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ABSTRACT 

The paper studies the stability of unsupported tunnel faces by analyzing the results of a large number 

of 3D numerical analyses of tunnel faces, in various ground conditions and overburden depths. The 

analyses calculate the average face extrusion (Uh) by averaging the axial displacement over the tunnel 

face. Limiting face stability occurs when the average face extrusion becomes very large and algorithmic 

convergence becomes problematic. Using the results of the analyses, a dimensionless “face stability 

parameter” is defined, which depends on a suitable combination of ground strength, overburden 

depth and tunnel width. The face stability parameter correlates very well with many critical tunnel face 

parameters, like the safety factor of the tunnel against face instability, the average face extrusion, the 

radial convergence of the tunnel wall at the excavation face, the volume loss and the deconfinement 

ratio at the tunnel face. Thus, semi-empirical formulae are proposed for the calculation of these 

parameters in terms of the face stability parameter. Since the face stability parameter can be easily 

calculated from basic tunnel and ground parameters, the above critical tunnel parameters can be 

calculated, and conclusions can be drawn about tunnel face stability, volume loss and the 

deconfinement ratio at the excavation face which can be useful in preliminary tunnel designs. 

 

 

1 INTRODUCTION 

Control of face stability is very important in tunnelling, as incidents of face instability are frequent, 

severely affect the cost and construction schedule of tunnels and can damage surface structures and 

utilities in shallow urban tunnels. In mechanized tunnelling with active face pressure (e.g. EPB and 

Slurry TBMs), the risk of face instability is controlled by the applied face pressure, which is usually 

adjusted empirically from past performance in “similar” conditions. In tunnelling with conventional 

techniques (SCL / NATM), face stability is usually assessed empirically, by subjective comparison of the 

excavation face with past behaviour of faces under “similar” conditions, occasionally by simplified limit 

equilibrium analyses (e.g. Leca & Dormieux, 1990; Anagnostou & Kovari, 1996; Kim & Tonon, 2010), 

and rarely by numerical analysis or systematic measurements of axial face movements (face extrusion). 

When the risk of face instability is considered unacceptable in SCL / NATM tunnels, the size of the 

excavation face is reduced or active face support measures are applied, such as fiber-glass (FG) nailing, 

forepoling, or even leaving a ground wedge on the face. The main reason of the extensive empiricism 

in assessing face stability, is that quantitative assessment of the risk of face instability requires the 

definition of a suitable “safety factor”, and its calculation using complex three-dimensional (3D) 

numerical analyses with realistic constitutive models and suitably measured/estimated ground 

parameters. Although seemingly trivial, even the definition of a “safety factor” for face stability 
analyses is not always straight forward, let alone its numerical calculation. 

In mechanized tunnelling, the safety factor against face instability is usually defined as the ratio of the 

applied face pressure to the minimum face pressure required for stability. Calculation of the safety 
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factor requires determination of that minimum face pressure for stability, which is usually achieved by 

a variance of the increased external load method (Zienkiewicz et al, 1975) via a series of numerical 

analyses with gradually decreasing face pressure until the tunnel face becomes unstable (i.e., until the 

numerical algorithm ceases to converge, or face displacements start to increase rapidly). Similar 

definition of the safety factor and calculation techniques can be used in conventional tunnelling with 

supported excavation faces, e.g. in cases where the tunnel face is supported by a grid of fiber-glass 

nails providing an “equivalent” face pressure. 

In the very common case of conventional tunnelling with unsupported excavation face, the “safety 
factor” against face instability can be defined (and calculated) as the ratio of some “strength” over a 
corresponding “applied shear stress”. This definition is straight forward when ground strength is 

modelled via perfect plasticity with the Mohr-Coulomb (MC) failure criterion, i.e., in: 

1. Analytical methods (e.g. Horn 1961, Atkinson & Mair 1981, Panet 1995, Anagnostou & Kovari 1996), 

which calculate the safety factor of the tunnel face on a suitably selected potential failure surface, 

by some form of limit equilibrium of a critical ground wedge at the excavation face. These methods 

usually have limited accuracy and applicability, because of the simplifying assumptions about the 

selected wedge for a complex 3D problem as the tunnel excavation face. 

