
Page 1/29

Generative Arti�cial Intelligence, Python, and
Gathering Grey Literature for a Systematic Literature
Review with Google’s Programmable Search Engine.
Cameron Frederick Atkinson

University of Tasmania

Case Report

Keywords:

Posted Date: March 29th, 2024

DOI: https://doi.org/10.21203/rs.3.rs-4007725/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

Additional Declarations: No competing interests reported.

https://doi.org/10.21203/rs.3.rs-4007725/v1
https://doi.org/10.21203/rs.3.rs-4007725/v1
https://creativecommons.org/licenses/by/4.0/

Page 2/29

Abstract
Systematically gathering grey literature for use in a systematic literature review (SLR) is a challenging
task, given the decentralised nature of online resources. Researchers, particularly those in the social
sciences, often �nd themselves navigating government or non-government organisation websites,
manually scouring repositories for documents relevant to their SLRs. This important stage is expensive in
terms of time and resources required and, in many instances, di�cult to repeat. This article introduces an
innovative methodology to address these challenges, providing social science researchers with a
systematic approach to gather grey literature for inclusion in SLRs. Utilising the computer programming
language Python, this articles leverages Google’s API to create a programmable search engine, facilitating
a systematic search for grey literature intended for inclusion in a SLR. A case study is presented to
demonstrate the e�ciency of this method in locating PDF documents, within which two examples are
provided. In the �rst example, documents from Australian government websites ending in “gov.au” related
to the topic of (“energy infrastructure” AND resilience) are sought. Secondly, “un.org” is added to illustrate
how multiple websites can be searched. Highlighting the effectiveness of this approach, the study
successfully locates 100 documents in just 7.5 seconds, automatically saving them into an Excel CSV �le
for further analysis. To the authors knowledge, this method represents an original approach in the
systematic gathering of grey literature for SLRs and highlights the contribution of generative arti�cial
intelligence systems such as ChatGPT 3.5 in assisting to script the necessary code for new SLR tools.

1. INTRODUCTION
The systematic literature review (SLR) is commonly regarded as the pinnacle of evidence gathering and
evidence synthesis [1, 2]. SLRs seek to gather, appraise, and synthesise evidence pertaining to a
phenomenon under investigation [3]. To accomplish this, SLRs entail comprehensive searches of
research databases, aiming to identify all relevant work within the �eld under review [4, 5]. The
motivations behind a SLR are multifaceted: (1) to publicise ongoing research and prevent duplications of
research; (2) to inform the planning of new research initiatives; (3) to substantiate claims of originality by
contrasting existing research against new research [3, 6].

This article aims to highlight an innovative approach for researchers, particularly social science
researchers engaged in SLRs, to streamline the laborious and time-consuming task of collecting grey
literature. Beyond addressing temporal and �nancial constraints, SLRs are susceptible to becoming
outdated due to their prolonged duration required for completion [7–9]. Additionally, the increasing
volume of reports, among other grey literatures, presents a challenge for researchers to keep pace with
the growing output. Integrating new tools, such as computational methods and generative arti�cial
intelligence (GenAI), can indeed assist in managing and analysing this vast amount of information [10].
These technologies can enhance the e�ciency, transparency, and rigor of information gathering,
providing valuable support for social scientists and researchers in dealing with the expanding landscape
of grey literature. Consequently, techniques that enhance the speed, e�ciency, and rigor of this process
prove advantageous for all SLRs.

Page 3/29

Grey literature represents one element of the broader category known as grey information. Introduced by
[11], grey information serves as a classi�cation encompassing various forms of ‘grey’; including data,
literature, and information. In this context, 'grey data' pertains to user-generated web content like tweets or
blogs, 'grey literature' encompasses policy documents, standards, and regulations, while 'grey
information' involves informal data such as meeting notes or emails [12, 13]. This is not the �rst instance
of creating ways to systematically gather grey literature for use in a SLR. For example, [14] highlights how
web-scraping can be employed to gather grey literature from online repositories.

In SLRs, grey literature consistently proves to be among the most challenging types of literature to
systematically collect [15]. Bibliographic databases, a mainstay of gathering information pertinent to
conducting a SLR, are generally restricted in their ability to locate relevant grey literature [16]. Therefore,
the di�culties associated with the systematic gathering of grey literature can result in its haphazard
inclusion or, at times, in its complete exclusion from a review, introducing a research bias into a project
[17–19].

