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Abstract
The eco-epidemiology of zoonoses is often oversimpli�ed to host-pathogen interactions while �ndings
derived from global datasets are rarely directly transferable to smaller-scale contexts. Here, we compile
and comprehensively analyse a dataset of zoonotic interactions in Austria, spanning 1975-2022. We
introduce the concept of zoonotic web to describe the relationships between zoonotic agents, their hosts,
vectors, food, and environmental sources. Within the network of zoonotic agent sharing, the most
in�uential zoonotic sources are human, cattle, chicken, and some meat products. Analysis of the One
Health cliques con�rms the increased probability of zoonotic spillover at human-cattle and human-food
interfaces. We characterise six communities of zoonotic agent sharing, which assembly patterns are
likely driven by highly connected infectious agents in the zoonotic web, proximity to human, and
anthropogenic activities. Additionally, we report a frequency of emerging zoonotic diseases in Austria of
one every six years. Our �exible network-based approach offers valuable insights into zoonotic
transmission chains, facilitating the development of locally-relevant One Health strategies against
zoonoses.

Introduction
Zoonoses are caused by pathogens naturally transmissible between humans and wild or domestic
animals. Places where humans and animals or animal products interact create interfaces that facilitate
zoonotic agent transmission. Notably, over 60% of human infectious diseases are zoonotic1 and.
approximately 99% of endemic zoonotic infections in humans originate from domesticated animals,
within anthropogenic environments, either directly or indirectly through contaminated food or vectors2.
Moreover, Morand, et al. 3 provided statistical evidence supporting the positive relationship between the
duration of domestication and the diversity of zoonotic agents that humans share with each domestic
species, which was initially hypothesised by McNeill 4. Although direct zoonotic spillover from wildlife is
rare and occurs typically through indirect or vector-borne transmission2, more than 70% of emerging
infectious disease (EID) events globally in human are caused by pathogens with a wildlife origin1.
However, the full host breadth of endemic and emerging zoonotic agents as well as their animal and
environmental reservoirs are rarely identi�ed nor mapped.

In most zoonotic disease systems, interactions occur among multiple animal host species, environmental
sources (including invertebrate vectors), and involve multiple infectious agents5. Therefore, exploring
disease dynamics in these multi-sources, multi-agent systems necessitates to consider the complex
ecology of the interactions, e.g., the host-pathogen community assemblages, the existence of
environmental reservoirs, and the involvement of vectors5–7. Unfortunately, this complexity is often
ignored due to the lack of comprehensive datasets, making it challenging to embrace a transdisciplinary
perspective. Furthermore, network approaches to infectious diseases and spillover risk have largely
focused on the analysis of the host-pathogen relationships3,8–11, neglecting other sources of zoonotic
infection, such as contaminated environment or food. A comprehensive understanding of circulating
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zoonotic agents, their hosts, vectors, food and environmental sources, and the key interfaces where
spillover events may occur is essential for developing effective integrated One Health monitoring,
prevention, and control of zoonoses12.

Zoonotic and emerging diseases pose a signi�cant threat to both human and animal health13,14, they
cause substantial economic losses15, and may have far-reaching consequences on multiple aspects of
the society16. The enhancement of monitoring efforts and data collection in both domestic and wildlife
hosts is essential for effectively predicting the establishment of reservoirs, understanding the facilitators
of zoonotic spillover, and preventing such spillover at source17. However, the ecology and diversity of
circulating zoonotic agents are tied to multiple factors, including the local availability of potential animal
hosts and vectors, their spatial distribution, density, population dynamics, and community
composition18,19. Additionally, the spillover force of infection depends on cultural and socio-economic
determinants, including human agricultural practices, feeding and hunting habits, and proximity to the
animal species20,21. This underscores the pressing need for the development of analytical tools to
optimise surveillance strategies that are tailored to the regional or national context. While global datasets
may be available8,22–24, data granularity and completeness are generally suboptimal for smaller-scale
investigations. Furthermore, there is a scarcity of national studies focusing on zoonotic interfaces that
encompass animals, vectors, environmental, and food matrices. Bridging this gap is crucial for
developing effective, locally-relevant strategies25 to monitor and mitigate potential spillover events that
could impact human and animal health.

Austria has a growing population of nine million people. Its fauna encompasses approximately 45,870
species, of which 626 are vertebrates, including 110 mammalian and 418 avian species26. Moreover, of
3.9 million Austrian households, 35% own pets while the country counts approximately 53,300 cattle, one
million pigs, and �ve million poultry, while 133,000 hunting permits are issued annually27. These numbers
underline the importance of the human-animal interfaces at the national scale. Given the potential for
zoonotic disease transmission at these interfaces and ensuing risk to human health, Austria adheres to a
combination of European and national regulations, guaranteeing a framework for coordinated
epidemiological surveillance and responses. However, concentrating mostly on noti�able diseases,
monitored and reported only for speci�c species, o�cial �gures tend to overlook other zoonotic agents
circulating in the territory that could pose a risk to public health.

In this study, we used newly collected data, spanning 47 years of publications, to generate a real-world
network describing the full web of zoonotic interactions in Austria and characterise the various interfaces
through which zoonotic spillover may occur. We introduce the concept of "zoonotic web" (akin “food-
web”) as a comprehensive network representation of zoonotic actors at human-animal-environment
interfaces (i.e., [host-vector-environment-food]-zoonotic agent network), intended for use in One Health
approaches. We treated it as a bipartite network and transformed it into a one-mode projection
representing the network or zoonotic agent sharing among zoonotic sources, weighting relationships
(edges) between zoonotic sources (nodes) by the number of zoonotic agents they shared. We explored
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this network using different network centrality metrics and a community-based approach. Additionally, we
examined zoonotic disease emergence patterns in Austria and pinpointed research trends and gaps on
zoonotic agents at national level.

Results

Dataset of zoonotic interactions in Austria, 1975–2022
The search identi�ed 2,186 publications. After 542 duplicates were removed, 1,644 publications were
screened with 1,269 excluded at the title/abstract screening stage as they were not eligible. This left 375
publications, of which 16 could not be retrieved, so that 359 full-text articles were assessed for eligibility,
of which 229 met criteria for �nal inclusion. In addition, 17 publications were found in excluded review
articles, leading to a total of 246 publications that were ultimately included in this study (168 scienti�c
articles, 13 reports, and 65 theses) (Supplementary Fig. 1).