2. Numerical methods, where the “safety factor” is usually defined and calculated by the Strength 

Reduction Method (Zienkiewicz et al, 1975), i.e., by performing a series of analyses with gradually 

reducing ground strength, until the tunnel face becomes unstable (i.e., until the numerical 

algorithm ceases to converge, or face displacements start to increase rapidly). In such analyses, the 

safety factor is the inverse of the strength reduction factor causing face instability. Useful design 

charts are often produced for the safety factor versus ground strength, tunnel depth and size (e.g. 

Kavvadas et al 2009, Prountzopoulos 2012). 

The above methods exploit that, in the MC failure criterion, ground strength is a linear combination of 

cohesion (c) and friction angle (tanφ); thus, a single “strength reduction factor” can be applied to both 

components of strength to cause face instability, with the safety factor being the inverse of that factor. 

When ground behaviour is modelled more realistically than Mohr-Coulomb perfect plasticity, 

investigation of face stability requires the use of numerical analyses. Published literature on numerical 

analyses of face stability in tunnels with unsupported face using such constitutive laws (e.g. based on 

the Hoek-Brown failure criterion and/or hardening/softening plasticity) is very sparse, because such 

analyses are usually problem-specific, i.e., they check if a specific tunnel face is stable, by testing the 

convergence of the numerical algorithm for given ground and geometrical parameters, but are difficult 

to generalise in other cases. Furthermore, if the analysis predicts a stable tunnel face (i.e., the 

algorithm converges with finite face deformations), it is not easy to define the “safety factor” or 
calculate the available margin from face instability. The reason of this difficulty is that, in constitutive 

laws other than Mohr-Coulomb perfect plasticity, ground strength is controlled by non-linear 

combinations of model parameters, rendering inapplicable the strength reduction method. 

Furthermore, other analogous techniques (like increasing suitable external loads until failure) cannot 

be applied in tunnel excavation with an unsupported face, because a stable tunnel face does not have 

any external load (face pressure is zero). This common problem becomes evident in designs attempting 

to apply the “partial factor method” in Ultimate Limit State (ULS) analyses of stability problems with 

ground failure controlled by criteria other than Mohr-Coulomb perfect plasticity and/or cases where 

ground failure is not caused by external loads as in bearing capacity of footings (see e.g. Frank et al, 

2004; Franzen et al, 2019). 

In conclusion, although numerical analyses can be performed to check if a tunnel face is stable for 

specific ground and geometrical parameters, there is lack of guidance on assessing the available safety 

factor of unsupported tunnel faces. Even in cases where complex 3D numerical analyses are performed 

to study specific tunnel conditions, it is useful to have guidance on the effects of varying ground 

conditions and/or tunnel depth on face stability, without having to perform additional analyses for 
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each case or, at least, it is useful to have guidance in optimally selecting the required analyses of face 

stability, among the usually wide range of ground conditions and tunnel depths in practical tunnelling 

problems. In such cases, it is useful to have guidance from results of full 3D numerical models, which 

are more accurate than axi-symmetric tunnel models commonly used in face stability analyses (e.g. 

Bernaud & Rousset 1996, Graziani et al 2005), especially in shallow tunnels where the effect of gravity 

is more pronounced and conditions of face instability are more frequent and catastrophic. 

The present paper attempts to fill that gap, by providing a semi-empirical expression of an equivalent 

safety factor of face stability in tunnels with unsupported face, in terms of dimensionless quantities of 

ground strength, tunnel depth and diameter. The safety factor of face stability is obtained from a 

dimensionless “face stability parameter” (Λf) which is found (numerically) to control the average “face 

extrusion” (Uh = average axial displacement of the excavation face) for a wide range of ground 

strengths, failure modes, tunnel depths and sizes. The paper also proposes semi-empirical expressions 

to calculate the average face extrusion (Uh) and the degree of deconfinement (λ) at the tunnel face, in 

terms of the controlling face stability parameter (Λf). These expressions are derived from the results 

of a large set of three-dimensional (3D) numerical analyses of the excavation of shallow and deep 

tunnels with unsupported face in various ground conditions, using the Mohr-Coulomb failure criterion 

in shallow tunnels and the Hoek-Brown failure criterion in deep tunnels. The analyses focus on the 

behaviour of the excavation face, by calculating the average face extrusion (Uh), suitably normalized 

to give a dimensionless “face extrusion parameter” (Ωf). The results of the analyses show that the face 

extrusion parameter (Ωf) is correlated well with the “face stability parameter” (Λf) which depends on 

ground strength, tunnel depth and diameter. It is shown that, as Λf decreases and approaches unity, 

the face extrusion parameter (Ωf) starts to increase rapidly, indicating incipient face instability. This 

permits to define the safety factor of an unsupported tunnel face (SFf) by the face stability parameter 

