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Rok Žitko
1,2*
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Abstract

Flicker (pink, 1/f) noise is ubiquitous in all electronic devices, including in oscillator circuits used
in true random number generators (TRNGs) based on jitter. Flicker noise produces strong serial
correlations with very slow decay in time. We present a stochastic model for counter-mode TRNGs
that takes the effects of such time correlations into account. Key parameters in the model are the
spectral strengths of the pink and white noise components, as well as the low-frequency cutoff for the
flicker noise spectrum. The random bits are defined as the least significant bit of consecutive integer-
valued count numbers. We present the dependence of autocorrelations and min-entropy of generated
random bits on model parameters. The autocorrelation between the bits is suppressed by increasing the
strength of either pink or white noise, but it remains long-ranged (power-law decay). The power-law
exponent depends linearly on the strength of pink noise, while the prefactor depends exponentially on
both strengths. We determine the min-entropy per bit from a careful analysis of long-time sequences.
It approaches the value of 1 approximately as a stretched exponential function of the flicker noise
strength: highly entropic random bit generators can thus be designed even in the presence of strong
flicker noise. We also propose an effective and efficient online health test for generators of this type.

Keywords: stochastic model, flicker noise, Gaussian processes, autocorrelations, min-entropy, online health
tests

1 Introduction

True random number generators (TRNGs) are
devices that provide random bits with guaranteed
entropy properties based on a well-understood
physical process that is known to be random, such
as the measurement process in a quantum system
or the sampling of a thermally fluctuating sys-
tem [1–4]. The modern approach to designing a
TRNG is based on establishing a stochastic model,
i.e., a mathematical description of the noise source

with random variables, which allows determining
the lower bound of the min-entropy of generated
numbers [5, 6]. This is the required [7, 8] or rec-
ommended [9] practice in standards for random
number generation for cryptographic applications.
Setting up a stochastic model requires good under-
standing of the working principle of the noise
source. Mathematically, a stochastic model takes
the form of a random process or a distribu-
tion function depending on a set of parameters,
such that the set of distributions encompasses the
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actual distribution in the real system, including
the cases when the quality of random numbers
is degraded [5]. The parameters of the stochastic
model for an actual TRNG device are measured
experimentally. Stochastic models are also the
basis for designing effective and efficient online
health tests.

In counting-mode oscillator TRNGs, one oscil-
lator is used to generate the slow clock for a circuit
that counts the periods of a second oscillator,
using the least-significant bit (LSB) of the total
count number in each period of the first oscillator
as the random bit [10–12]. The simplest oscillators
that can be implemented in CMOS technology or
using programmable logic (FPGA) are elementary
ring oscillators (EROs), chains of an odd num-
ber of NOT gates [13, 14]. The randomness in
such rings is due to jitter, i.e., the phase noise
of the oscillation [15]. One often distinguishes
deterministic and random jitter, as well as global
and local jitter. The deterministic jitter is due
to predictable changes in the circuit (e.g. due to
oscillations in other parts of the integrated circuit,
oscillating voltage in the power lines, RF irradi-
ation of the chip, etc.), while the random jitter
is unpredictable and ultimately due to thermal or
quantum fluctuations (e.g. Johnson-Nyquist noise
of agitating charge carriers in electric conductors,
electron quantum tunneling events, etc.). Global
jitter affects a large area of the chip, while the local
jitter is due to local processes within each oscilla-
tor. Ideally, only local random jitter would be used
for random number generation. To filter out the
global and deterministic noises, one typically uses
differential configurations, where two nominally
identical EROs are located in immediate vicinity
on the chip [12], with the slow clock generated
by frequency division of one of the two periodic
signals. It is often assumed that the dominant con-
tribution to jitter is the Johnson-Nyquist noise
produced solely within the oscillators and that this
noise is white (i.e., it has a spectrum that does not
depend on the frequency). In such case the ran-
dom processes are not correlated in time, so that
a stochastic model in terms of independent and
identically distributed Gaussian variables can be
easily constructed. The correlation length between
the count numbers is finite: only pairs of con-
secutive numbers are (anti)correlated because of
the events close to the end time of each count-
ing period, which can fall on either side of the

time boundary. The min-entropy can thus be eas-
ily computed from the conditional probabilities on
blocks of two random bits.