In an effort to circumvent these biases, researchers can invest months in the rigorous collection of grey
literature, sometimes employing processes that lack repeatability and introduce additional biases [11].
The issues encountered with the replicability of research contributes to an ongoing methodological
challenge, making it di�cult, if not impossible, to replicate the �ndings of numerous scienti�c projects
[20]. To address the replicability issues surrounding the gathering of grey literature, this article introduces
a new methodology to systematically gather grey literature for use in a SLR. Leveraging the power
provided by Google’s API to create Programmable Search Engines (PSEs), this article harnesses the
robust coding ability of GenAI systems such as ChatGPT 3.5 and employs the computer programming
language Python to systematically gather PDF documents from Australian government websites with the
(gov.au) and (un.org) URLs.

It should be noted here that the method put forward automates what would normally be extensive and
manual Google searches. There are no algorithms or machine learning techniques required for this
method. However, end-users of this method will need to acquaint themselves with the Pythonic script
utilised. Although relatively straightforward, this article does assume some familiarity with coding on the
part of the reader. To aid researchers who are unfamiliar, this article sets out a number of steps to be
taken to set up the tool. It also provides links to documents that researchers may choose to utilise during
this process. Additionally, this article recognises that there are other programming languages and other
GenAIs that could have been utilised to create this new method for gathering grey literature. It does not
seek to premise one programming language or GenAI over another, but rather seeks to utilise the work of
[10] to highlight the ability of both tools in creating a new method for researchers. As set out in [10],
GenAIs are excellent tools that can assist researchers in devising new ways to conduct research. However,
the role of the researcher is �rmly embedded in the process of determining what GenAI outputs are
functional and true.

Page 4/29

The upcoming sections of this article will unfold as follows: the ensuing theoretical background section
will familiarise readers with the three elements utilised in developing the advocated technique. Firstly, it
will introduce the computer programming language Python. Secondly, it will acquaint readers with the
GenAI ChatGPT 3.5, which was instrumental in assisting to script and re�ne the code integral to the
technique. Thirdly, the article will shed light on Google’s PSE, serving as the platform for this novel
technique. Subsequently, the methods section will present a narrow three step case study to set out the
coding devised for this innovative approach, and the following results section will present the outcomes
derived from the executed code alongside a guide to utilising the method. The ensuing discussion section
will summarise the work conducted, alongside discussing limitations and future research potential. It will
then end with concluding remarks.

2. THEORETICAL BACKGROUND

2.1. PYTHON
Developed in 1990 by Dutch programmer Guido van Rossum, Python is an interpreted, interactive, object-
oriented programming language. Although it has a small kernel, it can be extended by importing external
libraries [21]. In fact, Python maintains a strong position because it contains a vast ecosystem of libraries
as well as environments [22]. Not alone in programming languages (see Ruby [23], Java [24], Rust [25],
and C# [26] for other available languages), Python was chosen as the language used in this article solely
due to the authors familiarity with it. The libraries associated with the proposed tool are “OS”, “Requests”,
and “CSV”.

OS or Operating System is a Python module that allows the user to gain access to operating system
information [27]. Requests is one of the most downloaded Python package with approx. 30 million
downloads per week. The package allows users to send HTTP (Hypertext Transfer Protocol) requests
easily [28]. Lastly, the CSV or (Comma Separated Values) format is the most common import and export
format for spreadsheets and databases. It provides functionalities to read and write data in CSV format,
which is a common and simple way to represent tabular data [29]. The module allows programmers to
work with CSV data without getting into the speci�cs of the underlying CSV format, making it versatile for
dealing with various applications and custom CSV formats [29]. According to [10], Python is a
programming language that has had great success when paired with GenAIs such as ChatGPT 3.5 for
coding assistance.

