1 P. Bar-On et al., “Kinetic and Structural Studies on the Interaction of Cholinesterases with the Anti-Alzheimer Drug Rivastigmine,” Biochemistry 41, no. 11 (March 1, 2002):3555–64, https://doi.org/10.1021/bi020016x.
2 M Rejwan Ali and Mihaly Mezei, “Observation of Quantum Signature in Rivastigmine Chemical Bond Break-up and Quantum Energetics, Spectral Studies of Anti-Alzheimer Inhibitors,” Journal of Biomolecular Structure and Dynamics, December 24, 2019, 1–11, https://doi.org/10.1080/07391102.2019.1708462.
3 Pablo Echenique and J. L. Alonso, “A Mathematical and Computational Review of Hartree–Fock SCF Methods in Quantum Chemistry,” Molecular Physics 105, no. 23–24 (December 10, 2007): 3057–98, https://doi.org/10.1080/00268970701757875.
4 E. J. Baerends and O. V. Gritsenko, “A Quantum Chemical View of Density Functional Theory,” The Journal of Physical Chemistry A 101, no. 30 (July 1, 1997): 5383–5403, https://doi.org/10.1021/jp9703768.
5 Martin Head-Gordon, John A. Pople, and Michael J. Frisch, “MP2 Energy Evaluation by Direct Methods,” Chemical Physics Letters 153, no. 6 (December 30, 1988): 503–6, https://doi.org/10.1016/0009-2614(88)85250-3.
6 Kecheng Cao et al., “Imaging an Unsupported Metal–Metal Bond in Dirhenium Molecules at the Atomic Scale,” Science Advances 6, no. 3 (January 1, 2020): eaay5849, https://doi.org/10.1126/sciadv.aay5849.
7 Jan Lipfert et al., “Torque Spectroscopy for the Study of Rotary Motion in Biological Systems,” Chemical Reviews 115, no. 3 (February 11, 2015): 1449–74, https://doi.org/10.1021/cr500119k.
8 Maarten M. van Oene et al., “Quantifying the Precision of Single-Molecule Torque and Twist Measurements Using Allan Variance,” Biophysical Journal 114, no. 8 (April 24, 2018): 1970–79, https://doi.org/10.1016/j.bpj.2018.02.039.
9 Maarten M. van Oene et al., “Quantifying the Precision of Single-Molecule Torque and Twist Measurements Using Allan Variance,” Biophysical Journal 114, no. 8 (April 24, 2018): 1970–79, https://doi.org/10.1016/j.bpj.2018.02.039.
10 Thomas Grohmann, Monika Leibscher, and Tamar Seideman, “Laser-Controlled Torsions: Four-Dimensional Theory and the Validity of Reduced Dimensionality Models,” Phys. Rev. Lett. 118, no. 20 (May 2017): 203201, https://doi.org/10.1103/PhysRevLett.118.203201.
11 A. Rahman, “Correlations in the Motion of Atoms in Liquid Argon,” Physical Review 136, no. 2A (October 19, 1964): A405–11, https://doi.org/10.1103/PhysRev.136.A405.
12 J. A. McCammon, B. R. Gelin, and M. Karplus, “Dynamics of Folded Proteins.,” Nature 267, no. 5612 (June 16, 1977): 585–90, https://doi.org/10.1038/267585a0.
13 M.P. Allen et al., Computer Simulation of Liquids, Oxford Science Publ (Clarendon Press, 1989), https://books.google.com/books?id=O32VXB9e5P4C.
14 Bernard R. Brooks et al., “CHARMM: A Program for Macromolecular Energy, Minimization, and Dynamics Calculations,” Journal of Computational Chemistry 4, no. 2 (June 1, 1983): 187–217, https://doi.org/10.1002/jcc.540040211.
15 Wendy D. Cornell et al., “A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules,” Journal of the American Chemical Society 117, no. 19 (May 1, 1995): 5179–97, https://doi.org/10.1021/ja00124a002.
16 William L. Jorgensen and Julian Tirado-Rives, “The OPLS [Optimized Potentials for Liquid Simulations] Potential Functions for Proteins, Energy Minimizations for Crystals of Cyclic Peptides and Crambin,” Journal of the American Chemical Society 110, no. 6 (March 1, 1988): 1657–66, https://doi.org/10.1021/ja00214a001.