(i.e., SFf = Λf) and thus calculate the safety factor of an unsupported tunnel face and establish the 

relationship among ground strength, tunnel depth and size corresponding to limiting face instability 

(Λf = 1). The proposed semi-empirical relationship between Λf and Ωf can be used to calculate the 

average face extrusion (Uh), the radial wall convergence (UR) and deconfinement ratio (λ) for various 

combinations of ground strength, tunnel depth and size. The proposed relationship can be used in 

preliminary calculations of the safety factor and the degree of deconfinement of the tunnel excavation 

face, in conventionally excavated tunnels with unsupported face. 

 

2 NUMERICAL ANALYSES 

A large set of three-dimensional (3D) numerical analyses were performed, using the Finite Element 

Code Simulia Abaqus, for the excavation of shallow and deep tunnels with unsupported face and a 

wide range of ground properties and tunnel depths. Oval-shaped tunnel sections were studied, having 

width D = 10m and D = 6m (Figure 1). 

 

Shallow tunnels: 

In shallow tunnels, the overburden depth (H), measured from the tunnel axis up to the ground surface, 

varied in the range H = 15 to 30m, with examined cases: H/D = 2.5, 3.5 and 5. Eight-node hexahedral 

finite elements were used in the analysis (Figure 2). Following a sensitivity analysis, the extent of the 

finite element mesh was sufficiently large to minimize boundary effects in all directions. The finite 

element mesh included the left half of the tunnel, because the tunnel section is symmetrical with 

respect to the vertical axis. The tunnel was excavated in a single phase (full face excavation) with 

excavation steps of 1m (equal to the size of the elements in the axial direction). In each excavation 

step, a relatively stiff, 30cm thick, shotcrete liner was installed on the tunnel wall (full ring) 2m behind 

the excavation face. The shotcrete liner was modelled by 4-noded shell elements, as linearly elastic 
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with a relatively low concrete E modulus equal to 10 GPa to account for concrete setting time. To 

eliminate end effects, the conditions at the excavation face were studied when tunnel excavation had 

advanced to a distance L = 4-6 D from the start boundary, leaving a clear distance 5-7 D from the end 

boundary (ahead of the tunnel face). Parametric analyses by varying the geometrical and stiffness 

parameters have shown that the above simplifying assumptions have negligible effects on the results 

at the excavation face. 

The study included relatively stiff ground conditions with unit weight γ = 20 kN/m3, horizontal geostatic 

stress coefficient Ko = 0.5 and 1.0 and linearly elastic - perfectly plastic behaviour, with elastic modulus 

(E) and yielding according to the Mohr-Coulomb criterion (c = cohesion, φ = friction angle). Table 1 

shows the sets of ground parameters used in the parametric analyses. 

Table 1: Sets of ground parameters used in the analyses of shallow tunnels 

E (MPa) c (kPa) φ (°) σcm (kPa) 

80 20.0 22.5 59.9 

100 20.0 25.0 62.8 

120 25.0 25.0 78.5 

150 30.0 25.0 94.2 

170 30.0 30.0 103.9 

200 50.0 30.0 173.2 

In all cases, the elastic Poisson ratio was v = 0.33. According to the Mohr-Coulomb failure criterion, the 

“ground strength” (σcm), equivalent to the Uniaxial Compressive Strength, was calculated by the 

formula: 

 𝜎𝑐𝑚 = 2𝑐 𝑡𝑎𝑛(45° + 𝜑 2⁄ ) (1a) 

The total number of numerical analyses for the shallow tunnels was 72 (two tunnel sizes, three tunnel 

depths, two Ko values, and six sets of material parameters). 

Deep tunnels: 

In deep tunnels, the overburden depth was H = 100, 150 and 200m. The Finite Element mesh was 

similar to that shown in Figure 2, with higher overburden depth. Tunnel excavation and liner 

construction followed the same procedure as for the shallow tunnels. 