2.2. GENERATIVE ARTIFICIAL INTELLIGENCE
In recent times, the �eld of arti�cial intelligence (AI) has experienced a signi�cant surge in research
growth, particularly in areas related to chatbots and other conversational agents [30, 31]. Signi�cantly,
GenAIs are generating diverse arrays of content; text, images, audio, and video [32–34]. At present, GenAI
systems are being applied to address common programming challenges such as code summarisation,
code review, synthesis, error repairs, and debugging [10, 35, 36]. A popular GenAI, ChatGPT 3.5 by OpenAI,
is recognised for its signi�cant potential in examining source code, suggesting changes, and generating

Page 5/29

code [10, 30, 35, 37]. This advancement has broad applications for researchers seeking to enhance their
research through computational-based methods. Different Generative AI models are currently in use, each
exhibiting unique strengths and weaknesses. For a detailed comparative analysis of OpenAI ChatGPT 3.5,
Microsoft Bing Chat, and Google Bard, refer to Dao (38). Furthermore, for an extensive list of existing
large language models and their comparisons, consult Ray (39).

As with the choice for coding with Python, the use of ChatGPT over another GenAI is purely due to the
authors familiarity with the tool. As with Python, this article does not seek to place one programming
language or GenAI over another. It seeks only to highlight how a new tool for systematically gathering
grey literature can be created utilising both instruments. In addition, as with [10] this article seeks to
highlight how GenAI, such as ChatGPT 3.5, can be used as an assistant that contributes to the process of
scripting code. Within this process the researcher is still central to developing the code, especially with
respect to determining what is ‘functional’ versus what is ‘true’ [10]. Indeed, [10] highlights several caveats
that researchers should be aware of when utilising GenAIs such as ChatGPT 3.5 for assistance in
scripting code for use in research projects. The largest issue to be aware of is the potential ‘bugginess’ of
the code that GenAIs are trained on. A secondary issue relates to ethical considerations. As GenAIs are
trained on large datasets, for example ChatGPT 3.5 was trained on the GitHub repository, there are ethical
concerns when it comes to recognising the original producers of the code used to train the GenAI. [10]
suggests retroactively searching for codes once they are compiled. Fundamental to the tool created for
systematically gathering grey literature for a SLR is the PSE provided by Google.

2.3. GOOGLE’S PROGRAMMABLE SEARCH ENGINE
Search engines – in particular Google- are the starting point for anyone wanting to locate something on
the internet [40]. Aside from general searches, Google facilitates more sophisticated search features to
retrieve information (this research for example uses; site: gov.au and �letype:pdf, to retrieve only PDFs
from Australian government websites). The search strategy utilised alongside “site:” and “�letype:” is
("energy infrastructure" AND resilience).

A PSE is the tailored version of a generic search engine (Google, Yahoo, Bing etc), in which every feature
can be altered to �t a speci�c purpose(s). There are two primary cases for a PSE: one designed to search
the contents of a single website, and the other tailored to concentrate on a particular topic across multiple
websites. The full set of instructions to create a google PSE can be found at
https://developers.google.com/custom-search/docs/overview. For the work being conducted a Custom
search JSON API is also required (to set one up, please see https://developers.google.com/custom-
search/v1/overview). The fundamental advantage of a PSE lies in its ability to empower researchers to
create a search engine tailored for searching information on speci�c topics chosen by the creator. In this
instance, to search for Australian government PDFs pertaining to energy infrastructures and resilience.
However, should the user wish to search multiple websites, they can add extra URLs to the search query,
as will be demonstrated.

Page 6/29

3. METHOD

3.1. CASE STUDY
This section will lay out the code that ChatGPT 3.5 was prompted to create. It will do this in the form of a
narrow three stage case study. Stage one is the full prompt list for creating the code and is included in the
supplementary material submitted alongside this article. It is included in the supplementary material due
to its size. The script developed in this article is intended for use in another research project. Therefore,
ChatGPT 3.5 was prompted with that research project in mind and is not relevant to the method put
forward here outside of the prompts used to script the code. Stage two is reviewing and synthesising the
newly scripted code. As utilising GenAIs to assist in compiling code is a new methodology in itself, the
methodology for this is set out in [10]. The �nal stage (three) is executing the newly scripted code. Stage
three will also present two examples. The �rst example will be of a single site search (“gov.au”) for
Australian documents. The second example will illustrate how multiple websites can be added, in this
instance “gov.au” will be searched alongside “un.org.” The �rst 100 results for both searches will be
provided in the supplementary materials.

3.1.1. STAGE ONE: See supplementary materials.

3.1.2. STAGE TWO: Reviewing and synthesising the scripted
code.
In this stage, the scripted code from the supplementary materials is put into ChatGPT 3.5. As set out in
[10], this allows the GenAI to provide an overview of the newly scripted code, and also offers an
opportunity to use ChatGPT 3.5 to synthesise any parts in order to tighten the coding up further. Table 1
illustrates this process.