17 Yue Shi et al., “The Polarizable Atomic Multipole-Based AMOEBA Force Field for Proteins,” Journal of Chemical Theory and Computation 9, no. 9 (2013): 4046–63, https://doi.org/10.1021/ct4003702.
18 Thomas P Senftle et al., “The ReaxFF Reactive Force-Field: Development, Applications and Future Directions,” Npj Computational Materials 2, no. 1 (March 4, 2016): 15011, https://doi.org/10.1038/npjcompumats.2015.11.
19 Nicholas Metropolis et al., “Equation of State Calculations by Fast Computing Machines,” The Journal of Chemical Physics 21, no. 6 (June 1, 1953): 1087–92, https://doi.org/10.1063/1.1699114.
20 D.J. Adams, “Chemical Potential of Hard-Sphere Fluids by Monte Carlo Methods,” Molecular Physics 28, no. 5 (November 1, 1974): 1241–52, https://doi.org/10.1080/00268977400102551.
21 Mihaly Mezei, “A Cavity-Biased (T, V, μ) Monte Carlo Method for the Computer Simulation of Fluids,” Molecular Physics 40, no. 4 (July 1, 1980): 901–6, https://doi.org/10.1080/00268978000101971.
22 R. Car and M. Parrinello, “Unified Approach for Molecular Dynamics and Density- Functional Theory,” Phys. Rev. Lett. 55, no. 22 (November 1985): 2471–2474, https://doi.org/10.1103/PhysRevLett.55.2471.
23 Rafael Escribano et al., “Prediction of the Near-IR Spectra of Ices by Ab Initio Molecular
Dynamics.,” Physical Chemistry Chemical Physics : PCCP 21, no. 18 (May 8, 2019): 9433–
40, https://doi.org/10.1039/c9cp00857h.
24 Martin Thomas et al., “Computing Vibrational Spectra from Ab Initio Molecular Dynamics.,” Physical Chemistry Chemical Physics : PCCP 15, no. 18 (May 14, 2013): 6608–22, https://doi.org/10.1039/c3cp44302g.
25 Mathias Van Thiel, Edwin D. Becker, and George C. Pimentel, “Infrared Studies of Hydrogen Bonding of Water by the Matrix Isolation Technique,” The Journal of Chemical Physics 27, no. 2 (August 1, 1957): 486–90, https://doi.org/10.1063/1.1743753.
26 Lee C. Ch’ng et al., “Experimental and Theoretical Investigations of Energy Transfer and Hydrogen-Bond Breaking in the Water Dimer,” Journal of the American Chemical Society 134, no. 37 (September 19, 2012): 15430–35, https://doi.org/10.1021/ja305500x. 27 Joseph R. Lane, “CCSDTQ Optimized Geometry of Water Dimer,” Journal of Chemical Theory and Computation 9, no. 1 (January 8, 2013): 316–23, https://doi.org/10.1021/ct300832f.
28 Bo Wang et al., “Molecular Orbital Analysis of the Hydrogen Bonded Water Dimer,” Scientific Reports 6, no. 1 (February 24, 2016): 22099, https://doi.org/10.1038/srep22099.
29 Helen Bieker et al., “Pure Molecular Beam of Water Dimer,” The Journal of Physical Chemistry A 123, no. 34 (August 29, 2019): 7486–90, https://doi.org/10.1021/acs.jpca.9b06460.
30 K. Liu, J. D. Cruzan, and R. J. Saykally, “Water Clusters,” Science 271, no. 5251 (February 16, 1996): 929, https://doi.org/10.1126/science.271.5251.929.
31 F Bartha et al., “Analysis of Weakly Bound Structures: Hydrogen Bond and the Electron Density in a Water Dimer,” The Role of Chemistry in the Evolution of Molecular Medicine. A Tribute to Professor Albert Szent-Gyorgyi to Celebrate His 110th Birthday 666–667 (December 1, 2003): 117–22 http,s://doi.org/10.1016/j.theochem.2003.08.020.
32 Helen Bieker et al., “Pure Molecular Beam of Water Dimer,” The Journal of Physical Chemistry A 123, no. 34 (August 29, 2019): 7486–90, https://doi.org/10.1021/acs.jpca.9b06460.