The study included weak fractured rock with unit weight γ = 25 kN/m3, horizontal geostatic stress 

coefficient Ko = 0.5 and 1.0, intact rock properties σci = 10 MPa and Ei = 2000 MPa, Poisson ratio v = 

0.33 and Geomechanics Strength Index in the range GSI = 15 to 45. The rockmass was assumed linearly 

elastic - perfectly plastic, yielding according to the Generalised Hoek-Brown failure criterion (Hoek et 

al, 2002) with various parameters (mb, s, a). Table 2 shows the sets of rockmass parameters used in 

the parametric analyses. 

Table 2: Sets of rockmass parameters used in the analyses of deep tunnels 

GSI mb s a σcm (MPa) Em (MPa) 

15 0.480 7.9 x 10-5 0.561 0.36 72.9 

25 0.687 2.4 x 10-4 0.531 0.53 119.7 

35 0.981 7.3 x 10-4 0.516 0.79 226.8 

45 1.403 2.0 x 10-3 0.508 1.17 447.3 

The “rockmass strength” (σcm) and “rockmass modulus” (Em) for the various GSI values were 

calculated by the following empirical formulae (Litsas et al 2017, Hoek & Diederichs 2006): 
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𝜎𝑐𝑚 = 0.02 𝜎𝑐𝑖  𝑒𝑥𝑝 ( 𝐺𝑆𝐼25.5)    and   𝐸𝑚 = 𝐸𝑖 [0.02 + 11+exp[(60−𝐺𝑆𝐼)/11]]    (1b) 

The total number of numerical analyses for the deep tunnels was 48 (two tunnel sizes, three tunnel 

depths, two Ko values, and four sets of material parameters). 

 

3 FACE EXTRUSION 

Each of the numerical analyses calculates the axial displacement (face extrusion) at all integration 

points on the tunnel face when tunnel excavation has advanced far from the start and end boundaries. 

These values are averaged over the tunnel face to give an “average face extrusion” (Uh) which is then 

normalized by the tunnel width (D) and a modulus-to-depth factor (E / po ) to give the dimensionless 

“face extrusion parameter” (Ωf): 

 𝛺𝑓 = (𝑈ℎ𝐷 ) ( 𝐸𝑝𝑜) (2) 

where E is the elastic Young modulus of the ground (soil or rockmass) and pο = 0.5 (1 + Ko) γ Η  is the 

average overburden pressure at the tunnel axis (average of vertical and horizontal geostatic stresses). 

From the 72+48 = 120 numerical analyses, the present database includes the results of 83 analyses (51 

shallow tunnels and 32 deep tunnels), as the remaining 37 (21+16) analyses failed to converge, because 

the combination of ground strength and tunnel depth (ground stress) produced uncontrollable face 

extrusions (too low strength for the tunnel depth). Each calculated value of the face extrusion 

parameter (Ωf) was then correlated with the corresponding values of various forms of strength-to-

stress ratios, with the objective to select the optimal form (giving the best correlation). 

Figure 3a plots the calculated face extrusion parameter (Ωf) versus the corresponding value of the 

classical ratio of rockmass strength (σcm) to average overburden pressure (pο), often used to describe 

tunnel behaviour (e.g. Hoek, 2000). The correlation of the two parameters is poor, especially at low 

strength-to-stress values (σcm / pο < 0.5), where face stability problems are expected, indicating that 

σcm / pο is not a proper parameter for face stability analyses. 

Figure 3b plots the calculated face extrusion parameter (Ωf) with the selected (optimal) strength-to-

stress ratio, the “face stability parameter” (Λf), a semi-empirical dimensionless parameter combining 

ground strength σcm and overburden stress, expressed via the tunnel depth (H), Ko parameter, and 

tunnel size (D) by the formula: 

 

0.35

3.8
1 (2 / 3)

cm
f

o

H

DH K




          
 (3) 

 

The best fit curve of the data points shown in Figure 3b is expressed by the formula: 

 𝛺ℎ = 1.4 𝛬𝑓−1.2
 (4) 

This formula can estimate the face extrusion parameter (Ωf) and, via equation 2, calculate the average 

face extrusion (Uh) for given Λf , i.e., a tunnel with of size (D), overburden depth (H) in ground with 

strength (σcm). Control analyses have shown that the above formula can also be used in tunnel shapes 

different than those shown in the present study (Figure 1), including excavation of the top heading of 
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a tunnel, via an equivalent tunnel size:  D = 1.15 sqrt(A), where A is the section area of the tunnel or 

phase. 

In Figure 3b, large (Λf) values correspond to good face stability conditions, i.e., large ground strength, 

and/or shallow and small size tunnels, with degrading face stability conditions (i.e., increasing face 

extrusion) as (Λf) decreases. The scaling factor “3.8” in the definition of (Λf) (equation 3) was selected 

such that, when Λf = 1, the rate of the face extrusion parameter (Ωf) increases rapidly, indicating that 

the tunnel face approaches limiting face stability, although the numerical algorithm converged in about 

50% of the models with Λf < 1 giving large face extrusions. Based on this remark, the condition Λf = 1 

provides limiting face stability, while tunnel faces with Λf < 1 are considered unstable. At limiting face 

stability, equations (2), (3) and (4) give the limiting face extrusion and limiting ground strength: 

  
lim

lim

1.4 1.4h o
f

U p

D E

         
   

 (5a) 

 (𝜎𝑐𝑚)𝑙𝑖𝑚 = 0.263 𝛾𝐻√1 + (2/3)𝐾𝑜 (𝐷𝐻)0.35
  (5b) 

where: (σcm)lim  is the lowest ground strength to ensure limiting face stability for a given tunnel size 

(D) and overburden depth (H). For a specific ground type at the excavation face, the available ground 

strength can be calculated from equation (1a) for soils and equation (1b) for rockmasses and compared 

to the limiting value (equation 5b) to assess whether the tunnel face is stable or not. 

Figure 4 plots the limiting ground strength (σcm)lim versus (H/D) for two values of the horizontal 

geostatic stress coefficient Ko = 0.5 and 1.0. For example, in a tunnel with overburden depth H = 4 D, 

the limiting ground strength for face stability is: (σcm)lim   0.2 γ Η. For a tunnel in soil with friction 

angle φ = 30ο, the corresponding limiting cohesion is (from equation 1a):  (c)lim  0.058 γ Η. For 

example, for D = 10m, H=40m, γ = 20 kN/m3 and φ = 30ο, the limiting cohesion for face stability is c = 

46 kPa. Lower cohesion values correspond to unstable tunnel face. 

 

The above definition of the face stability parameter (Λf) can assist in the calculation of the safety factor 

(SFf) of tunnel faces against instability, by defining the safety factor as the ratio of the available ground 

strength to the corresponding limiting ground strength, and using equations (5b) and (3): 

   𝑆𝐹𝑓 = 𝜎𝑐𝑚(𝜎𝑐𝑚)𝑙𝑖𝑚 = 𝜎𝑐𝑚0.263𝛾𝐻√1 + (2/3)𝐾𝑜 (𝐷𝐻)0.35 = 3.8 ( 𝜎𝑐𝑚0.263𝛾𝐻√1 + (2/3)𝐾𝑜) (𝐻𝐷)0.35 = 𝛬𝑓 

Thus, the safety factor of the tunnel against face instability (SFf) is equal to the face stability parameter 

(Λf), i.e.: 

 

0.35

3.8
1 (2 / 3)

cm
f f

o

H
SF

DH K




           
 (6) 

Figure 5 plots the safety factor of the tunnel against face instability (SF) versus the strength-to-stress 

ratio (σcm / pο) for several values of the ratio (H/D) and Ko = 0.50. 

 

Combining equations (2) and (4), the average face extrusion (Uh) for given safety factor (SFf) is given 

by the formula: 
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    1.2 1.2

1.4 1.4h o h o
f f

U p U p
SF

D E D E

          
   

                     (7) 

Figure 6 plots the predicted average face extrusion (Uh) versus the safety factor of the tunnel face, for 

typical values of the modulus-to-strength ratio for weak and fractured rockmasses E/po = 75, 100 and 

150. For SFf  < 1 , the average face extrusion increases rapidly. At limiting face stability (SF=1), the 

average face extrusion is equal to 1-2% of the tunnel size (D). 

 

4 RADIAL WALL CONVERGENCE, VOLUME LOSS AND DECONFINEMENT 

Figure 7 shows the profile, along the tunnel axis, of the radial convergence (UR) of the tunnel wall and 

the distribution of the face extrusion (Uh) on the tunnel face. Radial wall convergence occurs and in 

the tunnel core, ahead of the tunnel face. 

 

The volume loss (VL) is defined as the reduction (ΔV) of the volume (V) of the core ahead of the tunnel 

face per unit volume of the core. Volume loss is caused by the radial convergence of the tunnel wall in 

the core which “squeezes” the core giving face extrusion. Assuming that the profile of the radial wall 

convergence in the core (length L, tunnel section area A) is approximately linear, with maximum value 

of the radial wall convergence at the excavation face equal to (UR), then: 

  1

2
R

V U L D V A L    
 

 (8) 

and the volume loss (VL) is: 

    
 22

RU DV
VL

V A D

     
 

 (9) 

The radial convergence (UR) of the tunnel wall at the excavation face can be obtained from the average 

face extrusion (Uh) (calculated via equations 7 and 6) by assuming that the deformation of the core 

occurs with practically no volume change, i.e., the reduction (ΔV) of the volume of the core is equal to 

the ground volume extruded at the tunnel face, i.e., ΔV = (A Uh). Combining this equation with equation 

(8) gives: 

 
 
 

2

2
R h

A D
U U

L D
   
 

 (10) 

The examined tunnels have section area A = 0.75 D2 . The length (L) of the core was calculated by 

correlating the average radial displacement (UR) at the tunnel face computed in the numerical 

analyses with the radial displacement predicted from the face extrusion (Uh) via equation (10). The 

best fit is achieved for L = 0.38 D (Figure 8). 

 

Thus, equation (10) gives (using equation 7): 

   1.2

1.25 1.75 oR
R h f

pU
U U

D E

     
 

 (11) 

and the volume loss (VL) can be expressed as (combining equation 9 with 11 and A = 0.75 D2): 



8 

   1.2

1.83 o
f

p
VL

E

   
 

 (12) 

Figure 9 plots the calculated radial wall convergence (UR) at the tunnel face (from equation 11) versus 

the face stability parameter (Λf), for typical values of the modulus-to-strength ratio for weak and 

fractured rockmasses E/po = 75, 100 and 150. For typical stable faces (Λf = 1 – 2.5), the calculated radial 

wall convergence (UR / D) is in the range 0.5 – 2.5%. 

Figure 10 plots the calculated volume loss at the tunnel face (from equation 12) versus the face stability 

parameter (Λf), for typical values of the modulus-to-strength ratio for weak and fractured rockmasses 

E/po = 75, 100 and 150. For typical stable faces (Λf = 1 – 2.5), the calculated volume loss is in the range 

0.5 – 2.5%. 

 

In 2D (plane strain) numerical analyses of tunnel excavation and support, the deconfinement ratio (λ) 

is used to calculate a fictitious radial internal pressure (pi) which produces the same inward radial 

convergence (UR) of the tunnel wall as a corresponding 3D model which, unlike the 2D model, includes 

the effects of the excavation face (Figure 7). By definition, the internal pressure (pi) is related to the 

deconfinement ratio (λ) by the formula: 

  1i op p   (13) 

The relationship between (UR) and (pi) (or λ) is the convergence–confinement relationship, calculated 

using several methods, such as Duncan Fama (1993), Panet (1995), Kavvadas (1998), Carranza–Torres 

et al (2002) and Carranza–Torres (2004). 

The deconfinement ratio (λ) and the corresponding internal pressure (pi) vary with the distance (x) 

from the excavation face. As the radial wall convergence increases along the tunnel axis, and the 

corresponding internal pressure decreases, the deconfinement ratio varies from λ = 0 far ahead of the 

excavation face (where wall convergence is zero) to λ = 1 far behind the excavation face (where wall 

convergence is stabilized to the maximum value). Several semi-empirical formulae have been 

proposed for the calculation of (λ) at various distances (x) from the excavation face. These formulae 

are produced by equating the radial convergence (UR) of the tunnel wall from 2D analyses (applying 

an internal pressure pi) with the corresponding radial convergence profile along the tunnel axis from 

3D finite element analyses (e.g., Panet 1995, Chern et al. 1998, Vlachopoulos & Diederichs 2009). 

The methodology developed above can provide an empirical relationship between the deconfinement 

ratio (λ) at the tunnel face and the corresponding face stability parameter (Λf), by correlating the value 

of (λ) at the tunnel face, computed using the above convergence–confinement relationships, with the 

face stability parameter (Λf), for each of the 87 numerical analyses studied. Figure 9 plots the results 

of this correlation using four alternative convergence-confinement methods. The best fit curve of the 

correlation is: 

 0.25 0.75exp( / 2)
f

     (14) 

Stable tunnel faces (Λf > 1) have deconfinement ratios λ = 0.30 - 0.70, with higher λ values for 

unstable tunnel faces (Λf < 1). 

5 CONCLUSIONS 

The paper studies the stability of unsupported tunnel faces by analyzing the results of a large set (87 

Nos) of 3D numerical analyses of tunnel faces, in various ground conditions and overburden depths. 

The analyses calculate the average face extrusion (Uh) by averaging the axial displacement over the 
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tunnel face. Limiting face stability occurs when the average face extrusion becomes very large and 

algorithmic convergence becomes problematic. Using the results of the analyses, a dimensionless 

“face stability parameter” (Λf) is defined (equation 3) which depends on a suitable combination of 

ground strength (σcm), overburden depth (H) and tunnel width (D). The (Λf) parameter correlates very 

well with many critical tunnel face parameters, like the safety factor of the tunnel against face 

instability (equation 6, Figure 5), the average face extrusion (equation 7, Figure 6), the radial 

convergence of the tunnel wall at the excavation face (equation 11, Figure 9), the volume loss 

(equation 12, Figure 10) and the deconfinement ratio at the tunnel face (equation 14, Figure 11). Thus, 

semi-empirical formulae are proposed for the calculation of these parameters in terms of the face 

stability parameter. Since the face stability parameter can be easily calculated from basic tunnel and 

ground parameters, the above critical tunnel parameters can be calculated, and conclusions can be 

drawn about tunnel face stability, volume loss and the deconfinement ratio at the excavation face 

which can be useful in preliminary tunnel designs. Furthermore, the calculated volume loss can be 

used to estimate ground surface settlements in shallow tunnels, while the deconfinement ratio can be 

used in 2D numerical analyses of tunnel excavation and support. 
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7 NOTATION 

A = tunnel section area (m2) 

c = soil cohesion (Mohr-Coulomb failure criterion) 

D = tunnel width (m) 

E = Young modulus of the ground 

Ei = intact rock Young modulus 

Em = rockmass Young modulus 

GSI = Geomechanics Strength Index 

H = overburden depth measured from the tunnel axis up to the ground surface 

L = length of the tunnel core 

mb, s, a = parameters of the Hoek-Brown failure criterion 

pi = fictitious radial internal pressure 

po = average overburden pressure at the tunnel axis (average of vertical and horizontal geostatic 

stresses). 

SF = safety factor of the tunnel face against instability 

Uh = average face extrusion 

UR = radial convergence of the tunnel wall 

V = volume of the core, ahead of the tunnel face 

VL = volume loss = ΔV / V 
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Ko = horizontal geostatic stress coefficient 

ΔV = reduction of V, due to tunnel wall convergence 

Λf = face stability parameter 

λ = deconfinement ratio 

v = Poisson ratio of the ground 

σci = intact rock strength 

σcm = ground strength (for soils and rockmasses) 

φ = soil friction angle (Mohr-Coulomb failure criterion) 

Ωf = face extrusion parameter 
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Figure 1:  Cross sections of the two oval shaped tunnels studied: width D = 10m and 6m and section 

area A = 75 m2 and 27 m2 respectively (A/D2 = 0.75). 

Figure 2:  Typical Finite element mesh used in the analyses of the shallow tunnels. The case shown 

corresponds to tunnel width D = 10m and overburden depth H = 3D = 30m. The different colours of 

elements close to the surface correspond to element groups that were de-activated for cases with 

smaller overburden depth. 

Figure 3a:  Correlation of the face extrusion parameter (Ωf) with the classical ground strength to 

overburden pressure ratio (σcm / pο) for the results of 83 numerical analyses. The correlation of the 

two parameters is poor, especially at low strength-to-stress values (σcm / pο < 0.5), where face 

stability problems are expected. 
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Figure 3b:  Correlation of the face extrusion parameter (Ωf) with the semi-empirical face stability 

parameter (Λf), defined by equation 3, which achieves optimal correlation for the results of 83 

numerical analyses. The figure also shows the best fit curve (equation 4). 

Figure 4:  Minimum ground strength (σcm) for limiting face stability versus (H/D) 

Figure 5:  Safety factor (SF) of the tunnel against face instability (SF) versus the strength-to-stress ratio 

(σcm / pο)  for several values of the ratio (H/D) and Ko = 0.50 

Figure 6:  Average face extrusion (Uh) versus the safety factor (SF) of the tunnel face 

Figure 7:  Profile of the radial convergence (UR) of the tunnel wall along the tunnel axis and distribution 

of the face extrusion (Uh) on the tunnel face (shown in dark green colour). Radial wall convergence 

occurs and in the tunnel core (shown in brown colour) ahead of the tunnel face (figure adapted from 

Lunardi, 2008) 

Figure 8:  Comparison of the average radial displacement (UR) at the tunnel face computed in the 

numerical analyses with the radial displacement predicted from the calculated face extrusion (Uh) via 

equation (10). The best fit is achieved for L / D = 0.76. 

Figure 9:  Calculated radial wall convergence (UR) at the tunnel face versus the face stability parameter 

(Λf) 

Figure 10:  Calculated volume loss at the tunnel face versus the face stability parameter (Λf) 

Figure 11: Correlation of the deconfinement ratio (λ) at the tunnel face (computed using four 

convergence–confinement methods) with the face stability parameter (Λf) for each of the 87 

numerical analyses studied. The figure also shows the best-fit curve (equation 14). 

 

 



Figures

Figure 1

Cross sections of the two oval shaped tunnels studied: width D = 10m and 6m and section area A = 75
m2 and 27 m2 respectively (A/D2 = 0.75).

Figure 2

Typical Finite element mesh used in the analyses of the shallow tunnels. The case shown corresponds to
tunnel width D = 10m and overburden depth H = 3D = 30m. The different colours of elements close to the
surface correspond to element groups that were de-activated for cases with smaller overburden depth.



Figure 3

3a: Correlation of the face extrusion parameter (Ωf) with the classical ground strength to overburden
pressure ratio (σcm / pο) for the results of 83 numerical analyses. The correlation of the two parameters
is poor, especially at low strength-to-stress values (σcm / pο < 0.5), where face stability problems are
expected. 3b: Correlation of the face extrusion parameter (Ωf) with the semi-empirical face stability
parameter (Λf), de�ned by equation 3, which achieves optimal correlation for the results of 83 numerical
analyses. The �gure also shows the best �t curve (equation 4).



Figure 4

Minimum ground strength (σcm) for limiting face stability versus (H/D)

Figure 5



Safety factor (SF) of the tunnel against face instability (SF) versus the strength-to-stress ratio (σcm / pο)
for several values of the ratio (H/D) and Ko = 0.50

Figure 6

Average face extrusion (Uh) versus the safety factor (SF) of the tunnel face

Figure 7

Pro�le of the radial convergence (UR) of the tunnel wall along the tunnel axis and distribution of the face
extrusion (Uh) on the tunnel face (shown in dark green colour). Radial wall convergence occurs and in the
tunnel core (shown in brown colour) ahead of the tunnel face (�gure adapted from Lunardi, 2008)



Figure 8

Comparison of the average radial displacement (UR) at the tunnel face computed in the numerical
analyses with the radial displacement predicted from the calculated face extrusion (Uh) via equation (10).
The best �t is achieved for L / D = 0.76.



Figure 9

Calculated radial wall convergence (UR) at the tunnel face versus the face stability parameter (Λf)

Figure 10

Calculated volume loss at the tunnel face versus the face stability parameter (Λf)

Figure 11



Correlation of the decon�nement ratio (λ) at the tunnel face (computed using four convergence–
con�nement methods) with the face stability parameter (Λf) for each of the 87 numerical analyses
studied. The �gure also shows the best-�t curve (equation 14).