Page 7/29

Table 1
Code scripted with assistance from ChatGPT 3.5.

Prompts Responses

I am going to give you some python code to
review. Can you do this for me?

Of course! I'd be happy to help you review your
Python code. Please provide the code, and let me
know if there's anything speci�c you would like
me to focus on or if you have any questions.

#1

import requests

import csv

import os

Certainly! It looks like you've imported the
requests, csv, and os modules. These are
commonly used modules in Python. Without
additional code, it's challenging to provide a
comprehensive review, but if you have speci�c
functions or tasks you'd like me to look at, feel
free to provide more details or share the rest of
the code. Otherwise, if you have any questions
about using these modules or if you need
assistance with a particular aspect of your code,
feel free to ask!

#2

def
search_AUST_energy_policy_documents(query,
api_key, cx, num_results = 10):

base_url =
"https://www.googleapis.com/customsearch/v1"

start_index = 1

all_documents = []

try:

while True:

params = {

'q': query,

'key': api_key,

'cx': cx,

'�leType': 'pdf',

'num': num_results,

'start': start_index,

}

response = requests.get(base_url, params = 
params)

if response.status_code = = 200:

This appears to be a function for searching for
Australian energy policy documents using the
Google Custom Search JSON API. The function
takes a query, an API key, a custom search
engine ID (‘cx’), and an optional parameter
‘num_results’ which defaults to 10. The function
returns a list of documents in JSON format

Page 8/29

Prompts Responses
search_results = response.json()

documents = extract_documents(search_results)

all_documents.extend(documents)

Update 'start' parameter for the next page

start_index + = num_results

else:

print(f"Error: {response.status_code}")

break

except Exception as e:

print(f"An error occurred: {e}")

return all_documents

#3

def extract_documents(search_results):

items = search_results.get('items', [])

documents = []

for item in items:

document = {

'title': item.get('title', ''),

'link': item.get('link', ''),

'snippet': item.get('snippet', ''),

}

documents.append(document)

return documents

The ‘extract_documents’ function looks
straightforward and serves the purpose of
converting search results into a list of
dictionaries, where each dictionary represents a
document with title, link, and snippet
information.

Page 9/29

Prompts Responses

#4

def save_to_csv(documents, csv_�lename):

with open(csv_�lename, 'w', newline='',
encoding='utf-8') as csv�le:

�eldnames = ['Title', 'Link', 'Snippet']

writer = csv.DictWriter(csv�le, �eldnames = 
�eldnames)

writer.writeheader()

for doc in documents:

writer.writerow({'Title': doc['title'], 'Link': doc['link'],
'Snippet': doc['snippet']})

Your ‘save_to_csv’ function looks good and
ful�lls the purpose of writing the extracted
document information to a CSV �le.

#5

def main():

query = "site:gov.au ('energy infrastructure' AND
resilience) �letype:pdf"

api_key = "YOUR_API_KEY" # Replace with your
actual API key"

cx = "YOUR_CUSTOM_SEARCH_ENGINE_ID" #
Replace with your actual custom search engine
ID

csv_�lename = “YOUR FILE DESTINATION”

num_results = 10 # Adjust as needed

search_results = 
search_un_energy_policy_documents(query,
api_key, cx, num_results = num_results)

if search_results:

save_to_csv(search_results, csv_�lename)

print(f"{len(search_results)} results saved to
{csv_�lename}")

if __name__ == "__main__":

main()

Your main function seems to be the entry point
for your script, and it orchestrates the execution
of the other functions you've de�ned.

I have given you 5 pieces of code. Could you
rewrite it to improve the script?