33 K. Morokuma and L. Pedersen, “Molecular‐Orbital Studies of Hydrogen Bonds. An Ab Initio Calculation for Dimeric H2O,” The Journal of Chemical Physics 48, no. 7 (April 1, 1968): 3275–82, https://doi.org/10.1063/1.1669604.
34 D. C. McDonald et al., “Near-Infrared Spectroscopy and Anharmonic Theory of Protonated Water Clusters: Higher Elevations in the Hydrogen Bonding Landscape,” The Journal of Physical Chemistry Letters 9, no. 19 (October 4, 2018): 5664–71, https://doi.org/10.1021/acs.jpclett.8b02499.
35 Bingbing Zhang et al., “Infrared Spectroscopy of Neutral Water Dimer Based on a Tunable Vacuum Ultraviolet Free Electron Laser,” The Journal of Physical Chemistry Letters 11, no. 3 (February 6, 2020): 851–55, https://doi.org/10.1021/acs.jpclett.9b03683.
36 Y. Bouteiller, B. Tremblay, and J.P. Perchard, “The Vibrational Spectrum of the Water Dimer: Comparison between Anharmonic Ab Initio Calculations and Neon Matrix Infrared Data between 14,000 and 90cm−1,” Chemical Physics 386, no. 1 (July 28, 2011):
29–40, https://doi.org/10.1016/j.chemphys.2011.05.014.
37 M. J. Frisch et al., Gaussian 16 Rev. C.01 (Wallingford, CT, 2016).
38 Axel D. Becke, “A New Mixing of Hartree–Fock and Local Density‐functional Theories,” The Journal of Chemical Physics 98, no. 2 (January 15, 1993): 1372–77, https://doi.org/10.1063/1.464304.
39 Jeng-Da Chai and Martin Head-Gordon, “Long-Range Corrected Hybrid Density Functionals with Damped Atom–Atom Dispersion Corrections,” Phys. Chem. Chem. Phys. 10, no. 44 (2008): 6615–20, https://doi.org/10.1039/B810189B.
40 G. A. Petersson et al., “A Complete Basis Set Model Chemistry. I. The Total Energies of Closed‐shell Atoms and Hydrides of the First‐row Elements,” The Journal of Chemical Physics 89, no. 4 (August 15, 1988): 2193–2218, https://doi.org/10.1063/1.455064.
41 G. A. Petersson and Mohammad A. Al‐Laham, “A Complete Basis Set Model Chemistry. II Open‐shell Systems and the Total Energies of the First‐row Atoms,” The Journal of Chemical Physics 94, no. 9 (May 1, 1991): 6081–90, https://doi.org/10.1063/1.460447. 42 J. Stephen Binkley, John A. Pople, and Warren J. Hehre, “Self-Consistent Molecular Orbital Methods. 21. Small Split-Valence Basis Sets for First-Row Elements,” Journal of the American Chemical Society 102, no. 3 (January 1, 1980): 939–47, https://doi.org/10.1021/ja00523a008.
43 Michelle M. Francl et al., “Self‐consistent Molecular Orbital Methods. XXIII. A Polarization‐type Basis Set for Second‐row Elements,” The Journal of Chemical Physics 77, no. 7 (October 1, 1982): 3654–65, https://doi.org/10.1063/1.444267.
44 George A. Jeffrey 1915-, An Introduction to Hydrogen Bonding (New York : Oxford University Press, 1997., 1997), https://search.library.wisc.edu/catalog/999821330902121.
45 L. A. Curtiss, D. J. Frurip, and M. Blander, “Studies of Molecular Association in H2O and D2O Vapors by Measurement of Thermal Conductivity,” The Journal of Chemical Physics 71, no. 6 (September 15, 1979): 2703–11, https://doi.org/10.1063/1.438628.
46 Martin W. Feyereisen, David Feller, and David A. Dixon, “Hydrogen Bond Energy of the Water Dimer,” The Journal of Physical Chemistry 100, no. 8 (January 1, 1996): 2993–
97, https://doi.org/10.1021/jp952860l.
47 Martin Schütz et al., “The Water Dimer Interaction Energy: Convergence to the Basis Set Limit at the Correlated Level,” The Journal of Chemical Physics 107, no. 12 (September 22, 1997): 4597–4605, https://doi.org/10.1063/1.474820.