In reality, no oscillator has purely white noise
spectrum down to zero frequency and eventually
the flicker (pink) noise with the 1/f spectrum
takes over [16, 17]. The 1/f noise is ubiquitous in
all metals and semiconductors [18, 19] and by now
relatively well understood, with the exception of
the actual microscopic processes causing it in dif-
ferent materials and devices: there seems to be no
universality as concerns the physical mechanisms
[19]. Given that the 1/f noise is unavoidable, this
begs the question about its effects on the secu-
rity of TRNG designs, especially given that flicker
noise is expected to become increasingly relevant
in future due to shrinking transistor sizes [17].
The 1/f noise is namely strongly correlated: the
autocorrelation function is logarithmic and prac-
tically never decays to zero on the time-scale of
random number generator operation [20]. We show
an example of value distribution, autocorrelations
and a periodogram from an actual FPGA imple-
mentation in Fig. 1, evidencing strong flicker noise
effects. Furthermore, strictly speaking flicker noise
is not even stationary, but depends on the age of
the device [20].

One could hence be led to believe that these
issues represent an insurmountable obstacle for
building high entropy TRNGs. In the following,
we present a stochastic model for counter-mode
TRNGs [12, 17] where the spectrum of count
numbers has a 1/f (pink) behaviour at low fre-
quencies and becomes constant (white) at high
frequencies. The parameters of the model are the
strengths of the pink and white noise components,
as well as the low-frequency cutoff of the 1/f noise
spectrum. The frequency cutoff is determined by
some characteristic time in the generation pro-
cess (e.g. related to the count accumulation time
set by the period of the slow oscillator), but it is
essentially an empirical parameter in the model to
be established by experimental measurements. (In
the following we also find that its value is actually
not very important as regards the min-entropy of
random numbers and the reliability of the online
health test.)

We first introduce the stochastic model in full
detail. We discuss the dependence of the ran-
dom bit autocorrelation on model parameters,
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Fig. 1 Properties of a sequence of 106 count values in a
true random number generator based on two length-19 ele-
mentary ring oscillators implemented in a Cyclone V SE
5CSEBA6U23I7 FPGA. We show the distribution of count
values, the autocorrelation function, and a periodogram
(average of size 1024 blocks). They are characteristic of a
noise spectrum dominated by the flicker noise.

then proceed with the analysis of entropy produc-
tion, taking special care to correctly estimate the
min-entropy in the presence of long-time (power-
law) correlations. We show how the autocorre-
lation between the bits are strongly suppressed
by increasing the noise amplitudes. Importantly,
even for pure flicker noise spectrum (no white
noise component) one finds that increasing the
amplitude is sufficient to produce highly entropic

random numbers. Finally, we also present an effec-
tive and efficient on-line health test for generators
of this type.

2 Stochastic model

The device that we are modelling consists of two
nominally identical oscillators [12]. The frequency
of the first is divided by M to generate the slow
clock. During each period of the slow clock, we
count the number of zero to one (raising signal)
transitions of the second clock; the number of
these fast clock ticks is an integer-valued random
variable Xi. The device is sensitive to fluctuations
of the relative frequency of the oscillators. For
simplicity, we ascribe these fluctuations (jitter) to
the second clock and assume the slow clock to be
absolutely stable; this leads to no loss of general-
ity. We measure the time in units of period of the
slow clock, τs = 1, so that the corresponding sam-
pling frequency is fs = 1, and hence the Nyquist
frequency is fN = 1/2. The random bits are gen-
erated by taking the LSB of Xi; the corresponding
random variable is Ri.

We will not concern ourselves with the statisti-
cal properties of each individual tick of the jittered
fast clock. This is difficult to measure reliably
even using fast oscilloscopes or spectrum anal-
ysers with differential probes, typically leading
to overestimated variance (on-chip time-to-digital
converters are a possible solution for embedded
in-situ characterization) [12, 17, 21]. Instead, the
count numbers of a realization of the random pro-
cess, xi, are easy to reliably characterize, including
their variance, autocorrelation, and periodogram,
simply by capturing the actual values. This “event
count” perspective is also in line with the stan-
dard interpretation of the 1/f noise as arising from
counting the number of relaxation events from a
large set of fluctuators with an approximately flat
distribution of energies E, so that the relaxation
times are τ = τ0 exp(E/kBT ), where 1/τ0 is the
attempt frequency, kB the Boltzmann constant,
and T the temperature [19]; the key quantity in
the theory is the number of events per time inter-
val itself, not so much the times between the
consecutive events.