Certainly! I'll provide a more polished version of
the script, taking into account best practices,
improved readability, and additional error
handling. Here's a revised version:

Page 10/29

Prompts Responses
import os

import requests

import csv

def
search_AUST_energy_policy_documents(query,
api_key, cx, num_results = 10):

base_url =
"https://www.googleapis.com/customsearch/v1"

start_index = 1

all_documents = []

try:

while True:

params = {

'q': query,

'key': api_key,

'cx': cx,

'�leType': 'pdf',

'num': num_results,

'start': start_index,

}

response = requests.get(base_url, params = 
params)

response.raise_for_status() # Raise an
HTTPError for bad responses

search_results = response.json()

documents = extract_documents(search_results)

all_documents.extend(documents)

Update 'start' parameter for the next page

start_index + = num_results

except requests.exceptions.RequestException as
e:

print(f"An error occurred during the search: {e}")

Page 11/29

Prompts Responses
except Exception as e:

print(f"An unexpected error occurred: {e}")

return all_documents

def extract_documents(search_results):

result_items = search_results.get('items', [])

documents = []

for item in result_items:

document = {

'title': item.get('title', 'No Title'),

'link': item.get('link', 'No Link'),

'snippet': item.get('snippet', 'No Snippet'),

}

documents.append(document)

return documents

def save_to_csv(documents, csv_�lename):

try:

with open(csv_�lename, 'w', newline='',
encoding='utf-8') as csv�le:

�eldnames = ['Title', 'Link', 'Snippet']

writer = csv.DictWriter(csv�le, �eldnames = 
�eldnames)

writer.writeheader()

for doc in documents:

writer.writerow({'Title': doc['title'], 'Link': doc['link'],
'Snippet': doc['snippet']})

print(f"{len(documents)} results saved to
{csv_�lename}")

except Exception as e:

print(f"An error occurred while writing to the CSV
�le: {e}")

def main():

Page 12/29

Prompts Responses
query = 'site:gov.au ("energy infrastructure" AND
"resilience") �letype:pdf'

api_key = "YOUR_API_KEY" # Replace with your
actual API key

cx = "YOUR_CUSTOM_SEARCH_ENGINE_ID" #
Replace with your actual custom search engine
ID

csv_�lename = os.path.join(

“YOUR FILE DESTINATION"

)

num_results = 10 # Adjust as needed

try:

search_results = 
search_AUST_energy_policy_documents(query,
api_key, cx, num_results = num_results)

save_to_csv(search_results, csv_�lename) if
search_results else print("No results found.")

except Exception as e:

print(f"An unexpected error occurred: {e}")

if __name__ == "__main__":

main()

Page 13/29

Prompts Responses

An error occurred during the search: 400 Client
Error: Bad Request for url:
https://www.googleapis.com/customsearch [...]

The error message indicates a "400 Client Error:
Bad Request," which means the request sent to
the Google Custom Search API is malformed or
incorrect. To troubleshoot and �x this issue, you
can consider the following steps:

1. Check API Key and CX:

• Ensure that your API key (api_key) and custom
search engine ID (cx) are correct and valid.
Double-check that there are no typos or mistakes
in these values.

2. Review Query Parameters:

• Examine the constructed query (params) in your
search_AUST_energy_policy_documents
function. Ensure that the query parameters are
formatted correctly and meet the requirements of
the Google Custom Search API.

3. URL Encoding:

• Con�rm that the query parameters are properly
URL-encoded. The error message in your case
shows that the URL includes characters like (,),
and spaces, which should be properly encoded.

4. Limitations and Quotas:

• Check if you are exceeding any limitations or
quotas imposed by the Google Custom Search
API. For example, there might be restrictions on
the number of requests you can make in a given
time period.

Because I am using a free version, I can only
look at 10 pages. Can you change the code to
re�ect this?

Certainly! If you're limited to 10 pages of results,
you can modify the
search_AUST_energy_policy_documents function
to restrict the number of iterations in the while
loop. Here's an updated version:

def
search_AUST_energy_policy_documents(query,
api_key, cx, num_results = 10, max_pages = 1):

base_url =
"https://www.googleapis.com/customsearch/v1"

start_index = 1

all_documents = []

try:

for _ in range(max_pages):

Page 14/29

Prompts Responses
params = {

'q': query,

'key': api_key,

'cx': cx,

'�leType': 'pdf',

'num': num_results,

'start': start_index,

}

response = requests.get(base_url, params = 
params)

response.raise_for_status() # Raise an
HTTPError for bad responses

search_results = response.json()

if 'error' in search_results:

raise Exception(f"Google Custom Search API
error: {search_results['error']['message']}")

documents = extract_documents(search_results)

all_documents.extend(documents)

Update 'start' parameter for the next page

start_index + = num_results

except requests.exceptions.RequestException as
e:

print(f"An error occurred during the search: {e}")

except Exception as e:

print(f"An unexpected error occurred: {e}")

return all_documents

Thank you, the code is running as expected. You're welcome! I'm glad to hear that the code is
running as expected. If you have any more
questions, need further assistance, or have other
code you'd like me to review, feel free to reach
out. Happy coding!