The �nal dataset is a *.csv. �le with 2,128 rows and 48 data �elds. Each row represents one investigated
zoonotic agent along with the results of the investigation in the animal host(s), vector(s), environmental
or food matrix(-ices). All included publications were published between January 1975 and August 2022.
We evidenced a 17.8-fold increase in the number of publications on zoonoses in Austria between the �rst
(1975–1997) and the second half (1998–2022) of the study period (Supplementary Fig. 2). Additionally,
there was variation in study distribution among federal states (Supplementary Fig. 3). To contextualise
this result, it was compared with global data: a PubMed search using the terms (zoono* OR "zoono*
disease*") from 1975 until 23 August 2022 (without restricting the search to Austria) generated a total of
64,282 results and revealed an increase of the same order (~ 18-fold).

Research trends
Between 1975 and 2022, 227 unique zoonotic agents were investigated in Austria (not all of them could
be resolved at species level). Ten genera collectively accounted for 41% of the selected literature:
Salmonella, Escherichia, Listeria, Echinococcus, Ortho�avivirus, Brucella, Toxoplasma, Campylobacter,
Trichinella, and Leptospira (Supplementary Table 1). Most zoonotic agents were studied in wildlife hosts,
which accounted for 76.9% of the 221 animal species investigated. Furthermore, during the study period,
the majority of investigations into food products concentrated on animal-origin products whereas plant-
based foods accounted for 5.6% of the examined foodstuffs. Finally, across the selected publications,
eight environmental matrices and 21 invertebrate species (mosquitoes: 47.8%; ticks; 39.1%; sand �ies,
gastropods, and �eas: 4.3% each) were investigated.

In Austria, there has been a noticeable upward trend in scienti�c interest regarding zoonotic bacteria,
viruses, and eukaryotes (Fig. 1a), with bacteria garnering most attention. We observed an upward trend
across all compartments, as recognised by the traditional One Health triad, i.e., animal, human, and
environment, followed by a subsequent decrease in the number of studies investigating animals (from
2015) and humans (from 2010). The environmental aspect (including environmental media, plant-based
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food, and vector) was not considered in studies on zoonotic diseases in Austria until 1997 but
subsequently demonstrated the most gradual increase in scienti�c interest (Fig. 1b).

Zoonotic web actors and interfaces
Overall, between 1975 and 2022, the literature reported 197 zoonotic agents in Austria that were directly
or indirectly evidenced in natural infections, including an unusual case of a dog hair described as a
zoonosis (this “agent” was not considered in the network analysis) (Supplementary Fig. 4). Among them,
187 (94.9%) were directly or indirectly detected in 155 distinct vertebrate hosts, including human, 111
wildlife, eight livestock, and 36 companion (including exotic pets) animal species (Supplementary
Table 2). The highest zoonotic agent richness was observed in Primates (88, with 87 zoonotic agents
reported in human), Carnivora (59 zoonotic agents), Artiodactyla (59), Galliformes (24), and Rodentia (23)
(Fig. 2).

At the environment-zoonotic agent interface, 24 (12.2%) zoonotic agents were detected in 12 different
invertebrate (vector) species. Surprisingly, USUV was not reported in any arthropod vector within the
selected publications (Supplementary Table 3). Additionally, 11 (5.6%) zoonotic agents, including bacteria
(Listeria monocytogenes, Salmonella sp., Escherichia coli, and Mycobacterium sp.) and eukaryotes
(Cryptosporidium, Giardia, and Toxocara) were reported in six types of environmental media, including
surfaces and tools in food processing environments as well as “natural” matrices (e.g., water, sandboxes)
(Supplementary Table 4). Finally, at the food system-zoonotic agent interface, 15 (7.6%) zoonotic agents
were detected in 31 categories of food. Meat and meat products yielded the majority of positive results
(55.8%) while plant-based foods comprised only 2.5% of zoonotic agent-positive food products. Zoonotic
agents identi�ed in food were mainly of the genera Listeria (36.6% of positive foodstuffs), Escherichia
(22.8%), and Salmonella (22.5%). Out of the 21 identi�ed zoonotic agents in foodstuffs, all were bacteria
except for three parasites (Anisakis, Echinococcus, and Trichinella spiralis) (Supplementary Fig. 5).

Zoonotic web structure
Figure 3 depicts the full zoonotic web and interfaces (see Supplementary Fig. 6 for conventional bipartite
network visualisation). The full network contained 396 nodes, i.e., actors (zoonotic sources and agents),
with 658 edges (representing infections) and an average number of 1.66 interactions per actor. The giant
connected component of the zoonotic web included 387 actors (97.7% of the nodes) with 652 edges
(99.1% of the edges). Additionally, the zoonotic web comprised three small components: the �rst
illustrated relationships between Encephalitozoon cuniculi and its hosts Arvicola amphibius (Eurasian
water vole) and Oryctolagus cuniculus (rabbit); the second showed Mycobacterium chelonae,
Mycobacterium marinum, and Mycolicibacterium fortuitum with their common host Salmo trutta fario
(river trout); �nally, the third depicted the infection of mosquitoes of the genus Uranotaenia with
Alphamesonivirus 1.

The analysis of the full zoonotic web showed a right-skewed distribution of the node degree centrality,
revealing few nodes with a high number of connections whereas most of the nodes had one. Among the
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hosts, the nodes Homo sapiens (human, degree centrality, k = 87), Bos taurus (cattle, k = 38), Canis lupus
familiaris (dog, k = 29), Felis catus (domestic cat, k = 21), Vulpes vulpes (red fox, k = 19), Sus scrofa (pig, k 
= 17), Gallus gallus (chicken, k = 15), Ovies aries (sheep, k = 13), Sus scrofa (w) (wild boar, k = 11), and
Nyctereutes procyonoides (raccoon dog, k = 10) exhibited high zoonotic agent richness. Among the
vectors, the node Ixodes exhibited highest degree centrality (k = 16), with multiple connections to
Rickettsia, Borrelia, and Babesia species. The node Culex showed a low degree centrality (k = 2), with links
to West Nile virus (WNV) and Orthobunyavirus Tahyna. Among nodes representing food sources, the
highest degree centrality was observed for the nodes cattle meat and meat product, animal (unspeci�ed)
meat and meat product (each k = 8), and animal (unspeci�ed) dairy (k = 6). Degree centrality of nodes
representing environmental matrices showed relatively low values, ranging between 1 and 4. Among the
zoonotic agents, the nodes USUV (k = 38), Salmonella enterica (k = 33), WNV (k = 30), Salmonella (k = 24),
Escherichia coli (k = 19), Listeria (k = 17), Listeria monocytogenes (k = 17), verotoxigenic Escherichia coli
(VTEC) (k = 16), Campylobacter jejuni (k = 15), Toxoplasma gondii (k = 15), In�uenza A virus (k = 12),
Campylobacter coli (k = 11), Enterohaemorrhagic E. coli (EHEC) (k = 11), Leptospira, Staphylococcus
aureus, and Campylobacter (each k = 10) revealed a greater host plasticity in Austria. Furthermore, viruses
had a greater zoonotic source plasticity (range) than bacteria and eukaryotes, with an average degree of
3.90, 3.77, and 2.28, for nodes representing bacterial, viral, and eukaryotic zoonotic agents, respectively.