48 Sílvia Simon, Miquel Duran, and J. J. Dannenberg, “Effect of Basis Set Superposition Error on the Water Dimer Surface Calculated at Hartree−Fock, Møller−Plesset, and Density Functional Theory Levels,” The Journal of Physical Chemistry A 103, no. 11 (March 1, 1999): 1640–43, https://doi.org/10.1021/jp9842188.
49 Anamika Mukhopadhyay, Sotiris S. Xantheas, and Richard J. Saykally, “The Water Dimer II: Theoretical Investigations,” Chemical Physics Letters 700 (May 16, 2018): 163– 75, https://doi.org/10.1016/j.cplett.2018.03.057.
50 Sotiris S. Xantheas, “Significance of Higher-Order Many-Body Interaction Energy Terms in Water Clusters and Bulk Water,” Philosophical Magazine B 73, no. 1 (January 1, 1996): 107–15, https://doi.org/10.1080/13642819608239116.
51 Ching Yeh Lin, Michael W. George, and Peter M. W. Gill, “EDF2: A Density Functional for Predicting Molecular Vibrational Frequencies,” Australian Journal of Chemistry 57, no. 4 (2004): 365–70.
52 Bouteiller, Tremblay, and Perchard, “The Vibrational Spectrum of the Water Dimer: Comparison between Anharmonic Ab Initio Calculations and Neon Matrix Infrared Data between 14,000 and 90cm−1.”
53 Bingbing Zhang et al., “Infrared Spectroscopy of Neutral Water Dimer Based on a Tunable Vacuum Ultraviolet Free Electron Laser,” The Journal of Physical Chemistry Letters 11, no. 3 (February 6, 2020): 851–55, https://doi.org/10.1021/acs.jpclett.9b03683.
54 D. F. Coker and R. O. Watts, “Structure and Vibrational Spectroscopy of the Water Dimer Using Quantum Simulation,” The Journal of Physical Chemistry 91, no. 10 (May 1, 1987): 2513–18, https://doi.org/10.1021/j100294a015.
55 Thomas A. Halgren, “Merck Molecular Force Field. I. Basis, Form, Scope, Parameterization, and Performance of MMFF94,” Journal of Computational Chemistry 17, no. 5‐6 (April 1, 1996): 490–519, https://doi.org/10.1002/(SICI)1096- 987X(199604)17:5/6<490::AID-JCC1>3.0.CO;2-P.
56 Michael J. S. Dewar et al., “Development and Use of Quantum Mechanical Molecular Models. 76. AM1: A New General Purpose Quantum Mechanical Molecular Model,” Journal of the American Chemical Society 107, no. 13 (June 1, 1985): 3902–9, https://doi.org/10.1021/ja00299a024.
57 James J. P. Stewart, “Optimization of Parameters for Semiempirical Methods I. Method,” Journal of Computational Chemistry 10, no. 2 (March 1, 1989): 209–20, https://doi.org/10.1002/jcc.540100208.
58 James J. P. Stewart, “Optimization of Parameters for Semiempirical Methods II. Applications,” Journal of Computational Chemistry 10, no. 2 (March 1, 1989): 221–64, https://doi.org/10.1002/jcc.540100209.
59 Berit Mannfors, Kim Palmo, and Samuel Krimm, “Spectroscopically Determined Force Field for Water Dimer: Physically Enhanced Treatment of Hydrogen Bonding in Molecular Mechanics Energy Functions,” The Journal of Physical Chemistry A 112, no. 49 (December 11, 2008): 12667–78, https://doi.org/10.1021/jp806948w.
60 Joseph R. Lane, “CCSDTQ Optimized Geometry of Water Dimer,” Journal of Chemical Theory and Computation 9, no. 1 (January 8, 2013): 316–23, https://doi.org/10.1021/ct300832f.
61 Thanh N. Truong and Eugene V. Stefanovich, “A New Method for Incorporating Solvent Effect into the Classical, Ab Initio Molecular Orbital and Density Functional Theory Frameworks for Arbitrary Shape Cavity,” Chemical Physics Letters 240, no. 4 (June 30, 1995): 253–60, https://doi.org/10.1016/0009-2614(95)00541-B.
62 Vincenzo Barone and Maurizio Cossi, “Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model,” The Journal of Physical Chemistry A 102, no. 11 (March 1, 1998): 1995–2001, https://doi.org/10.1021/jp9716997. 63 Adrian W. Lange and John M. Herbert, “Symmetric versus Asymmetric Discretization of the Integral Equations in Polarizable Continuum Solvation Models,” Chemical Physics Letters 509, no. 1 (June 3, 2011): 77–87, https://doi.org/10.1016/j.cplett.2011.04.092.
64 Ildikó Pethes and László Pusztai, “Reverse Monte Carlo Investigations Concerning Recent Isotopic Substitution Neutron Diffraction Data on Liquid Water,” Journal of Molecular Liquids 212 (December 1, 2015): 111–16, https://doi.org/10.1016/j.molliq.2015.08.050.
65 O. Matsuoka, E. Clementi, and M. Yoshimine, “CI Study of the Water Dimer Potential Surface,” The Journal of Chemical Physics 64, no. 4 (February 15, 1976): 1351–61, https://doi.org/10.1063/1.432402.
66 Subhas J. Chakravorty and Ernest R. Davidson, “The Water Dimer: Correlation Energy Calculations,” The Journal of Physical Chemistry 97, no. 24 (June 1, 1993): 6373–83, https://doi.org/10.1021/j100126a011.
67 Martin Schütz et al., “The Water Dimer Interaction Energy: Convergence to the Basis Set Limit at the Correlated Level,” The Journal of Chemical Physics 107, no. 12 (September 22, 1997): 4597–4605, https://doi.org/10.1063/1.474820.
68 Blithe E. Rocher-Casterline et al., “Communication: Determination of the Bond Dissociation Energy (D0) of the Water Dimer, (H2O)2, by Velocity Map Imaging,” The Journal of Chemical Physics 134, no. 21 (June 1, 2011): 211101, https://doi.org/10.1063/1.3598339.
69 Lee C. Ch’ng et al., “Experimental and Theoretical Investigations of Energy Transfer and Hydrogen-Bond Breaking in the Water Dimer,” Journal of the American Chemical Society 134, no. 37 (September 19, 2012): 15430–35, https://doi.org/10.1021/ja305500x.
70 Anamika Mukhopadhyay, William T.S. Cole, and Richard J. Saykally, “The Water Dimer I: Experimental Characterization,” Chemical Physics Letters 633 (July 16, 2015): 13–26, https://doi.org/10.1016/j.cplett.2015.04.016.
71 Xin Xu and William A. Goddard, “Bonding Properties of the Water Dimer: A Comparative Study of Density Functional Theories,” The Journal of Physical Chemistry A 108, no. 12 (March 1, 2004): 2305–13, https://doi.org/10.1021/jp035869t.
72 William T. S. Cole et al., “Far-Infrared VRT Spectroscopy of the Water Dimer: Characterization of the 20 Μm out-of-Plane Librational Vibration,” The Journal of Chemical Physics 143, no. 15 (October 20, 2015): 154306, https://doi.org/10.1063/1.4933116.
73 Bingbing Zhang et al., “Infrared Spectroscopy of Neutral Water Dimer Based on a Tunable Vacuum Ultraviolet Free Electron Laser,” The Journal of Physical Chemistry Letters 11, no. 3 (February 6, 2020): 851–55, https://doi.org/10.1021/acs.jpclett.9b03683.
74 Michel Grandbois et al., “How Strong Is a Covalent Bond?,” Science 283, no. 5408 (March 12, 1999): 1727, https://doi.org/10.1126/science.283.5408.1727.
75 Jeffrey T. Finer, Robert M. Simmons, and James A. Spudich, “Single Myosin Molecule Mechanics: Piconewton Forces and Nanometre Steps,” Nature 368, no. 6467 (March 1, 1994): 113–19, https://doi.org/10.1038/368113a0.
76 Lili Zhao, W. H. Eugen Schwarz, and Gernot Frenking, “The Lewis Electron-Pair Bonding Model: The Physical Background, One Century Later,” Nature Reviews Chemistry 3, no. 1 (January 1, 2019): 35–47, https://doi.org/10.1038/s41570-018-0052- 4.
77 Gilbert Newton Lewis, Valence and the Structure of Atoms and Molecules, (New York: The Chemical Catalog Company, Inc., 1923).