Following this, and in line with the code found in [14], a User-Agent header was included. This was to
ensure transparency on the agent end of the code, and to indicate that it was not a ‘bot’ behind the helm.

Page 15/29

This addition is indicated in Table 2.

Page 16/29

Table 2
The addition of a User-Agent Header to the script.

Prompt Response

Should I
include a
user-agent
header in
the code?

Yes, including a User-Agent header in your code is a good practice. The User-Agent
header provides information about the client making the request, such as the type of
browser or application and its version. Some websites and APIs may use this
information to identify and differentiate between various clients.

Including a User-Agent header helps in the following ways:

1. Identi�cation: It allows the website or API server to identify your request and can be
used for statistical or analytical purposes.

2. Avoiding Blocks: Some websites implement access controls or rate limiting based
on User-Agent. Providing a User-Agent that looks similar to a typical web browser can
help avoid being blocked or �agged as suspicious.

3. Good Etiquette: Including a User-Agent is considered good etiquette.

Here's how you can modify your code to include a User-Agent header using the headers
parameter in the requests.get method:

 def search_AUST_energy_policy_documents(query, api_key, cx, num_results = 10,
max_pages = 1):

base_url = "https://www.googleapis.com/customsearch/v1"

start_index = 1

all_documents = []

headers = {

'User-Agent': 'Your-User-Agent-Here',

}

try:

for _ in range(max_pages):

params = {

'q': query,

'key': api_key,

'cx': cx,

'�leType': 'pdf',

'num': num_results,

'start': start_index,

}

response = requests.get(base_url, params = params, headers = headers)

Page 17/29

Prompt Response
response.raise_for_status() # Raise an HTTPError for bad responses

search_results = response.json()

if 'error' in search_results:

raise Exception(f"Google Custom Search API error: {search_results['error']['message']}")

documents = extract_documents(search_results)

all_documents.extend(documents)

Update 'start' parameter for the next page

start_index + = num_results

except requests.exceptions.RequestException as e:

print(f"An error occurred during the search: {e}")

except Exception as e:

print(f"An unexpected error occurred: {e}")

return all_documents

To assist with people utilising the method presented. Table 3 provides a full account of the code. With
this new method, researchers will be able to systematically gather grey literature for their SLRs, saving
signi�cant time and money in the process. Users will have to ensure that the Python libraries that are
utilised are installed on their computers, and that they input the correct information into the areas that are
highlighted in all caps, bold, and italics. In the instance of this research project, the author ran the code in
a Jupyter notebook in Visual Studio Code.

Page 18/29

Table 3
Full account of the newly scripted code.

import os

import requests

import csv

def search_AUST_energy_policy_documents(query, api_key, cx, num_results = 10, max_pages = 10):

base_url = "YOUR COUSTOM SEARCH ENGINE"

start_index = 1

all_documents = []

headers = {

'User-Agent' YOUR USER-AGENT INFORMATION,

}

try:

for _ in range(max_pages):

params = {

'q': query,

'key': api_key,

'cx': cx,

'�leType': 'pdf',

'num': num_results,

'start': start_index,

}

response = requests.get(base_url, params = params, headers = headers)

response.raise_for_status() # Raise an HTTPError for bad responses

search_results = response.json()

if 'error' in search_results:

raise Exception(f"Google Custom Search API error: {search_results['error']['message']}")

documents = extract_documents(search_results)

all_documents.extend(documents)

Update 'start' parameter for the next page

start_index + = num_results

Page 19/29

except requests.exceptions.RequestException as e:

print(f"An error occurred during the search: {e}")

except Exception as e:

print(f"An unexpected error occurred: {e}")

return all_documents

def extract_documents(search_results):

result_items = search_results.get('items', [])

documents = []

for item in result_items:

document = {

'title': item.get('title', 'No Title'),

'link': item.get('link', 'No Link'),

'snippet': item.get('snippet', 'No Snippet'),

}

documents.append(document)

return documents

def save_to_csv(documents, csv_�lename):

try:

with open(csv_�lename, 'w', newline='', encoding='utf-8') as csv�le:

�eldnames = ['Title', 'Link', 'Snippet']

writer = csv.DictWriter(csv�le, �eldnames = �eldnames)

writer.writeheader()

for doc in documents:

writer.writerow({'Title': doc['title'], 'Link': doc['link'], 'Snippet': doc['snippet']})

print(f"{len(documents)} results saved to {csv_�lename}")

except Exception as e:

print(f"An error occurred while writing to the CSV �le: {e}")

def main():

query = 'site:gov.au ("energy infrastructure" AND ("resilience")) �letype:pdf'

api_key = "YOUR API KEY"

Page 20/29

cx = "YOUR CUSTOM SEARCH ENGINE ID"

csv_�lename = os.path.join(

YOUR FILE LOCATION\\. csv"

)

num_results = 10 # Adjust as needed

try:

search_results = search_AUST_energy_policy_documents(query, api_key, cx, num_results = 
num_results)

save_to_csv(search_results, csv_�lename) if search_results else print("No results found.")

except Exception as e:

print(f"An unexpected error occurred: {e}")

if __name__ == "__main__":

main()

3.1.3. STAGE THREE: execution
The executed code provides the output “100 results saved to File location\\ XXX.results.csv”. It
accomplished this in 7.5 seconds, and automatically saved a CSV �le to the speci�ed location. The next
section will provide the results followed by a guide for researchers who wish to utilise this method.

4. FINDINGS
The scripted code provided the following results. A CSV �le was produced that contained the following
information: three columns with the headings ‘Title’, ‘Link’, and ‘Snippet.’ Each column contained the
information for 100 PDFs identi�ed in the search. Figures 1 and 2 provides screenshot snippets of the
Titles and their Links that were uncovered. Each PDF link, when copied and pasted into a web browser, is
functional. The search strategy words “energy infrastructure” AND “resilience” is contained in either the
title or the snippet. The full CSV �le is provided in the supplementary materials. Figure 3 provides a
screenshot snippet of the Blurb accompanying each result.

Within the search strategy the URL “un.org” was added. This was done to illustrate the ease in which
multiple websites can be searched. A snippet of the Titles and Links from this search can be viewed in
Fig. 4.

These results illustrate the speed, rigor, and transparency of the new tool and underscores its importance.
Capturing every tier of Australian government, the above results provide grey literature from Victoria, New
South Whales, Queensland, Torris Straight, and the Australian Federal Government. Should users wish to
narrow the search to these states, they would simply change the URL to “vic.gov.au” for Victoria, or

Page 21/29

“qld.gov.au” for Queensland. Should users wish to add other URLs such as “un.org” they need to only add
the OR Boolean to the URL component of the strategy; for example, “ 'site:gov.au OR site:un.org ("energy
infrastructure" AND ("resilience")) �letype:pdf' ”

4.1. GUIDE FOR RESEARCHERS.
For researcher who wish to utilise this new methodology, the following steps are recommended.

STEP ONE

Download Python from https://www.python.org/downloads/.

STEP TWO

Familiarise yourself with how libraries are installed in Python. Pip is the preferred installer program to be
used in Python. You can �nd instructions on how to do so at
https://packaging.python.org/en/latest/tutorials/installing-packages/. There are also a large number of
YouTube videos that will not only provide in-depth instructions for this stage but will also provide a
deeper introduction to Python.

STEP THREE

Install the libraries required for the tool. You will need to install “OS”, “Requests”, and “CSV”.

STEP FOUR

Using the google documents provided in the google portion of the theoretical background section, follow
the instructions to create a google PSE and to obtain a JSON API. For the PSE component see
https://developers.google.com/custom-search/docs/overview. For obtaining the API key see
https://developers.google.com/custom-search/v1/overview).

STEP FIVE

Copy and paste the full code provide in this methods paper into a Jupyter notebook (other notebooks will
also support this code, in this instance the author utilised a Jupyter notebook). You will also need to
ensure that you input your own User-Agent Header to the script. Also, change the search query to re�ect
the information being sought. Lastly, you will need to designate a location for the csv �le to be saved in.

STEP SIX

Run the code. Should any errors be encountered, [10] offers a method to help resolve them. Figure 5
provides a visual representation of six step process.