Network of zoonotic agent sharing
We generated a unipartite scienti�c research effort-adjusted network of zoonotic sources, showing the
zoonotic agent-sharing transmission network. This network depicts patterns of zoonotic transmission
potential between sources, with edges representing the likelihood that a given zoonotic source will
transmit one or more zoonotic agent to another source, relative to other sources in the network28. Thus,
for one zoonotic agent, connected sources belong to the same transmission chain29 (Fig. 4a). In this
network, node rankings using the four centrality metrics showed positive correlation (0.26 < Kendall’s Tau 
< 0.77, p < 0.001 in all cases, Supplementary Table 5). The nodes Homo sapiens (human), Gallus gallus
(chicken), Bos taurus (cattle), and Animal (unspeci�ed) meat and meat product were the most in�uential
nodes in the network, appearing in the top 10 actors by the four centrality metrics. Additionally, the nodes
Ovies aries (sheep) and Cattle meat and meat product could also be considered as in�uential, ranking in
the top 10 actors by three (out of four) centrality metrics (Table 1). Notably, the nodes Equus caballus
(horse) and various nodes representing bird species exhibited high degree and strength centrality,
attributable to their shared interactions with the two Ortho�aviviruses, WNV and USUV. Interestingly, the
nodes Sus scrofa (wild boar), Testudines (turtles), Canis lupus familiaris (dog), Felis catus (domestic cat),
Apodemus �avicollis (yellow-necked �eld mouse), Nyctereutes procyonoides (raccoon dog), and the tick
Ixodes ranked high by betweenness centrality, suggesting that they may act as bridges between host
communities (without necessarily transmitting zoonotic agents across these communities). Besides the
most in�uential nodes, two hosts, Sus scrofa (pig) and Canis lupus familiaris (dog) as well as two food
matrices, Animal (unspeci�ed) ready to eat product and Pig meat and meat product ranked in the top 10
actors by closeness centrality. Closeness centrality identi�es nodes that are “close” to many other
nodes30; therefore, zoonotic sources which share numerous zoonotic agents with numerous sources
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would have high closeness centrality. Summary statistics for the four node centrality metrics per category
of zoonotic source are shown in Table 2. Many nodes in the network showed a betweenness equals to
zero. Except for betweenness centrality, there were signi�cant differences in the average values of the
centrality metrics between the four zoonotic source categories (Supplementary Table 6).
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Table 1
Top 10 most in�uential actors in the network of zoonotic agent sharing (i.e., considering hosts, vectors,

food, and environmental matrices as zoonotic sources) ranked by node centrality metrics. The NCBI-
resolved scienti�c and common names of the hosts are speci�ed. Edge weights were adjusted to take

into account the scienti�c research effort. The normalised values of the weighted betweenness and
closeness are presented.

Node / Degree centrality Node / Strength Node /
Betweenness
centrality

Node /
Closeness
centrality

1. Homo sapiens (human)1 / 149 1. Homo sapiens
(human)1 /
993.3

1. Homo
sapiens
(human)1 /
0.732

1. Homo
sapiens
(human)1 /
3.92

2. Bos taurus (cattle)1 / 79 2. Bos taurus
(cattle)1 / 457.3

2. Sus scrofa
(wild boar)1 /
0.212

2. Bos
taurus
(cattle)1 /
3.70

3. Gallus gallus (chicken)1 / 78 3. Gallus gallus
(chicken)1 /
387.2

3. Bos taurus
(cattle)1 /
0.122

3. Gallus
gallus
(chicken)1 /
3.61

4. Sus scrofa (wild boar)1, Animal
(unspeci�ed) meat and meat product3 / 59

4. Animal
(unspeci�ed)
meat and meat
product2 / 383.7

4. Gallus
gallus
(chicken)1 /
0.100

4. Animal
(unspeci�ed)
meat and
meat
product2 /
3.54

5. Equus caballus (horse)1 / 57 5. Cattle meat
and meat
product2 / 281.0

5. Testudines
(turtles)1 /
0.025

5. Sus scrofa
(pig) 1 / 3.51

6. Asio otus (long-eared owl), Bubo bubo
(Eurasian eagle-owl), Bubo scandiacus
(snowy owl), Ciconia Ciconia (white stork),
Circus aeruginosus (western marsh harrier),
Coloeus monedula (jackdaw), Corvus cornix
(hooded crow), Gypaetus barbatus
(lammergeier), Strix uralensis (Ural owl)1,
animal (unspeci�ed) dairy2 / 56

6. Ovis aries
(sheep)1 / 270.4

6. Canis lupus
familiaris
(dog)1 / 0.018

6. Ovis aries
(sheep)1 /
3.46

7. Serpentes, Testudines, lizard (unspeci�ed)1

/ 53
7. Animal
(unspeci�ed)
dairy2 / 265.1

7. Felis catus
(domestic
cat)1 / 0.016

7. Cattle
meat and
meat
product2 /
3.42

1 Zoonotic source category: host; 2 Zoonotic source category: food; 3 Zoonotic source category:
invertebrate vector.
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Node / Degree centrality Node / Strength Node /
Betweenness
centrality

Node /
Closeness
centrality

8. Ovis aries (sheep)1 / 51 8. Gypaetus
barbatus
(lammergeier)1 /
259.7

8. Animal
(unspeci�ed)
meat and
meat product2

/ 0.013

8. Animal
(unspeci�ed)
ready to eat
product2 /
3.39

9. Sus scrofa (pig)1, cattle meat and meat
product2 / 50

9. Bubo
scandiacus
(snowy owl),
Circus
aeruginosus
(western marsh
harrier), Coloeus
monedula
(jackdaw), 1 /
256.6

9. Apodemus
�avicollis
(yellow-necked
�eld mouse),
Nyctereutes
procyonoides
(raccoon
dog)1 / 0.0103

9. Pig meat
and meat
product2 /
3.38

10. Game meat and meat product2 / 44 10. Strix
uralensis (Ural
owl)1 / 256.3

10. Ixodes3 /
0.101

10. Canis
lupus
familiaris
(dog)1 / 3.32

1 Zoonotic source category: host; 2 Zoonotic source category: food; 3 Zoonotic source category:
invertebrate vector.
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Table 2
Summary statistics of the node centrality metrics in the research effort-adjusted network

of zoonotic agent sharing, per category of zoonotic source.

