yet its full potential
and optimized framework for accurately predicting drug targets have not been �rmly established. This
study aimed to evaluate the e�cacy of multiple MR models in predicting effective drug targets and to
propose the optimal selection of models and instrumental variables for MR analyses. We meticulously
constructed datasets using approved drug indications and a range of IVs, encompassing cis-expression
quantitative trait loci (eQTLs) and protein quantitative trait loci (pQTLs). Our analytical approach
incorporated diverse models, including Wald’s ratio, inverse-variance weighted (IVW), MR‒Egger, weighted
median, and MRPRESSO, to evaluate MR's validity in drug target identi�cation. The �ndings highlight MR
e�cacy, demonstrating approximately 70% accuracy in predicting effective drug targets. For the selection
of instrumental variables, tissue-speci�c eQTLs in disease-related tissues emerged as superior IVs. We
identi�ed a r2 threshold below 0.3 as optimal for excluding redundant SNPs. To optimize the MR model,
we recommend IVW as the primary computational model, complemented by the weighted median and
MRPRESSO for robust analyses. This �nding is consistent with current �ndings in the literature. Notably,
a P value of < 0.05, without false discovery rate correction, is the most effective for identifying signi�cant
drug targets. With the optimal strategies we summarized, we identi�ed new potential therapeutic targets
for IBD and its subtypes, including ERAP1, HLA-DQA1, IRF5 and other genes. This study provides a
re�ned, optimized strategy for MR application in drug discovery. Our insights into the selection of
instrumental variables, model preferences, and parameter thresholds signi�cantly enhance MR's
predictive capacity, offering a comprehensive guide for future drug development research.

Introduction
The journey of drug development is a challenging and resource-intensive venture. It involves substantial
investment in terms of time, labor, and �nancial resources, yet the e�ciency of research and development
in this domain has been declining  . [1, 2],. Recently, Mendelian randomization (MR) has surfaced as a
promising tool for enhancing the e�ciency of drug development. This method leverages instrumental
variables (IVs) to predict causal relationships between potential drug targets and diseases, offering a
robust approach for both discovering novel drugs and repurposing existing drugs   [3]. For instance, studies
such as those by Solal Chauquet et al. and Jie Zheng et al. have demonstrated the utility of MR in
identifying new associations between known drug targets and diseases, including psychiatric disorders
and a wide range of phenotypes [4, 5]. Additionally, MR-based �ndings have been instrumental in
suggesting potential drug targets for diseases such as Parkinson's disease   [6].

Despite these advancements, the e�cacy of MR in drug target discovery is not entirely clear. Many of the
targets identi�ed through MR have not yet been experimentally validated, leaving their practical
effectiveness in question  . Key factors in�uencing the detection of targets in MR studies include the
choice of instrumental variables, such as expression quantitative trait loci (eQTLs) and protein
quantitative trait loci (pQTLs), and the debate over the best type of QTL for reliable drug ability
assessments. The lack of consensus on the optimal correlation coe�cient for removing linkage
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disequilibrium among SNPs and the appropriate threshold for de�ning signi�cant results further add to
the complexity. Moreover, variations in modeling approaches for estimating causal effects indicate the
need for a more standardized and precise methodology in MR analyses   [7] [8].

To address these challenges, our study undertook a comprehensive analysis by organizing datasets of all
approved drugs that have passed phase III clinical trials, along with their target proteins. We constructed
both true-positive and true-negative datasets of drug-target-indication pairs to conduct extensive MR
studies. Our objective was to delineate the effectiveness of MR in drug discovery and provide strategic
parameter guidance for future drug development.

Methods

Target protein identi�cation
For the pivotal step of identifying target proteins, our approach began with extracting approved drug
indications, particularly drug-indication combinations, from the ChEMBL database (version 29). ChEMBL
is a comprehensive database cataloging bioactive molecules. It integrates extensive data on drug
molecules, bioactivity, and genomics, thereby facilitating the development of new drugs with a genomic
foundation.

Next, we systematically identi�ed and selected drugs associated with these approved indications. We
then utilized the ChEMBL API (see Supplementary Materials) to obtain the corresponding UniProt IDs of
the target proteins. In instances where a drug was linked to multiple protein targets, we included each of
these targets in our analysis to ensure a comprehensive evaluation. This methodological rigor allowed us
to construct an inclusive dataset that was critical for the subsequent steps of our MR analysis.

GWAS summary data acquisition
Our approach to obtaining genome-wide association studies (GWAS) summary data for indications
involved a consensus-driven process. This process was described by a review panel comprising three
independent research participants. Each participant was subjected to a thorough search of the Integrative
Epidemiology Unit (IEU) GWAS database (https://gwas.mrcieu.ac.uk/) to identify pertinent GWAS data
aligned with the indications relevant to our study. To ensure robustness in our selection, we adopted a
data validation strategy: if two or more participants agreed on the same GWAS dataset, it was directly
incorporated into our analysis. In scenarios where there was a divergence of opinions, the panel engaged
in detailed discussions to arrive at a consensus and make a �nal determination.

To broaden the scope and applicability of our study, we implemented strategic replacements for some
GWAS datasets that were unavailable or incomplete. Our replacement methodologies included the
following:

1. The disease subtypes were substituted for the overarching disease data when speci�c subtype data
were absent.



Page 5/22

2. Data from a representative subtype were used in place of the entire disease dataset.
3. Interchanging data between closely related subtypes of the same disease.
4. GWAS data are exchanged between diseases known to have causal relationships.

This meticulous process ensured comprehensive coverage and relevance of GWAS data, thereby
augmenting the validity of our Mendelian randomization analysis.

Types of instrumental variables
The IVs employed in our MR analysis can be primarily divided into three distinct types:

Plasma pQTLs

We sourced plasma protein pQTL data from the research conducted by Benjamin B. Sun et al. [9]. This
study comprehensively measured 2994 plasma proteins across 3301 participants of European ancestry
using the advanced SomaLogic SomaScan platform. The data from this research are publicly available
and provide a robust foundation for our plasma protein-focused analyses  .

Tissue-speci�c eQTLs

Utilizing the resources of the Gene-Tissue Expression project (GTEx V.8), we obtained eQTL data for genes
across 48 different tissues, including blood. This extensive dataset allowed us to incorporate a broad
range of tissue-speci�c eQTLs as instrumental variables in our MR studies, enhancing the diversity and
applicability of our analysis.

Brain pQTLs

We accessed brain tissue pQTL data from a study by Chloe Robins et al., which focused on genetic and
proteomic analyses of 330 postmortem samples from the lateral prefrontal cortex of elderly individuals
[10]. This study reported pQTL data for 7376 brain proteins, providing us with a comprehensive dataset
for brain-speci�c MR analysis  .

More information about the GWAS summary data of the target proteins can be found in Supplementary
Table 1–3.

Composition of IV-Indication Pairs
To evaluate the impact of different frameworks on drug MR analysis, we generated sets of IV-indication
pairs classi�ed as either “true positive” or “true negative”.

True-positive target-indication pairs

These pairs were derived from approved drug indications, with drug targets as the exposure and the
indications as the outcome. Based on the instrumental variables used, we constructed �ve distinct sets of
true positive pairs. These include plasma protein pQTLs for all related indications, plasma pQTLs for
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blood-related indications, blood eQTLs for blood-related indications, tissue-speci�c eQTLs for all related
indications, and brain pQTLs for brain indications. The underlying assumption for these pairs is the
existence of a causal relationship between the drug targets and indications, as evidenced by clinical trial
e�cacy, thus suggesting potential positive MR results. This method allowed us to assess the true positive
rate and false negative rate under various conditions.

True-negative target-indication pairs

These pairs were used to evaluate the ability to correctly identify negatives. We merged eQTLs from
different tissues with plasma pQTLs to create a comprehensive SNP pool. For each indication in the true-
positive target-indication pairs, the same number of SNPs were randomly sampled from the SNP pool.
Since these pairs are constructed with hypothetical target proteins without any known causal relationship
to the indications, the anticipated MR results for these pairs are negative.

Determining the optimal LD r2 threshold
In MR analysis, removing redundant SNPs by LD serves as a balance between the bias induced by
correlated SNPs and the instrumental power. To �nd an optimal LD r2 threshold, we applied various r2

values (0.001, 0.01, 0.2, 0.3, 0.4, 0.5, and 0.6) within a 500 kb clumping window to remove LD in the
tissue-speci�c eQTLs of true-positive IV-indication pairs. Next, we performed MR analysis across different
models to observe the effect of varying LD r2 values on the true positive rate. The optimal LD r2 value was
ascertained based on these analyses. This value represents the threshold at which the true positive rate is
maximized while avoiding the introduction of bias due to excessive LD among the IVs.

Determining the optimal P value threshold
Next, we clumped the instrument variables in the positive datasets of tissue-speci�c eQTLs using the
optimal LD r2 obtained in the previous steps and performed MR analysis in both the positive and negative
datasets. FDR correction was then applied to the P values in the obtained results. Subsequently, we
screened each model's original and FDR-corrected P values using four commonly used �ltering thresholds
of 0.1, 0.05, 0.01, and 0.001 to obtain signi�cant results and constructed a confusion matrix of each
model under each P value threshold to determine the optimal P value threshold.

Effect of instrumental variables and model selection on the
effectiveness of drug MR
We utilized the entire dataset, including the true positive and true negative datasets, to calculate causal
relationships between exposure and outcome using �ve different algorithms. Subsequently, we
constructed confusion matrices to evaluate the performance across different datasets and determine
which algorithm model exhibited the highest true positive rate. This analysis aimed to assess the most
effective dataset and identify the algorithm with the highest true positive rate.

Mendelian randomization analysis
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Using the R packages TwoSampleMR (version 0.5.6) and MRPRESSO (version 1.0), we conducted MR
analysis by applying �ve models: the Wald ratio, inverse variance weighted (IVW), MR‒Egger, weighted
median, and MRPRESSO models. When heterogeneity existed, we used the results from the IVW random
effects model as the �nal effect size. Otherwise, we used the �xed effect model. To ensure the validity of
MR analysis, the selected instrumental variables (IVs) should meet the following three critical principles:
(1) the IVs should be strongly associated with the gene expression level or protein expression level (P < 
5×10− 8). (2) There should be no association between the IVs and the outcome variables (i.e., the
indications). (3) There should be no association between the IVs and confounding factors.

In this study,  represents the causal effect of exposure on the outcome,  represents the strength of
the association between genetic variants and exposure, and  is the regression coe�cient of the

outcome on each genetic variant. For cases with multiple instrumental variables, we employed �ve
models for MR calculation: the Wald ratio, IVW, MR‒Egger, weighted median, and MRPRESSO
models[11–13].

Statistical analysis
We de�ned a drug indication (i.e., a combination of a disease and a drug) as a sample and performed
statistics on the results of �ve models: Wald ratio, IVW, MR‒Egger, weighted median, and MRPRESSO.
The total sample size N for each model is the total number of drug indications in the results. Then, we
screened signi�cant results using a selected P value threshold and excluded results that were driven by
pleiotropy. In the true positive datasets, the direction of the effect of the target proteins on the signi�cant
results should also be the same as that reported in the ChEMBL database. For drug indications composed
of multitarget drugs, we considered the sample’s result to be signi�cant if the result of any target was
signi�cant. We then counted the number of signi�cant samples for each model and obtained the positive
sample size n for the model. The true positive rate and false positive rate of drug prediction using the
model can be calculated from the formula n/N in the positive and negative datasets, respectively.

In MR analysis, we used Cochrane's Q test to assess heterogeneity and MR‒Egger regression to assess
pleiotropy. Then, we calculate the F statistic, which measures the effectiveness of the instrumental
variables[14]. It is important to note that the method used to calculate r2 is only an approximation due to
the lack of sample genotype data.

In this study, we used positive and negative datasets under the same conditions and calculated the
following metrics:

The accuracy represents the proportion of correct predictions out of the total samples and is expressed as
follows:

β̂ j γ̂ j

γ̂ j

Accuracy =
TP + TN

TP + TN + FP + FN
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Precision refers to the probability of a positive sample actually being positive, given that it has been
predicted to be positive. It is expressed as:

Recall is a metric that considers the original sample. Its meaning is the probability of an actual positive
sample being predicted as positive. The expression is as follows:

The F1-score is the harmonic mean of precision and recall, which considers both precision and recall to
reach the highest level simultaneously and achieve a balance.

Results

Study design
We initiated our study by identifying drugs beyond phase III of clinical trials and associating drugs with
their target proteins. In the pursuit of optimal thresholds for removing linkage disequilibrium and
signi�cance levels, we employed tissue-speci�c expression quantitative trait loci of target proteins as
instrumental variables. Subsequently, we systematically evaluated the e�cacy of Mendelian
randomization predictions using pQTLs and eQTLs across �ve commonly used models, probing the
impact of IV selection on outcomes (Fig. 1). Finally, to further validate the superiority of our MR strategy,
we applied the optimal strategy to identify potential drug targets for in�ammatory bowel disease.

Drug indications
We collected a dataset encompassing 4,309 pairs of approved drug indications representing distinct drug-
indication combinations sourced from the ChEMBL database (V.29). For each approved indication, we
meticulously extracted the corresponding drugs and obtained the UniProt IDs of their target proteins using
the ChEMBL API. (Supplementary Table 1–1). Additionally, in accordance with the outlined
methodologies, we assessed genome-wide association study (GWAS) summary statistics for 265
diseases (Supplementary Table 1–2).

Optimization of the LD r2 threshold for IV selection
In MR analysis, removing redundant SNPs by LD serves as a balance between the bias induced by
correlated SNPs and the instrumental power. To �nd an optimal LD cutoff, we applied various r2 values
(0.001, 0.01, 0.2, 0.3, 0.4, 0.5, and 0.6) within a 500 kb clumping window to remove LD in the tissue-

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 − Score =
2 ∗ Precision*Recall

Precision + Recall
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speci�c eQTLs of true-positive target-indication pairs, followed by performing MR analysis using the IVs
obtained under these varying conditions.

Our analysis, as illustrated in Fig. 2, revealed key insights into the impact of different LD r2 thresholds. We
noted that a r2 value greater than 0.01 induced a gradual increase in the true positive rate across all
models (IVW, MR‒Egger, weighted median, MRPRESSO), except for the Wald ratio. The true positive rate
initially increased at r2 = 0.2, with the growth rate decelerating beyond r2 = 0.4 and eventually stabilizing. A
signi�cant observation was the plateauing of the MR‒Egger model at a r2 of 0.3.

This led to the conclusion that an LD r2 threshold of 0.3 is optimal for minimizing the impact of LD, as
evidenced by consistently high true positive rates surpassing 0.7 in the IVW, weighted median, and
MRPRESSO models. Beyond this threshold, while the true positive rate exhibited further increases, the F-
statistic of the IVs showed no signi�cant change (violin plot in Fig. 2). This indicates that for a r2 value
higher than 0.3, despite increasing the number of IVs, there is no signi�cant improvement in the F
statistics and that the additional instrumental variables (IVs) may lack effectiveness. This lack of
effectiveness could be attributed to the presence of greater linkage disequilibrium and undetectable SNP-
level pleiotropy, resulting in a biased estimation of the effect size of MR. In summary, our comprehensive
evaluation revealed that a r2 threshold of 0.3 optimally balances the need to minimize LD while
maintaining the integrity and accuracy of MR predictions. Complete results on true positive rates and SNP
counts across various LD r2 thresholds are provided in Supplementary Table 2.

Establishing the optimal P value threshold for positive MR
results
A pivotal aspect of MR studies is to determine the most effective P value threshold for selecting
signi�cant MR results. We examined the true positive rate and precision of using different P value cutoffs
in the selection of positive MR results. The signi�cant tissue-speci�c eQTLs in the true-positive target-
indication pairs were clumped using the previously established optimal LD r2 value (0.3). MR analysis
was then conducted for both the true-positive and true-negative datasets.

To re�ne our results, we applied false discovery rate (FDR) correction to the MR P values obtained from
these analyses. Subsequently, we embarked on a detailed evaluation of various commonly used P value
�ltering thresholds. This assessment encompassed both raw P values and FDR-corrected P values, with a
focus on the true positive rate and precision as key metrics.

Our nuanced analysis, depicted in Fig. 3, revealed distinct patterns within the correct and incorrect P value
groups. We noted a decrease in the true positive rate for both the adjusted and unadjusted groups as the
P value threshold decreased. The difference in TPRs between the P values of 0.1 and 0.05 was not
statistically signi�cant. However, setting the P value at 0.05 yielded greater precision than setting the P
value at 0.1. Based on these �ndings, we advocate for a raw P value threshold of P < 0.05.
(Supplementary Table 3)



Page 10/22

Impact of Instrumental Variables on MR Analysis E�cacy
We further examined the effect of different types of IVs and the choice of computational models on the
e�cacy of drug MR analysis.

We conducted MR analyses across all the true positive datasets and true negative datasets using �ve
commonly used models, focusing on the TPR, TNR, accuracy and precision of each model. Our results
clearly showed the superior effectiveness of tissue-speci�c pQTLs and eQTLs as IVs. Datasets utilizing
plasma pQTLs in blood-related diseases and tissue-speci�c eQTLs in corresponding tissue-related
diseases demonstrated higher performance, with accuracies consistently above 0.7 and a TPR of nearly
0.9. Speci�cally, blood tissue eQTLs related to blood-related diseases achieved remarkably high scores in
the IVW model, with the accuracy and TPR reaching 0.87 and 0.98, respectively.

Conversely, the use of brain tissue pQTLs in brain-related diseases yielded less favorable results, with
lower accuracy and TPR across all models.

Moreover, our analysis highlighted the inverse-variance weighted (IVW) model as the most effective
model for MR analysis in drug target prediction. The IVW model consistently outperformed the other
models, especially in datasets with tissue-speci�c eQTLs, showing the highest TPR. Acknowledging the
unique strengths of each model, we advocate the weighted median model as a valuable complement to
the IVW model. This is evidenced by the highest overlap of true positive results between them, with 1038
and 803 in the positive and negative datasets, respectively. Intriguingly, the MR‒Egger model, while
having a notably low false positive rate of less than 5% in each dataset, exhibited the lowest overlap with
the IVW model except for the wald ratio, with 272 and 149 overlaps in the positive and negative datasets,
respectively.

These insights into the selection of IVs and computational models signi�cantly contribute to optimizing
the e�cacy of MR in predicting drug targets (Fig. 4, Supplementary Table 4).

Novel Therapeutic Targets for In�ammatory Bowel Diseases
To further validate the superiority of our MR strategy, we conducted a comprehensive analysis aiming to
uncover potential drug targets for IBD and its subtypes (each gene and its corresponding drug
information are listed in detail in Supplementary Table 5–12).

After a comprehensive search of the ChEMBL database, we identi�ed 157 therapeutic drugs for IBD and
CD but none for UC. Using the optimized MR strategy mentioned above, we veri�ed that 58 of the 157
drugs were effective for treating IBD and CD, with 7 speci�c for treating IBD and 51 for treating CD.
Additionally, for the targets of these drugs, our analysis revealed 11 target genes for IBD and 33 target
genes for CD (Supplementary Table 13, Supplementary Fig. 1).
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Interestingly, we also discovered numerous novel causal genes that serve as drug targets for other
diseases. Among all the novel genes, 24 were unique to 36 genes, indicating that the genes showed
causal relationships with both IBD and its subtypes, and these genes were found in all tissues (Fig. 5A).

Pathway analysis revealed that these genes are predominantly involved in immune response pathways
(Fig. 5B). Notably, genes such as IRF5 and HLA-DQA1 had high odds ratios (ORs) in multiple tissues,
suggesting that these genes play a signi�cant role in IBD pathogenesis. ERAP1 and ERAP2 may have
some therapeutic effect bias. ERAP2 consistently demonstrated a risk effect across all tissues in IBD and
CD patients but showed no causal relationship in some tissues of UC patients. Conversely, ERAP1
exhibited a risk effect in various UC tissues but lacked strong consistency across tissues in IBD and CD
patients (Fig. 5C). Furthermore, mining the ChEMBL database revealed that the protein encoded by TUFM
may serve as a target for tyrosine kinase inhibitors (TKIs), such as dasatinib and lenvatinib, which play a
role in the treatment of some cancers (Fig. 5D).

Discussion
In this study, for the �rst time, a comprehensive evaluation of MR in drug discovery was conducted, and
MR demonstrated an effectiveness of up to 70%. Speci�c recommendations for several key parameters
were made: a r2 value of 0.3 is suggested for LD, a P value threshold of 0.05 without FDR correction is
recommended, the selection of tissue-speci�c eQTLs or pQTLs as IVs is advocated, and the use of IVW as
the primary calculation model, supplemented by the weighted median model, is proposed. Through an in-
depth study of the drug MR, we provide a powerful strategy for evaluating and optimizing MR parameters
and model selection, which can further enhance the e�ciency of MR in drug development and explore
more potential drug targets.

Speci�cally, our results show that with a r2 value of 0.3 and a P value threshold of 0.05 without FDR
correction, the predictive accuracy and recall of MR are optimized. In MR studies, overly strict LD removal
standards can result in too few available instrumental variables, leading to a decrease in statistical power,
while overly loose standards can introduce bias due to horizontal pleiotropy[8]. Our recommended
parameter settings can effectively balance the ratio of false positives and false negatives [15] as well as
horizontal pleiotropy and statistical power, ensuring prediction accuracy while discovering as many
effective drug targets as possible. Although performing FDR correction can effectively reduce the false
positive rate of predictions[16] and has been adopted by many existing drug MR studies[17], it was not as
effective as the researchers thought. As our results showed, its effect on TPR is very strong and can lead
to the omission of many potential drug targets in our study, which contradicts our objective.

Furthermore, we found that using tissue-speci�c eQTLs or pQTLs as IVs, with IVW as the primary
computational model supplemented by the weighted median model, can further enhance the precision of
MR, and they have been widely adopted by the majority of researchers[18, 19]. For instance, we found that
using tissue-speci�c eQTLs or pQTLs as IVs was very effective in improving MR predictive accuracy,
consistent with the �ndings of Liam Gaziano et al. [7]. They identi�ed six potential treatment targets for
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COVID-19 using tissue-speci�c eQTLs from 49 different tissues as IVs, including several reported genes
such as ACE2[20, 21].

To further validate our optimal study strategy, we focused on IBD and its subtypes in drug MR studies.
Despite the increase in medical therapies for IBD, including targeted drugs such as TNF, IL-23, JAK, and
phosphodiesterase inhibitors, their effectiveness remains limited [22, 23]. This underscores the need for
novel targeted drugs for IBD treatment. Our study highlights the association of IBD with MHC class I and
ERAP1 interactions, revealing a common immunopathogenic foundation[24]. We con�rmed the uniform
risk effect of ERAP1 across IBD subtypes, suggesting its potential as a therapeutic target. Additionally,
high ORs for genes such as IRF5 and HLA-DQA1 in multiple tissues indicate their signi�cant role in IBD
pathogenesis. Notably, the HLA-DQA1*05 allele, which is implicated in predisposing patients to ulcerative
colitis and is associated with the development of antibodies against TNF antagonists such as in�iximab,
is linked to the immunogenicity of anti-TNF agents, particularly in the presence of the HLA-DQA1*05 allele
group [25]. Furthermore, combining our analysis of the ChEMBL database, we identi�ed TUFM as a
potential target among 25 novel targets. TUFM may serve as a tyrosine kinase inhibitor target. These
inhibitors exert therapeutic effects on certain types of cancer by suppressing the activity of tyrosine
kinases, thereby in�uencing cellular signaling pathways. Consequently, they are the key components of
numerous cancer-targeting drugs [26]. The use of tyrosine kinase inhibitors is associated with a
signi�cant number of side effects, possibly due to their targeting of not only tyrosine kinases but also
other targets. Current literature primarily reports on their impact on cardiovascular events[27], and our
research provides a cautionary note regarding the potential adverse effects of current cancer-targeting
drugs on gastrointestinal diseases

Limitations
Our study has several limitations. Due to the complex and unclear pathogenesis of many diseases, it is
di�cult to accurately determine the tissues associated with speci�c diseases. Moreover, the random
sampling method we used to construct the negative queue may increase the false-negative rate to some
extent when the number of IVs is very small. Despite these limitations, our research results still have
strong practicality and application potential, providing important guidance for drug development.

Conclusions
In summary, our study systematically evaluated the MR approach for predicting drug targets utilizing
positive and negative datasets based on existing drugs, targets, and indications. We found that the MR
method achieved an effective accuracy of up to 70% in predicting drug targets. Optimal parameters were
identi�ed, including an LD r2 of 0.3 for removing linkage disequilibrium in instrumental variables and a
signi�cance threshold of the original P value < 0.05 for result signi�cance. Tissue-speci�c eQTLs or
pQTLs in disease-related tissues emerged as the most effective instrumental variables. We recommend
the IVW model as the primary choice, complemented by the weighted median model. We also applied this
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strategy to explore potential therapeutic targets for IBD and its subtypes, providing evidence for candidate
genes such as IRF5, ERAP1, and HLA-DQB1.
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Figure 1

Study design.
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Figure 2

Evaluation metrics of LD r2. The horizontal coordinate is the threshold of different r2 values used by LD.
The line chart refers to the left ordinate to show the true positive rate of different algorithms with the
change in LD r2, and the violin chart refers to the right Y-axis to show the change in the statistical e�cacy
of instrumental variables with the change in LD r2.
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Figure 3

Evaluation metrics of the P value threshold for the results. Figure A shows the true positive rates of
different models without FDR correction and after FDR correction under different P value thresholds.
Figure B shows the recall and precision of different models without FDR correction under different P
thresholds.
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Figure 4

Evaluation metrics of instrumental variables and model selection on the effectiveness of drug MR. Figure
A Five different datasets, true positive rate, accuracy rate, accuracy rate and F1-score changes in different
algorithms. Figure B shows the number of overlaps of true positive and true negative results between IVW
and other algorithms in the tissue-speci�c eqtl dataset.
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Figure 5

A. Upset plot. The left side of the �gure shows the number of positive sample pairs in each tissue, the
right side represents sample pairs shared among different tissues, and the top side represents the total
number of sample pairs shared by that tissue. B. Pathway enrichment analysis results of genes in the
pairs with positive results that occurred in all tissues. C. Heatmaps of the ORs of several new target
genes. A red block indicates that inhibiting the gene has an effect on the disease, and a blue block
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indicates that activating the gene has an effect on the disease. D. A network between novel genes and
associated drugs. (SIT: small intestine terminal ileum, EGJ: Esophagus Gastroesophageal Junction)
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