With the aim of building a stochastic model
suitable for simulations, we introduce an auxil-
iary real-valued random variable Yi, such that its
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spectrum is [16, 17]

SY (f) =
ap
f

+ aw, (1)

where ap and aw characterize the amplitude of
the pink noise and white noise, respectively. The
variance σ2

Y is given as

σ2
Y = 2

∫ fmax

fmin

SY (f)df = Ap(fmin)ap+Aw(fmin)aw,

(2)
where we have introduced the low-frequency cut-
off fmin as an important additional parameter of
the model, while fmax = fN = 1/2 is simply the
Nyquist frequency. The prefactors are Aw(fmin) =
1− 2fmin ≈ 1 and

Ap(fmin) = 2(ln fmax − ln fmin). (3)

Hence

σ2
Y ≈ 2 ln

fmax

fmin

ap + aw. (4)

It is important to notice that the variance depends
not only on the amplitude of the pink noise,
but also on the low-frequency cutoff fmin. The
upper corner frequency for pink noise is ap/aw;
above this frequency the noise becomes white. If
ap/aw ≫ fN = 0.5, the noise spectrum can be
considered as purely pink.

To generate a realization of the time series xi

(and bit sequence ri) from yi in numerical stochas-
tic simulations, we simply take the integer part
(floor) of yi:

xi = ⌊yi⌋. (5)

In stochastic simulations, the variates yi are gener-
ated using the Timmer-König (TK) algorithm for
the given power spectrum SY (f) [22]. This method
simulates a Gaussian process. The correctness of
Gausianness assumption is corroborated by our
test devices: configurations with two EROs in
differential setup on an FPGA exhibited very
well-defined Gaussian distributions with hardly
any outliers. (If the setup was not differential,
we observed non-Gaussian distributions, some-
times with multiple peaks, and sometimes with
numerous outliers.)

The distribution generated by the TK algo-
rithm of yi is a Gaussian centered at some mean
value µ with variance σ2

Y . The value of mean µ is

typically beyond control in the TRNG and pos-
sibly slowly changes with time. We will assume
the worst-case scenario of µ being a half-integer:
in this case the variance of Xi is the lowest for a
given variance of Yi. (In fact, the value of µ is actu-
ally found to be unimportant in the presence of a
flicker component with a sizable amplitude.) In the
TK algorithm, the integration over the frequency
f is effectively replaced by a sum over frequen-
cies from fmin to fmax in steps of fmin. A better
approximation for Ap(fmin) is then

Ap(fmin) = 2(γ − ln fmin). (6)

with γ ≈ 0.577216 being the Euler constant. After
generating yi, we then take the floor to obtain xi,
and take the LSB to finally obtain ri.

For the purposes of this work, we have imple-
mented a computer code for the TK algorithm
to perform large-scale stochastic simulations. It is
available on a public repository [23]. Since inverse
fast Fourier transform (FFT) is used in the TK
algorithm, we will mostly use fmin = 1/2m with
integer m, so that the window size of 2m permits
efficient FFT evaluation.

Empirically, the parameters ap, aw and fmin

are most easily extracted from the periodograms
for count values xi by fitting the estimated power
spectrum to function SY (f) or, for more accuracy,
to SX(f). This can be performed by capturing the
count number data [17].

3 Autocorrelations

We first consider the autocorrelation function of
the random bit variable Ri as a function of ap, aw
and fmin. Pure white noise is uncorrelated, while
pink noise has a slow logarithmic decay [20]. This
might immediately lead to concerns, given that
the 1/f noise is ubiquitous and unavoidable, thus
in any realistic system the autocorrelation func-
tion of Yi (and Xi) is expected to never truly drop
to zero. In practice, however, this is not necessar-
ily a problem. Since the random bits are taken as
the LSB of variates xi, with increasing variance
σ2
Y we generally expect that the autocorrelations

of Ri will decrease because of stronger random-
ization. In fact, we find that the autocorrelation
of the random bits has a power-law behavior, not
logarithmic.
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To explore this in more detail, we first consider
the case of pure pink noise (setting aw ≡ 0) at
fixed lower cutoff. For ap = 0.05, fmin = 2−15,
so that σ2

Y ≈ 1.028, we find that the normalized
autocorrelation function decays as

ρ(τ) = aτ−α (7)

with a = 0.148 and α = 0.987, see Fig. 2. We col-
lected 1000 sequences of 227 bits each; the curve
fitting was performed on the average of auto-
correlation functions and we have verified that
the fit quality is within the error bars of the
estimated ρ(τ). The fitting is performed in the
time-delay range from τ = 2 to τ = 64. We
observed small exponential contributions that are
present in ρ(τ) at short time delays; in order to
improve the asymptotic fit and the extracted value
of the power-law exponent we therefore included
two exponential terms in the Ansatz:

ρ(τ) = aτ−α + ϵ1 exp(−τ/τ1) + ϵ2 exp(−τ/τ2).
(8)

Further examples for a range of ap, aw and
fmin are tabulated in Tab. 1. We find that the
autocorrelation does not depend on fmin for fmin

low enough (we observed that the cases of fmin =
10−10 slightly deviate from the clear power-law
behavior, while for fmin ≤ 10−15 deviations were
imperceptible). This is an interesting observation
in light of the result for the variance, Eq. (3),
which depends on fmin logarithmically. The expo-
nent α depends on ap as a linear function:

α ≈ 19.8ap. (9)

At the same time, the prefactor a decays exponen-
tially:

a ≈ 0.835 exp(−34.7ap). (10)

Thus even though the autocorrelations in principle
persist indefinitely, with increasing ap they decay
more quickly (with a higher power-law exponent)
and furthermore their amplitude is exponentially
damped. In the presence of additional white noise,
we find that the decay remains of power-law type
with the same value of the exponent α, only the
prefactor decreases with an additional exponential
prefactor

a ∝ exp(−aw/c) (11)

with c ≈ 0.1.
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Fig. 2 Normalized autocorrelation function ρ(τ) of the
random-bit variable Ri. The parameters are ap = 0.05,
aw = 0, fmin = 2−15. In the asymptotic tail for large
τ , the power-law fit leads to residual errors of comparable
magnitude to the statistical noise.

4 Min-entropy calculation

Since random bits have long correlations with
power-law decay, the min-entropy Hmin should be
computed using conditional probability with the
condition that extends to a large number of past
bit values. One should then take the probability
of the most likely event, pmax, and finally Hmin =
− log2 pmax. A simple consideration shows that
for a system with a strictly positive autocorrela-
tion function the most likely events at any finite
sequence length consist of sequences of all zeros
or all ones. It is thus sufficient to accumulate the
statistics of such sequences for different sequence
lengths, l. We denote by p0(l) and p1(l) the prob-
abilities of runs of l zeros and l ones, respectively.
We define Hmin(l) = − log2[max{p0(l), p1(l)}].
If Hmin(l)/l converges to some finite value with
increasing l, we take that value as the estimate of
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Table 1 Autocorrelation properties

ap aw fmin σ2

Y
a α

0.05 0 2−10 0.681 0.157 1.092
0.05 0 2−15 1.028 0.146 0.982
0.05 0 2−20 1.375 0.145 0.979

0.01 0 2−15 0.206 0.533 0.370
0.02 0 2−15 0.411 0.416 0.473
0.03 0 2−15 0.617 0.295 0.622
0.04 0 2−15 0.822 0.207 0.797
0.05 0 2−15 1.028 0.146 0.982
0.06 0 2−15 1.234 0.103 1.172
0.07 0 2−15 1.440 0.0723 1.360
0.1 0 2−15 2.06 0.025 1.913

0.04 0 2−20 1.100 0.206 0.786
0.05 0 2−20 1.375 0.145 0.979

0.05 0 2−15 1.028 0.146 0.982
0.05 0.025 2−15 1.053 0.114 0.982
0.05 0.05 2−15 1.078 0.0890 0.982
0.05 0.075 2−15 1.103 0.0696 0.982
0.05 0.1 2−15 1.128 0.0543 0.982
0.05 0.15 2−15 1.178 0.0337 0.987

min-entropy per bit of the random process, H∗:

H∗ = lim
l→∞

Hmin(l)

l
. (12)

It is thus important to study the asymptotic
properties of Hmin(l)/l.

Using simulations, we have established that it
is possible to fit Hmin(l)/l of a process with pure
pink noise with a power-law function:

Hmin(l)

l
= h

(

1 +
b

lβ

)

. (13)

We used 1011 samples in each run, and averaged
over 100 such runs in order to obtain results with
very low statistical noise (on the order of 10−4 for
l = 35). We find that b and β depend slightly on
the interval on which the fit is performed, while h
is more robust. For example, comparing l ∈ [5 : 35]
and l ∈ [15 : 35] for one particular case, we found
h that differ by 3 per-mil.

For ap = 0.05, aw = 0 and fmin = 10−15, the
case considered already in the previous section, we
find h = 0.633, b = 0.685, β = 0.683, see Fig. 3.
From this we conclude that the min-entropy per
bit of this sequence is 0.633. Note that at this
value of the exponent β it takes l ≈ 570 to con-
verge within one percent of the asymptotic value,
and l ≈ 17600 to get within one per-mil. This

demonstrates the importance of extrapolating to
large values of l in order to reliably assess the min-
entropy, especially since b is positive, hence the
asymptotic value is approached from above (i.e.,
with a tendency for overestimation). For this value
of ap, the min-entropy h depends little on fmin.
For fmin = 2−20, fmin = 2−15 and fmin = 2−10 we
find the same result for h within one per-mil.

With increasing noise amplitude, the auto-
correlations decay faster, and Hmin(l)/l values
tend towards 1. In these cases, the extrapola-
tion is no longer necessary (and, in fact, becomes
mathematically ill-posed). Instead, we can reli-
ably extract the asymptotic value H∗ from shorter
sequences (e.g. up to 8) by directly accumulating
the statistics for all bit sequences. This is a reli-
able procedure for H∗ ≳ 0.99. We find that it is
possible to extract min-entropy within one percent
absolute error and one percent relative error.

In the presence of white noise, we find that
h increases, but the functional form of Hmin(l)/l
is no longer well approximated by a pure power-
law function. In fact, when both components are
present and sizable, we were unable to reliably
extract the asymptotic value of h. The reason
is the limited range of l values that are accessi-
ble in stochastic simulations; in the absence of a
known analytical expression for this general case
reliable fits do not appear possible. Solving this
issue remains an open challenge for future work.
The problem is, however, rather academic and
concerns only cases of relatively low min-entropy.
For large enough noise amplitudes, i.e., for Hmin

above 0.98 per bit, it is sufficient for all practical
purposes to extract Hmin by direct computation
on short sequences (order 8).

At fixed ap, decreasing fmin leads to slightly
higher min-entropy. This may at first seem sur-
prising, since decreasing fmin suggests enhanced
long-time correlations, but the effect is actually
quite expected, because we are enabling additional
fluctuating modes, thus overall randomness can
only be increased. The effect is, however, rather
weak.
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bols). The parameters for the stochastic simulation are
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fit, which here gives h = 0.633, b = 0.684,
β = 0.683. The fit is performed in the interval l ∈ [5 : 35].

5 Min-entropy parameter
dependence

Having established the general methodology, we
now systematically study the parameter depen-
dence of H∗ = liml→∞ Hmin(l)/l as a function
of ap, in the absence of any white noise by set-
ting aw = 0. We fix fmin = 10−15 in this section,
since taking a lower value modifies the results less
then by one percent which is our target precision.
The results are shown in Fig. 4, where we show
both a finite-length result for l = 8 as well as the
asymptotic value. We note that taking the l = 8
estimated leads to a severe overestimation of the
true min-entropy for low ap; the ratio of the two
values is found to be diverging as ap → 0.

The attempts to fit H∗ vs. ap curves with var-
ious well-known functional shapes were not fully
satisfactory; the best result for ap ∈ [0.01 : 0.16]
(corresponding to H∗ approximately between 0.1
and 0.99) were obtained for a stretched exponen-
tial function:

H∗(ap) ≈ 1− exp
[

−(ap/λ)
k
]

(14)

with λ = 0.050 and k = 1.35.

6 Statistical testing

It is of some practical interest to investigate
the discerning power of commonly used standard
batteries of statistical tests for random number
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0.8

1.0

Hmin(l)/l

l=∞
l=8

Fig. 4 Min-entropy per bit for pure flicker noise model as
a function of ap. We show the min-entropy estimated from
length l = 8 sequences and the min-entropy determined
from extrapolating to infinitely long sequences.

generators to detect the correlations present in
the case of pure pink noise jitter. We find that all
common tests batteries indeed pass for sufficiently
large values of ap, but some are more sensitive
to the particular type of autocorrelations present
in our bit streams. For practical purposes of test-
ing real-life devices it is also useful to identify the
specific tests that detect the actual deficiency. In
all stochastic simulations performed for purposes
of these tests we have used simulation parameters
fmin = 10−15 and µ = 0.5.

For dieharder, we find that ap needs to be
larger than 0.3 to pass all tests. The first tests
to fail for too low ap are sts runs, sts serial,
dab bytedistrib and dab filltree2. (We have
used dieharder version 3.31.1, with command
line switches -a -g 200 -Y 1 -k 2. )

TestU01 test battery alphabit passes for ap ≳

0.21 for 10MB sizes (the first test to fail at lower
ap is MultinomialBitsOver) and for ap ≳ 0.28 for
1GB sizes (same test). The test battery rabbit

test passes for ap ≳ 0.21 for 10MB sizes (first tests
to fail is AutoCor), and for ap ≳ 0.28 for 1GB sizes
(first test to fail are AutoCor and RunOfBits).
The Crush test passes for ap ≳ 0.36 (typical fail-
ing tests at lower values are BirthdaySpacings,

t = 4, CollisionOver, t = 20, RandomWalk1 H

(L = 10000) and AutoCor, d = 1). It is inter-
esting to observe that the batteries designed for
testing hardware generators, such as alphabit

and rabbit start failing at much lower values of
ap than the batteries typically used to test pseudo-
random generators, such as crush. This points in
the direction that some tests are actually sensitive
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to slight deficiencies of the simulation procedure.
(We have used TestU01 version 1.2.3 with the
default settings. For alphabit we used r = 0,
s = 32.)

PractRand tests are performed for sequences
of increasing length (factors of 2). We find that
the length where the first failure is reported
depends on ap. At ap = 0.3 and ap = 0.4 a
failure is usually detected at size 64GB (failing
test is TMFn(2+0):wl), for ap = 0.5 at 256GB
(same test failing), at ap = 0.6 at 512GB (same
test, as well as FPF-14+6/16:all, at ap = 0.7
at 1TB (TMFn(2+0):wl, FPF-14+6/16:all and
FPF-14+6/16:(0,14-0) failing). Again, we spec-
ulate that these failures at large values of ap are
actually due to PractRand detecting nonidealities
due to the generation process itself: we gener-
ate random numbers in non-overlapping blocks
determined by the block size in Timmer-Könnig
algorithm (which is itself fixed by fmin). If the
block size is commensurate with the sampling
size in some test, this could be detected as a
non-random pattern. To test this hypothesis, we
increased the block size from 215 to 220. This
indeed pushed the size where first failures were
reported to higher values (by a factor or 2 or 4).
Similar effect is found by using a block size which
is a product of powers of different primes, e.g.,
27 · 35 = 31104, which is close in value to 215 but
nevertheless is effective in pushing up the data
size before first failure is detected. (We have used
PractRand version 0.95 with the default parame-
ters, i.e., standard battery of tests and the default
threshold setting -e 0.1.)

Finally, we compare NIST entropy assess-
ment [24] against our min-entropy calculations,
see Fig. 5. The results show the well-known ten-
dency towards underestimation of min-entropy by
the NIST tests at large values of min-entropy.
More peculiar are the results for low ap, where the
NIST test slightly overestimates the min-entropy.
We speculate that this is a finite-size effect (data
sets were 10MB in size).

7 Online test

The main failure mechanism in oscillator-based
TRNGs is an insufficient amount of jitter in clock
frequency or a total failure (no oscillation). A con-
cern is also oscillator frequency locking, where
multiple oscillators synchronize in phase, although
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1.0
Hmin

extrapolated
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Fig. 5 Min-entropy per bit for pure flicker noise model as
a function of ap: out asymptotic estimate vs. NIST entropy
assessment result.

this is mainly an issue in designs with a large num-
ber of oscillator rings on the same chip. Online
tests must be able to detect non-tolerable entropy
deficiencies in as little time as possible (so that
no compromised random bits are ever presented
to the user) and should be tailored to the stochas-
tic model. For entropy sources based on oscillator
circuits in counter mode it is easy to implement
embedded online tests. In particular, to target the
main failure mechanism (lack of jitter) one can
implement variance measurement of the consec-
utive integer count values xi [17, 25]. We thus
consider the quantity [12]

σ2
R =

1

2(N − 1)

N
∑

i=2

1

2
(xi − xi−1)

2
, (15)

which is essentially an estimator for the 2-sample
Allan variance with equal time between measure-
ments and measurement time, T = τ . It is easy
to compute in real-time in digital circuits [12].
This quantity can be used to directly quantify the
randomness properties of the oscillator. It is less
sensitive to long-time correlations compared to the
regular variance, because only neighboring value
pairs enter the expression. Importantly, it is not
affected by the value of fmin, unlike the standard
variance [see Eqs. (2) and (3)]. We have estab-
lished that the min entropy is not affected by fmin,
provided that fmin is small enough, thus the online
test must be based on a quantity which also has
this property. Using the variance defined as σ2

R is
thus crucial. In Fig. 6 we plot the min-entropy as
a function of σ2

R for the case of pure pink noise.
Let us now set the goal of achieving Hmin ≥

0.98. We find that this requires σ2
R > 0.52 (and

corresponds to ap = 0.132). This defines the
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Fig. 6 Min-entropy per bit as a function of σ2

R
for pure

pink noise.

region Agood in the parameter space, while the
complementary set is denoted Abad. The region
Areal ⊂ Agood, that corresponds to Hmin ≥ 0.995,
is defined by σ2

R > 0.639 (and corresponds to
ap = 0.169). The alarm is raised for σ2

R < 0.580.
We performed stochastic simulation to determine
the probability for false alarms (false positives,
i.e., RNG in Areal triggering alarm) and silent
failures (false negatives, i.e., RNG in Abad not trig-
gering alarm) for different test sample sizes N , see
Table 2. These two probabilities should be low in
order to guarantee both availability and security.
We see that the probabilities decrease by an order
of magnitude for each increase of size of 1000. For
N = 10000 we thus expect false positives/nega-
tives at a rate lower than 10−10, which for RNG
rates on the scale of Mbit/s corresponds to a few
events per day. Raising the value to N = 20000
would make such events practically non-existent
in the typical life-time of the device, baring an
actual degradation of the noise properties.

Table 2 Probabilities for silent failures and
false alarms

Test sample probability of probability of
size N silent failure false alarm

(false negative) (false positive)

1000 9.5 10−3 2.3 10−2

2000 4.6 10−3 2.3 10−3

3000 2.6 10−5 2.6 10−3

4000 1.4 10−6 3.1 10−5

5000 9.5 10−8 4.2 10−6

6000 < 10−8 4.3 10−7

7000 < 10−8 5.6 10−8

8 Conclusion

The main result of this work was to show that the
presence of a large component of non-white noise,
such as 1/f noise with long-ranged autocorrela-
tions, does not preclude building a highly entropic
source for TRNGs. While such noise leads to some
inconveniences, it can be analysed by determin-
ing how the min-entropy estimate varies with the
block size and extrapolating the result to infi-
nite length. Based on such results it is possible to
devise appropriate online tests that guarantee a
suitable amount of randomness. We speculate that
many of the existing oscillator-based TRNGs that
were designed on the assumption of pure white
noise actually have some component of pink noise.
Our work provides a method to appropriately cal-
ibrate the online health test to avoid any potential
security weakness.
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