  Min. 1st Qu. Median Mean 3rd Qu. Max.

Hosts (n = 152)

Degree centrality 1 19 32 30.05 37 149

Strength centrality 1.58 58.86 155.18 139.66 171.23 993.30

Betweenness centrality 0 0 0 0.0087 0.0007 0.731

Closeness centrality 0.877 1.852 2.158 2.196 2.466 3.919

Vectors (n = 7)

Degree centrality 1 4 7 10.86 13.5 33

Strength centrality 3.88 7.235 19.85 35.53 40.04 130.41

Betweenness centrality 0 0 0 0.0015 0.0030 0.0101

Closeness centrality 1.131 1.508 1.674 1.853 2.076 2.995

Food (n = 31)

Degree centrality 2 16 23 25.68 33 59

Strength centrality 10.24 73.58 89.19 128.76 165.90 383.69

Betweenness centrality 0 0 0 0.0005 0.0002 0.0134

Closeness centrality 1.676 2.255 2.583 2.654 3.159 3.542

Environment (n = 6)

Degree centrality 3 6.25 13 12.17 16 23

Strength centrality 11.63 22.90 52.78 48.75 70.75 85.62

Betweenness centrality 0 0 0 0 0 0

Closeness centrality 1.928 1.973 2.067 2.113 2.278 2.324

Zoonotic agent sharing communities
We identi�ed six communities (clusters of zoonotic sources sharing similar agents) in the zoonotic agent
sharing network (Fig. 4b). Community 1: primarily comprised central hosts having higher values of
centrality in the unipartite zoonotic agent sharing network and generally living in proximity to humans or
having frequent interactions with humans, including livestock, companion animals (dogs, cats),
synanthropic species (brown rat, domestic mouse), game species (red fox, cervids), but also captive
primates. Notably, Aedes mosquitoes and ticks (Hyalomma, Ixodes) were part of this community.
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Community 1 was characterised by a high diversity of zoonotic agents, with 175 taxa shared among 51
zoonotic sources that composed the community. Community 2: encompassed diverse reptiles (snakes,
lizards, and turtles) and amphibians, including non-traditional pet (NTP) species, along with the wild boar;
the main zoonotic agent shared within this community was S. enterica. Community 3: consisted of
various avian taxa, including birds of prey, ducks, waterfowl, gamebirds, chicken, and pigeons. Note that
hosts in this community were broadly designated, lacking speci�c scienti�c nomenclature. The primary
shared zoonotic agents in community 3 were E. coli and In�uenza A virus. Community 4: included various
food products and environmental matrices related to food production, but also public lavatory and
Meleagris gallopavo (turkey). Main zoonotic agents shared within community 4 were foodborne,
principally Salmonella, Listeria monocytogenes, and VTEC. Community 5: mostly clustered WNV hosts
and, to a lesser extend USUV hosts, including various bird species, the vector Culex, and horse.
Community 6: represented USUV hosts and exclusively included bird species (Fig. 5, Supplementary
Table 7, Supplementary Fig. 7).

Zoonotic agent sharing at human-animal-environment
interfaces
A total of 24,475 cliques were identi�ed, of which, 153 were One Health 3-cliques. The distribution of the
research effort-adjusted number of zoonotic agents shared at human-animal-environment interfaces
(represented by the sum of the edge weights within One Health cliques) displayed a right-skewed pattern
(Fig. 6a), with a median of 20.8. This suggested that, at most human-animal-environment interfaces, the
likelihood of a speci�c zoonotic source transmitting one or more zoonotic agents to another source is
relatively low. We identi�ed six One Health cliques that ranked the highest based on the number of
zoonotic agents shared (Fig. 6b). In �ve of them, cattle (B. taurus) was involved while in three of them,
foodstuffs from animal or plant origin were implicated. Environmental samples from food processing
facilities were present with three cliques.

Imported and emerging zoonotic agents
Between 1975 and 2022, Austria reported 48 importation events of zoonotic agents, of which, 11 were
bacteria, seven were helminths, one was an arthropod, and two were viruses. These imported zoonotic
agents were documented as potentially originating from multiple countries (Supplementary Table 8).
Additionally, we report the emergence of eight zoonotic diseases in Austria between 1975 and 2022,
corresponding to a frequency of approximately one emerging zoonotic disease every six years. Notably,
all of them emerged in the past 20 years. The etiologic agents and their respective hosts, along with the
year of discovery were: USUV (birds, 2001), Rickettsia helvetica (Ixodes ricinus, 2005), Anisakis (human,
2009), Brucella canis (dog, 2010), Rickettsia conorii subsp. raoultii (dog, 2015), WNV (horse, 2016),
Thelazia capillipaeda (domestic cat, 2018), and Baylisascaris procyonis (racoon, 2019). We documented
three types of emergences: �rst discovery outside historical geographic range, �rst discovery in Austria,
and �rst autochthonous case (Supplementary Fig. 8). Using the zoonotic web, we additionally estimated
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the current source range of the eight emerging zoonotic agents, revealing associations with 59 vertebrate
hosts, including human, and four genera of arthropod vectors. (Supplementary Fig. 9).

Discussion
Cross-species transmission and emergence of zoonotic-origin diseases occur at complex animal-human-
environment interfaces, within dynamic social-ecological systems. These interfaces represent signi�cant
One Health challenges. Here, we present the �rst attempt to analyse nearly 50 years of data on naturally
occurring zoonotic infections (or contaminations) in Austria, leveraging an original One Health approach,
based on a novel dataset and network theory. This work demonstrates that most zoonotic agents are
capable of infecting both human and diverse animal species across various taxa, while evolving within
multi-source multi-agent ecological communities, consistent with the established principles in parasite
community ecology31. We argue that the comprehensive analysis of the zoonotic web holds greater value
when studying zoonotic transmission chains compared to the commonly employed host-pathogen
network approach, as it offers a broader epidemiological perspective and more analytical �exibility.
Notably, we studied the centrality of zoonotic sources, including hosts, vectors, foodstuffs, and
environmental matrices, within the network of zoonotic agent sharing, and evidenced that certain sources
play a disproportionate role in the sharing of zoonotic agents. Speci�cally, we underscored the crucial role
of arthropod vectors and foodstuffs (typically omitted in host-pathogen networks) in the risk of zoonotic
disease emergence and transmission through the zoonotic web, pinpointing potential targets for One
Health surveillance programmes.

Ten genera of zoonotic agents constituted 41% of the published research on zoonotic diseases in Austria,
with seven of them involving agents subjected to compulsory surveillance and reporting in humans
and/or animals32. This outcome underscores an imbalance in research interest, likely in�uenced by
funding opportunities as well as global- and national-level prioritisation, typically based on known
incidence and impact on human populations. Such a bias may lead to a skewed assessment of the
overall zoonotic risk, especially concerning potentially "neglected" zoonoses such as certain helminth
infections (e.g., diro�lariosis, dicrocoeliosis, hepatic capillariosis). Moreover, research trends show that
very few publications in Austria address the environmental compartment, aligning with global
observations33.

From 1975 to 2022, Austria saw the emergence of eight zoonotic agents, averaging one EID every six
years. While there is often an emphasis on viral emergence, particularly considering that RNA viruses
pose the most signi�cant threat34, our �ndings challenge this perspective. We have demonstrated that
most emerging pathogens (six out of eight) in Austria are bacteria and helminths. Notably, two of the
emerging bacteria belong to the genus Rickettsia, aligning with the �ndings of Jones, et al. 1. This
highlights the importance of broadening our focus beyond viral threats and acknowledging the
substantial role that bacterial and helminthic pathogens play in the landscape of emerging diseases.
Moreover, four emerging zoonoses are transmitted by arthropods vectors (WNV, USUV, R. helvetica, R.
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conorii subsp. raoultii). As a result of climate change and globalisation, there is a growing likelihood of
new arthropod species populations becoming established in Austria, increasing the risk of future EID
events35. Surprisingly, despite SARS-CoV-2 being noti�able for both humans and animals36,37, none of
the COVID-19-related publications concerning human cases refer to it as a zoonotic disease. Likewise, the
sole publication investigating SARS-CoV-2 in Austria animals fails to mention its zoonotic potential38.

Within the zoonotic web, multiple zoonotic sources contribute to the maintenance and spread of zoonotic
agents. However, many sources found (sero)positive for a zoonotic agent, may not, when taken
individually, be able to maintain a sustained persistence of the agent within the network39. Nevertheless,
as members of a zoonotic source community, interacting with maintenance and non-maintenance
sources, they potentially play a role in the zoonotic agent ecology40. We demonstrate that the zoonotic
agent sharing network in Austria is organised into six communities. Our results indicate that the
community including human, the oldest domesticated species (e.g., dog, cat, sheep, cattle, pig41), and
synanthropic species (e.g., Norway rat, house mouse) shares the most zoonotic agents. These national-
level �ndings align with results from global studies3,42. Additionally, human-modi�ed environments, such
as sandboxes, cluster with humans, domesticated and commensal species, highlighting the role of the
shared ecosystem and environmentally persistent stages in the ecology of certain zoonoses43. The
determinants of the zoonotic source community assembly and composition remains a challenge in
disease ecology5,44. We found evidence that a limited number of highly connected zoonotic agents in the
bipartite zoonotic web, such as USUV, S. enterica, WNV, and In�uenza A, may, at least partly, drive zoonotic
agent sharing community assemblage. The grouping of most food products into one community implies
that anthropogenic activities, particularly those related to food processing and transformation, may
further in�uence the pattern of assembly within zoonotic source communities. These �ndings suggest
that a combination of local epidemiological, ecological, human-related, and behavioural (e.g., relationship
and proximity to human)3 factors play a key role in shaping zoonotic agent sharing community patterns.

Our �ndings underscore the presence of central zoonotic sources in the network, demonstrating robust
results across three to four centrality metrics after controlling for research effort. These central zoonotic
sources have a higher number of interactions with zoonotic agents, acting as hubs, or bridge different
zoonotic sources communities in the network, acting as connectors45. In particular, some livestock
species (e.g., cattle, chicken), companion animal (e.g., dog, cat, turtles), wildlife (e.g., yellow-necked �eld
mouse, wild boar), and vectors (Ixodes) play a crucial role as bridge hosts, through which zoonotic agents
can potentially spillover from maintenance (generally wild) host populations or communities to target
populations (generally domesticated species or humans) that are usually “protected” through public
health or biosecurity measures25,39,46,47. Notably, Ixodes ticks are pivotal in the epidemiology and
zoonotic spillover of bacteria from the genera Rickettsia, Borrelia, and Babesia. Furthermore, the two
communities involving USUV and WNV hosts illustrate the maintenance of zoonotic viruses within
partially overlapping host communities. In this subsystem, mosquitoes of the genus Culex play a central
role, serving as primary ampli�cation vectors for WNV and USUV within each bird community.
Additionally, Culex mosquitoes act as bridge vectors between both avian maintenance communities and
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between these communities and potential mammalian hosts, including humans48. These results
emphasise the importance of both vector monitoring and testing for pathogens as an essential
component for early detection of emerging zoonoses and the establishment of early warning systems.

We present a novel approach based on the identi�cation and quantitative characterisation of speci�c
network structures, named One Health 3-cliques, for estimating the likelihood of zoonotic spillover at
human-animal-environment interfaces. This method is �exible and can be applied to any zoonotic web.
Our �ndings demonstrate that there is an increased probability of zoonotic spillover at human-cattle and
human-food interfaces. Notably, human zoonotic infection through consumption of contaminated food is
a major public health risk, with Listeria, Salmonella, and Escherichia being the most frequently reported
agents in food products across the included publications. Our results further emphasize the critical
importance of monitoring zoonotic agents in food-processing environments.

A crucial challenge in formulating One Health surveillance and primary prevention strategies (i.e., at
source)17 for multi-source zoonotic agents, in particular emerging ones, is identifying what is the reservoir
of infection46, i.e., characterising, within a given context, the “ecologic system in which an infectious
agent survives inde�nitely”49 and from which it can be sustainably transmitted to the target population39.
The goal is to de�ne what could be an optimal (high speci�city and sensitivity) sentinel50 to detect the
circulation of a speci�c zoonotic agent above an acceptable threshold posing a potential transmission
risk to the target population (typically human). Identifying sentinels through network metrics should
depend on the topology of the network, the infectious agent to be monitored (e.g., endemic versus
emerging, transmission route(s)), the (estimated) infection rate, the target population, the objective of the
surveillance (e.g., early detection versus prevalence estimation)51,52, and the speci�c epidemiological,
ecological, and socio-cultural-economic (e.g., what resources are available, what measures are
acceptable) context. Notably, selecting sentinels that are distant from each other in the network proved to
enhance the overall probability of one sentinel being in proximity to an outbreak, thereby increasing the
likelihood of detection53. For example, distributing the sentinels in different communities52 and
prioritising surveillance of highly connected nodes in the network29 (e.g., via regular sampling) would
achieve higher performance than randomly selected nodes.

Nodes to be prioritised for surveillance may be different than those used for disease control53. Removing
central nodes in the network, e.g., via vaccination or culling targeting “bridge” zoonotic sources, can
signi�cantly reduce the connectivity of the zoonotic web29, therefore decreasing the likelihood of zoonotic
spillover into the human population. However, betweenness centrality fails to discriminate between
zoonotic sources that have high betweenness because they have a lot of connections in the network (i.e.,
high degree centrality), such as human and cattle, or sources that really connect two communities,
serving as bottlenecks for zoonotic transmission �ow29 (e.g., Ixodes). Nevertheless, the effectiveness of
interventions is intricately connected to the speci�c system under study and must be tailored to the
context. For example, badger culling, equivalent to removing the badger node in the zoonotic web, has
shown contrasting results on the prevalence of tuberculosis in cattle in the UK54,55.
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Our study acknowledges several limitations. First, poorly described taxonomic names hinders precise
identi�cation of zoonotic agents or vertebrate hosts at the species level. Likewise, the unspeci�c
description of food origin (e.g., “unspeci�ed” animal), alongside our conservative approach to data
validation/cleaning and adherence to authors' terminology, may have resulted in inaccurate assessment
of the degree centrality for some nodes. For example, shiga toxin-producing E. coli (STEC) strains could
refer to both VTEC and EHEC56; similarly, in the case of a host linked to both Listeria and L.
monocytogenes, Listeria could potentially be L. monocytogenes. Imprecise description of the samples
and zoonotic agents in publications represents a major limitation to the estimation of the zoonotic risk.
Moreover, the single species-single pathogen approach, especially dominant in human medicine11, and
the tendency to disproportionally investigate zoonotic sources that are closer to humans can results in
sample bias and in a skewed distribution of the number of zoonotic agents recorded per sources, with
human showing the highest number of zoonotic agents, followed by domesticated species. Ultimately,
expanding the dataset by including additional data on natural infections from diverse laboratories (e.g.,
university laboratories that often investigate a broader range of sources and agents compared to national
reference labs) and incorporating a temporal dimension to zoonotic source-agent interactions would
allow for a more comprehensive and dynamic assessment of the zoonotic transmission chain within and
between the communities. This approach could unveil seasonal variations in spillover events57 as well as
mechanisms that link host diversity to disease spread and emergence58. Moreover, as data on
directionality in transmission is largely unavailable, we used a non-directed network and assumed a
symmetrical process in interspecies transmission. This simpli�cation of the spillover process may have
limitations in capturing nuances in the dynamics of zoonotic transmission59 (e.g., WNV can be
transmitted from birds to humans via mosquitoes but this transmission process is not reciprocal).
Furthermore, our data provides information on infection solely at the species level, overlooking individual
variations in shedding, and potentially missing key individuals acting as hubs (“superspreaders”). Finally,
controlling for detection method stringency8, such as PCR (or other direct detection methods) versus
serology, could further re�ne our �ndings, allowing to adjust edge weight within the network.

Conclusion
Network analysis represents a cross-disciplinary method for unveiling the intricate web of zoonotic
interactions involving multiple sources and infectious agents within an ecological system. In addition to
presenting interactions between nodes, a zoonotic web approach enables the identi�cation of in�uential
zoonotic agents and sources that may hold particular epidemiologic signi�cance. Overall, this work
emphasises the need for further modelling and empirical studies to explore how maintenance is
in�uenced by multiple sources-agent interactions. Establishing e�cient and context-adapted One Health
network-based surveillance and control strategies requires supplementing the network analysis with
multidisciplinary data, ensuring a holistic, multidimensional understanding of the zoonotic web to unravel
the complex dynamics of zoonotic transmission chains. 

Methods
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Systematic literature search and data extraction
Information about zoonotic agents circulating in Austria is dispersed across scienti�c papers, reports
from the Austrian Agency for Health and Food Safety (AGES), Reports from the Federal State Veterinary
Services, and student theses. Between 17 July and 23 August 2022, a systematic literature search was
conducted using the query ("Zoono*" AND ("Austria" OR "Österreich")) in the following databases:
PubMed®, Scopus, and vetmed:seeker (internal database of the University of Veterinary Medicine Vienna,
Austria), including articles published between the inception of the databases and the date of the search.
Furthermore, the publication database of the AGES (https://www.ages.at/en/research/publication-
database) was searched using the keyword "zoono*". Additional papers found in the reference section of
reviews that provided relevant information were also included. Retrieved publications were deduplicated
in the reference manager Citavi (Swiss Academic Software. 2023) before the following selection
processes.

Titles and abstracts were �rst screened for relevance using the following inclusion criteria: the publication
presented data pertaining to at least one zoonotic disease or agent that was investigated or documented
in Austria and the agent was identi�ed as zoonotic in the paper. Publications were excluded i) if they did
not investigate or describe a zoonotic disease that was identi�ed as such, ii) if research was not
conducted in Austria, iii) if publications did not describe naturally occurring zoonotic infection, or iv) if
publications described disease physiology or v) dealt with treatment or methods for pathogen detection.
Book chapters, posters, literature reviews, statistical forecasts, and conference proceedings were
excluded. Regarding antimicrobial resistant bacteria, papers were included if they speci�cally explored
the animal-human interface and/or the authors referred to zoonotic transmission. To prevent duplication
of data, diploma-, master's-, and doctorate thesis were not included if a peer-reviewed research paper
published the same data. 

In a second step, the full texts of the previously selected titles/abstracts were screened using the
inclusion/exclusion criteria described above. Publications were excluded if they were not in German or
English language or did not describe the situation in Austria. When a publication dealt with multiple
countries, it was included if it provided speci�c information on zoonotic diseases in Austria.

The following data was extracted from the selected publications: i) Publication data: citation, year of
publication, and type of publication; ii) Type of study: case study, original research, or national
surveillance data; iii) Investigated zoonotic agent: agent type (e.g., bacterium, virus, parasite, fungus,
prion, or other) and common/scienti�c names as mentioned in the information source; iv) Investigated
host: host category, e.g., human, companion animal (de�ned as domesticated animals possessed by a
person for reasons other than food or resource production, including domesticated small rodents or
exotic companion animals), livestock (de�ned as domesticated animal kept for resource and food
production), wildlife (de�ned as free-ranging or captive wild animal species that are not domesticated),
common/scienti�c names as mentioned in the information source, if the zoonotic agent was detected in
the host, i.e., seropositive (con�rmed by the presence of antibodies), positive (direct detection of the
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agent), or negative; v) Investigated vector: common/scienti�c names as mentioned in the information
source, and if the zoonotic agent was detected in the vector (positive/negative); vi) Investigated
environmental matrix and if the zoonotic agent was detected in the matrix (positive/negative); vii)
Investigated food matrix: the speci�c type of foodstuff investigated, the origin of the food product
(animal or plant), and if the zoonotic agent was detected in the foodstuff (positive/negative); viii)
Epidemiological context: study year, federal state(s), whether the case was imported and most probable
origin, whether the zoonotic agent was mentioned as emerging in Austria, and whether speci�c
professional activities were deemed to carry an elevated risk of exposure.

Data curation
First, the data underwent quality control and cleaning procedures where the unique values of each �eld
were checked to search for inaccurate or missing data in the dataset using the R function unique().
Events containing detected errors were manually inspected against the original data source, and, when
necessary, the erroneous values were modi�ed, replaced, or removed. Furthermore, for each animal host,
vector, and zoonotic agent, common and scienti�c names as well as taxonomic classi�cation were
resolved against the NCBI Taxonomy database60 using the R package taxize61. If a con�ict occurred
between scienti�c name and/or common name as provided in the information source and NCBI-resolved
name, the information source was cross-referenced and searched for complementary information on the
investigated species. When the original source did not provide su�cient details for identi�cation of
scienti�c name, the most precise taxonomic denomination was used. 

Food categories were generated by combining the food source (e.g., cattle) and the type of food (e.g.,
meat and meat products). For analytical purposes, foodstuffs designating the same type of food were
grouped. For example, “kebab”, “ground meat”, or “rillettes” were coded as “meat and meat product”;
“milk” and “milk product” were coded as “dairy”; “egg” and “egg product” were coded as “egg”; “�sh”, “�sh
�let”, or “rollmops” were coded as “marine product”; “salad”, “spices”, “fruit”, or “vegetable” were coded as
“plant-based food”. The categories “cheese” (e.g., mozzarella, Brie, Roquefort) and “sausage” (e.g., ham,
salami, raw meat sausage) were also added for more accurate representation.

Analysis of the zoonotic web
The dataset was used to create an undirected network representing the web of naturally occurring
zoonotic interactions, thereafter called zoonotic web, depicting the relationships between zoonotic actors.
In this network, the zoonotic agents and their zoonotic sources (i.e., vertebrate hosts, arthropod vectors,
foodstuffs, and environment) were shown as nodes linked by edges, which represented zoonotic infection
(hosts and vectors) or colonisation (food and environmental sources). In the network, the most speci�c
NCBI-resolved zoonotic agent and host names were employed, while arthropod vectors were aggregated
at the genus level. The zoonotic web is a bipartite network, i.e., a graph that contains two disjoint sets of
nodes, the zoonotic sources and the zoonotic agents, respectively, such that every edge connects the two
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node sets (i.e., interactions among zoonotic sources or among zoonotic agents were not allowed). The
degree centrality (the number of links a node has) was calculated for each node. Within the network
context, the node degree centrality for each zoonotic source corresponds to the zoonotic agent richness,
i.e., the number of taxa directly or indirectly evidenced from the zoonotic source. Similarly, the node
degree centrality for each zoonotic agent corresponds to the zoonotic source range, i.e., the number of
sources from which it has been directly or indirectly evidenced, re�ecting its “host” or “zoonotic source”
plasticity.

The zoonotic source-agent network was subsequently projected into a one-mode network of zoonotic
agents sharing among sources. Edges were weighted by the number of shared zoonotic agents between
two sources. To account for research biases, we considered, for each source, the total number of zoonotic
investigations (i.e., the number of times a source was studied). For instance, if, in one study, a source was
investigated annually for three years, we counted three zoonotic investigations. Similarly, if the same
source was examined for �ve zoonotic agents in a single study, we counted it as �ve zoonotic
investigations. This approach provided a more accurate estimation of scienti�c research effort compared
to simply counting the number of studies. We used the number of zoonotic investigations as an estimate
of scienti�c research effort for each source and regressed each edge weight by the Box-Cox transformed
number of zoonotic investigations of the least studied source of each edge. The residuals were
subsequently rescaled so that the lowest weight value was 19,10. After removal of the isolated
components in the research effort-adjusted one-mode network of zoonotic agent sharing, we calculated
the following node centrality metrics: degree centrality, strength centrality (the sum of the weights of
edges to/from a node), weighted betweenness (the number of shortest paths that go through a node,
which allows identifying nodes that act as bridges connecting the different communities), and weighted
closeness (the average inverse distance to all other nodes)30. To calculate the weighted metrics, the edge
weight was transformed into costs by dividing 1 by the weight 62. Node rankings through node centrality
metrics were compared using the Kendall correlation test. Average values of the node centrality metrics
were also compared between the four zoonotic source categories using the Kruskal-Wallis test. When a
difference was evidenced, a pairwise comparisons between zoonotic source categories was performed
using the Wilcoxon rank sum test; p-values were adjusted following the Benjamini-Hochberg method63.
Network analyses were performed using the R packages igraph 64 and bipartite 65. 

Community detection
We used the Leiden algorithm66, which is considered as an improvement over the Louvain algorithm67, to
detect communities of zoonotic agent sharing within the research-adjusted one-mode network of
zoonotic sources. The Leiden algorithm comprises three distinct steps: initial optimization of modularity,
subsequent re�nement of partition, and a third step focusing on the community aggregation process66.
Notably, by re�ning the local partition in each community, the Leiden algorithm demonstrates enhanced



Page 19/30

stability in community detection and offers more e�cient computation time compared to the Louvain
algorithm67. 

Exploring network One Health cliques
We investigated the circulation of zoonotic agents at human-animal-environment interfaces within the
research effort-adjusted network of zoonotic agent sharing by searching “One Health” 3-cliques in the
network structure. A clique is a fully connected subgraph within the network. A 3-clique is a set of three
nodes all pair-wisely connected to each other, therefore forming a triangle30. We were interested in 3-
cliques that included nodes representing the three traditional One Health compartments, i.e., animal,
human, and environment. Plant-based foodstuffs, invertebrate vectors, and any environmental matrices
(including surfaces and tools in food processing plants) were included into the compartment
“environment” while food products of animal origin were considered within the “animal” compartment.
We ranked the One Health cliques by their total edge weight, i.e., the sum of the edge weights between all
pairs of nodes (zoonotic sources) within the clique, corresponding to the research effort-adjusted sum of
zoonotic agents shared between all pairs of One Health compartments.

Data and code availability
The raw dataset generated in this study, its cleaned and validated version, as well as the R code used to
clean, validate, process, analyse the data and reproduce our �ndings are available in Supplementary
Information 1.
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Figure 1

Trends in research interest on zoonotic agents in Austria, 1975-2022, as measured by the number of
investigations involving a. different superkingdoms of zoonotic agents, and b. each compartment, as
recognised in the traditional One Health view. Only publications that investigated naturally occurring
zoonotic infections were considered. Plant-based foodstuffs, invertebrate vectors, and any environmental
matrices (including from food processing plants) were included into the compartment “environment”
while food products of animal origin were considered within the “animal” compartment. Note that a
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single publication may present more than one investigation, i.e., investigating multiple zoonotic agents
belonging to different superkingdoms and/or multiple compartments.

Figure 2

a. Bubble plot illustrating the distribution of the zoonotic agent genera across Austrian hosts, grouped by
taxonomic order, 1975-2022. Only publications that investigated naturally occurring zoonotic infections
were considered. Node size corresponds to the number of zoonotic agents detected within a speci�c
genus during this timeframe. Colours correspond to the zoonotic agent superkingdom. b. Zoonotic agent
richness per host taxonomic order. When host scienti�c or common name was not speci�c enough within
the publication, the taxonomic order cannot be retrieved and the host name, as mentioned in the
publication, was used (e.g., lizard, new-world camelid).
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Figure 3

Network representation of the zoonotic web in Austria, 1975-2022. This representation uses the D3
forceLink layout, providing a comprehensive visualisation and offering valuable epidemiological insights
into naturally occurring zoonotic interactions in Austria. The zoonotic web is a bipartite network, where
each node (circle) represents an actor in the zoonotic web in Austria, 1975-2022, with one set of nodes
representing zoonotic agents and the second set representing zoonotic sources that belong to different
categories: hosts, vectors, foodstuffs, and environmental matrices. Node size represents the actor's
degree and is coloured by the category the actor belongs to. The bottom-right graph illustrates the degree
distribution for the “zoonotic agents” and “zoonotic sources” partitions, the latter being disaggregated
based on source categories. The node degree centrality for each zoonotic source corresponds to the
zoonotic agent richness, i.e., the number of taxa directly or indirectly evidenced from the zoonotic source.
The node degree centrality for each zoonotic agent corresponds to the zoonotic source range, i.e., the
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number of sources from which the agent has been directly or indirectly evidenced, re�ecting its “host” or
“zoonotic source” plasticity.

Figure 4

Network of zoonotic agent sharing, created by connecting two zoonotic sources when they share at least
one zoonotic agent. The network is unipartite and each node (circle) represents a zoonotic source that
belong to a source category: host, vector, food, or environmental matrix. Node size represents the
zoonotic source's degree. The weight (width) of an edge between two zoonotic sources represent the
number of zoonotic agents shared, adjusted for the scienti�c research effort. a. Transmission-potential
among zoonotic sources. Node colours depict zoonotic source categories. Zoonotic hosts are additionally
colour-coded based on taxonomic classes to offer further biological insights. b. Communities of zoonotic
sources based on zoonotic agent sharing as determined using the Leiden algorithm. Node colours
represent the communities.
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Figure 5

Shared zoonotic agents within each zoonotic source community. Communities (represented by squares)
were determined using the Leiden algorithm run on the research effort-adjusted zoonotic agent sharing
network. Circles represent zoonotic agents. Size of the circle represents the degree centrality of the node
in the bipartite zoonotic web (i.e., the total number of sources from which it has been directly or indirectly
evidenced, re�ecting its “host” or “zoonotic source” plasticity). Circulation of a zoonotic agent within a
community is represented by a link between the community (square) and the zoonotic agent (circle). Link
width represents the number of zoonotic sources that share the zoonotic agent within the community it is
linked to. Colour scale shows the number of zoonotic sources (colour scale is correlated to both node size
and link width).
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Figure 6

a. Histogram and density plot of the total edge weights in One Health 3-cliques in the network of zoonotic
agent sharing. The edge weight between two nodes (representing zoonotic sources belonging to different
One Health compartments) is the number of zoonotic agents shared between these two nodes, adjusted
for the scienti�c research effort. The total edge weight of a clique corresponds to the sum of the edge
weights between all pairs of nodes within the clique. Plant-based foodstuffs, invertebrate vectors, and
any environmental matrices (including from food processing plants) were included into the compartment
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“environment” while food products of animal origin were considered within the “animal” compartment.
The dashed line separates the top six cliques (right side) from the others. b. Top six One Health cliques
based on the total edge weight. Nodes are colour-coded based on the “traditional” One Health
compartment, with yellow representing the human compartment, blue representing the animal
compartment, and green representing the environment. Edge weight is visualised as the edge width and
corresponding edge label.
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