5. DISCUSSION AND LIMITATIONS

Page 22/29

The above sections have presented a new tool for researchers to systematically gather grey literature for
SLRs. It has illustrated that Titles, Links, and Blurbs of PDF �les pertaining to “energy infrastructure” AND
“resilience” can be identi�ed, saved, and accessed in a remarkably small amount of time. This technique
will not only save researchers resources (time and money), but it will also increase the rigor, transparency,
and e�ciency of this stage in a SLR.

As highlighted in [10, 41], AI, and in this instance GenAI, will have an impact on the world that is akin to
the impact of the industrial revolution, perhaps greater. To this end, this is not the �rst instance of
computational-based methods being applied to stages of SLRs. This article not alone in creating new
methods that infuse AI and MLTs within SLRs. [42] provides a thorough account of how AI and MLTs can
be applied to different stages of a SLR. Focusing primarily on how Latent Dirichlet Allocation (LDA) Topic
Models can be used to abstract and synthesise data obtained during a review, [42] also introduces AI and
MLTs that can be utilised in the title/abstract screening stage, as well as the data extraction stage. [14]
illustrates how Python can be utilised to create a web-scraper to gather grey literature from a single online
data repository. Indeed, incorporating AI and MLTs into the SLR process is the topic of contemporary
works investigating how they can be inserted into current guidelines. For an account on how AI and MLTs
can be incorporated within the Preferred Reporting Items for Systematic reviews and Meta-Analyses
(PRISMA) guidelines, please see [43] on how this could be achieved.

The scripted code presented in this article will transform how grey literature is gathered for use in a SLR.
Although cheap, extensive use of this tool is not one-hundred percent free. The results presented are
limited to the free-use terms of Google’s API key. If researchers require a greater number of searches, and
more results, then they will have to purchase this ability from Google. Additionally, to keep the scripted
code as simple as possible for the reader, more diverse search strategies alongside data organisation and
saving functions have not been included. This will be left for future research. [10] highlighted that there is
a large ethical concern regarding appropriate recognition of the coding that GenAIs are trained on.
Retrospective searches of coding was suggested as a possible way to attribute codes. At the time of
writing, similar code has not been located. Although it is impossible to be certain where the code
originated, looking for it is a step forward in the process of solving the ethical issues of utilising GenAIs to
script code.

A notable limitation of this article is that researchers may not be acquainted with the tools employed. The
intention is that by furnishing external resources, direction, and a guide, the technical gap necessary to
employ the proposed method has been somewhat alleviated, making it more accessible for a broader
audience.

6. FUTURE RESEARCH
The tool that has been introduced in this article is intended to be employed to gather pertinent policy
documents, standards, laws, and regulations to be utilised in a connected research project. Future
research will also include scripting code to increase the sophistication of the queries that can be entered,

Page 23/29

alongside different methods to organise and save the data generated through this new process.
Applications for areas outside of grey literature are also being investigated.

7. CONCLUSION
This article has introduced a new and novel tool to aid in gathering grey literature for use in a SLR.
Though the use of the computer programming language Python, coding assistance of ChatGPT 3.5, and
the ability to create PSEs from Google, this article has introduced a technique for researchers to cheaply,
quickly, rigorously, and transparently gather grey literature. No longer requiring long hours and unreliable
search processes, this new tool will help every discipline to gather grey literature for their research.

Declarations
Funding:

Natural Hazards Research Australia.

Con�icts of Interests/Competing Interests:

The author has neither con�icts of interests nor competing interests to declare that are relevant to the
content of this article.

Data Availability:

All data pertinent to the article has been made available in the supplementary materials.

Code Availability:

All codes utilised in this research project have either been provided in text or are contained in the
supplementary materials.

Use of AI:

The Generative AI ChatGPT 3.5 was utilised in the methods section of this article.

Author Contribution

C.A, as sole author, is responsible for all aspects of this manuscript.

References
1. Thomé AMT, Scavarda LF, Scavarda AJ. Conducting systematic literature review in operations

management. (2016). Production Planning & Control, 27(5). 408–20.
https://doi.org/10.1080/09537287.2015.1129464.

Page 24/29

2. Pati D, Lorusso LN. How to write a systematic review of the literature. (2018). HERD: Health
Environments Research & Design Journal, 11(1). 15–30.
https://doi.org/10.1177/1937586717747384.

3. Petticrew M, Roberts H. Systematic reviews in the social sciences: A practical guide: John Wiley &
Sons; 2008.

4. