1. Barbosa P, Krischik VA, Jones CG (1991) Microbial mediation of plant-herbivore interactions. John Wiley & Sons
2. Berenbaum MR (1988) Allelochemicals in insect-microbe-plant interactions; agents provocateurs in the coevolutionary arms race. Nov Asp Insect-Plant Interact 97–123
3. Mason CJ, Jones AG, Felton GW (2019) Co-option of microbial associates by insects and their impact on plant–folivore interactions. Plant Cell Environ 42:1078–1086
4. Sugio A, Dubreuil G, Giron D, Simon J-C (2015) Plant–insect interactions under bacterial influence: ecological implications and underlying mechanisms. J Exp Bot 66:467–478
5. Hansen AK, Moran NA (2014) The impact of microbial symbionts on host plant utilization by herbivorous insects. Mol Ecol 23:1473–1496
6. Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37:634–663
7. Pineda A, Zheng S-J, van Loon JJ, et al (2010) Helping plants to deal with insects: the role of beneficial soil-borne microbes. Trends Plant Sci 15:507–514
8. Hammer TJ, Bowers MD (2015) Gut microbes may facilitate insect herbivory of chemically defended plants. Oecologia 179:1–14
9. Liu H, Macdonald CA, Cook J, et al (2019) An ecological loop: Host microbiomes across multitrophic interactions. Trends Ecol Evol 34:1118–1130
10. Grunseich JM, Thompson MN, Aguirre NM, Helms AM (2020) The Role of Plant-Associated Microbes in Mediating Host-Plant Selection by Insect Herbivores. Plants 9:6
11. Ferrari J, Darby AC, Daniell TJ, et al (2004) Linking the bacterial community in pea aphids with host-plant use and natural enemy resistance. Ecol Entomol 29:60–65
12. McLean AH, Parker BJ, Hrček J, et al (2016) Insect symbionts in food webs. Philos Trans R Soc B Biol Sci 371:20150325
13. Giron D, Dedeine F, Dubreuil G, et al (2017) Influence of microbial symbionts on plant–insect interactions. In: Advances in botanical research. Elsevier, pp 225–257
14. Jones AG, Mason CJ, Felton GW, Hoover K (2019) Host plant and population source drive diversity of microbial gut communities in two polyphagous insects. Sci Rep 9:1–11
15. Xu T-T, Jiang L-Y, Chen J, Qiao G-X (2020) Host Plants Influence the Symbiont Diversity of Eriosomatinae (Hemiptera: Aphididae). Insects 11:217. https://doi.org/10.3390/insects11040217
16. Qin M, Chen J, Xu S, et al Microbiota associated with Mollitrichosiphum aphids (Hemiptera: Aphididae: Greenideinae): diversity, host species specificity and phylosymbiosis. Environ Microbiol n/a: https://doi.org/10.1111/1462-2920.15391
17. Douglas AE (2013) Microbial brokers of insect-plant interactions revisited. J Chem Ecol 39:952–961
18. Engel P, Moran NA (2013) The gut microbiota of insects–diversity in structure and function. FEMS Microbiol Rev 37:699–735
19. Chung SH, Scully ED, Peiffer M, et al (2017) Host plant species determines symbiotic bacterial community mediating suppression of plant defenses. Sci Rep 7:1–13
20. Holt JR, Styer A, White JA, et al (2020) Differences in Microbiota between two Multilocus Lineages of the sugarcane Aphid (Melanaphis sacchari) in the continental United States. Ann Entomol Soc Am
21. McLean AH, Godfray HCJ, Ellers J, Henry LM (2019) Host relatedness influences the composition of aphid microbiomes. Environ Microbiol Rep 11:808–816
22. Jones RT, Sanchez LG, Fierer N (2013) A cross-taxon analysis of insect-associated bacterial diversity. PLoS One 8:e61218
23. Najar-Rodríguez AJ, McGraw EA, Mensah RK, et al (2009) The microbial flora of Aphis gossypii: Patterns across host plants and geographical space. J Invertebr Pathol 100:123–126. https://doi.org/10.1016/j.jip.2008.10.005
24. Blankenchip CL, Michels DE, Braker HE, Goffredi SK (2018) Diet breadth and exploitation of exotic plants shift the core microbiome of tropical herbivorous beetles. PeerJ Prepr 6:e26692v1
25. Gauthier J-P, Outreman Y, Mieuzet L, Simon J-C (2015) Bacterial communities associated with host-adapted populations of pea aphids revealed by deep sequencing of 16S ribosomal DNA. PloS One 10:e0120664
26. Wagner SM, Martinez AJ, Ruan Y-M, et al (2015) Facultative endosymbionts mediate dietary breadth in a polyphagous herbivore. Funct Ecol 29:1402–1410
27. Guidolin AS, Cônsoli FL (2017) Symbiont diversity of Aphis (Toxoptera) citricidus (Hemiptera: Aphididae) as influenced by host plants. Microb Ecol 73:201–210
28. Leonardo TE, Muiru GT (2003) Facultative symbionts are associated with host plant specialization in pea aphid populations. Proc R Soc Lond B Biol Sci 270:S209–S212
29. Xu S, Jiang L, Qiao G, Chen J (2020) The Bacterial Flora Associated with the Polyphagous Aphid Aphis gossypii Glover (Hemiptera: Aphididae) Is Strongly Affected by Host Plants. Microb Ecol 79:971–984. https://doi.org/10.1007/s00248-019-01435-2
30. Ferrari J, West JA, Via S, Godfray HCJ (2012) Population Genetic Structure and Secondary Symbionts in Host-Associated Populations of the Pea Aphid Complex. Evolution 66:375–390. https://doi.org/10.1111/j.1558-5646.2011.01436.x
31. Brady CM, Asplen MK, Desneux N, et al (2014) Worldwide Populations of the Aphid Aphis craccivora Are Infected with Diverse Facultative Bacterial Symbionts. Microb Ecol 67:195–204. https://doi.org/10.1007/s00248-013-0314-0
32. Henry LM, Maiden MC, Ferrari J, Godfray HCJ (2015) Insect life history and the evolution of bacterial mutualism. Ecol Lett 18:516–525
33. Simon J-C, Carré S, Boutin M, et al (2003) Host–based divergence in populations of the pea aphid: insights from nuclear markers and the prevalence of facultative symbionts. Proc R Soc Lond B Biol Sci 270:1703–1712. https://doi.org/10.1098/rspb.2003.2430
34. Brady CM, White JA (2013) Cowpea aphid (Aphis craccivora) associated with different host plants has different facultative endosymbionts. Ecol Entomol 38:433–437. https://doi.org/10.1111/een.12020
35. Blackman RL, Eastop VF (2008) Aphids on the world’s herbaceous plants and shrubs, 2 volume set. John Wiley & Sons
36. Züst T, Agrawal AA (2016) Population growth and sequestration of plant toxins along a gradient of specialization in four aphid species on the common milkweed Asclepias syriaca. Funct Ecol 30:547–556
37. Zytynska SE, Weisser WW (2016) The natural occurrence of secondary bacterial symbionts in aphids. Ecol Entomol 41:13–26
38. Binetruy F, Dupraz M, Buysse M, Duron O (2019) Surface sterilization methods impact measures of internal microbial diversity in ticks. Parasit Vectors 12:268
39. Gohl DM, Vangay P, Garbe J, et al (2016) Systematic improvement of amplicon marker gene methods for increased accuracy in microbiome studies. Nat Biotechnol 34:942–949
40. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120
41. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17:10–12
42. Callahan BJ, McMurdie PJ, Rosen MJ, et al (2016) DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 13:581–583
43. Jousselin E, Clamens A-L, Galan M, et al (2016) Assessment of a 16S rRNA amplicon Illumina sequencing procedure for studying the microbiome of a symbiont-rich aphid genus. Mol Ecol Resour 16:628–640. https://doi.org/10.1111/1755-0998.12478
44. McMurdie PJ, Holmes S (2013) phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PloS One 8:e61217
45. Dixon P (2003) VEGAN, a package of R functions for community ecology. J Veg Sci 14:927–930
46. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550
47. Wright ES (2016) Using DECIPHER v2. 0 to analyze big biological sequence data in R. R J 8:
48. Schliep K, Potts AA, Morrison DA, Grimm GW (2016) Intertwining phylogenetic trees and networks. PeerJ Preprints
49. Hannula SE, Zhu F, Heinen R, Bezemer TM (2019) Foliar-feeding insects acquire microbiomes from the soil rather than the host plant. Nat Commun 10:1–9
50. Gomes SI, Kielak AM, Hannula SE, et al (2020) Microbiomes of a specialist caterpillar are consistent across different habitats but also resemble the local soil microbial communities. Anim Microbiome 2:1–12
51. Jones RT, Sanchez LG, Fierer N (2013) A cross-taxon analysis of insect-associated bacterial diversity. PLoS One 8:e61218
52. Colman DR, Toolson EC, Takacs-Vesbach CD (2012) Do diet and taxonomy influence insect gut bacterial communities? Mol Ecol 21:5124–5137
53. Pons I, Renoz F, Noël C, Hance T (2019) Circulation of the Cultivable Symbiont Serratia symbiotica in Aphids Is Mediated by Plants. Front Microbiol 10:764. https://doi.org/10.3389/fmicb.2019.00764
54. Li Q, Fan J, Sun J, et al (2018) Plant-Mediated Horizontal Transmission of Hamiltonella defensa in the Wheat Aphid Sitobion miscanthi. J Agric Food Chem 66:13367–13377. https://doi.org/10.1021/acs.jafc.8b04828
55. Jousselin E, Cø eur d’Acier A, Vanlerberghe-Masutti F, Duron O (2013) Evolution and diversity of A rsenophonus endosymbionts in aphids. Mol Ecol 22:260–270
56. Nováková E, Hypša V, Moran NA (2009) Arsenophonus, an emerging clade of intracellular symbionts with a broad host distribution. BMC Microbiol 9:143
57. Chong RA, Moran NA (2018) Evolutionary loss and replacement of Buchnera, the obligate endosymbiont of aphids. ISME J 12:898–908
58. Wulff JA, White JA (2015) The endosymbiont Arsenophonus provides a general benefit to soybean aphid (Hemiptera: Aphididae) regardless of host plant resistance (Rag). Environ Entomol 44:574–581
59. Ivens AB, Gadau A, Kiers ET, Kronauer DJ (2018) Can social partnerships influence the microbiome? Insights from ant farmers and their trophobiont mutualists. Mol Ecol 27:1898–1914
60. Fischer CY, Lognay GC, Detrain C, et al (2015) Bacteria may enhance species association in an ant–aphid mutualistic relationship. Chemoecology 25:223–232
61. Smith, R.A., Mooney, K.A., Agrawal, A.A. (2009) Coexistence of Three Specialist Aphids on Common Milkweed, Asclepias syriaca. Ecology 89:2187–2196
62. Katayama N, Tsuchida T, Hojo MK, Ohgushi T (2013) Aphid Genotype Determines Intensity of Ant Attendance: Do Endosymbionts and Honeydew Composition Matter? Ann Entomol Soc Am 106:761–770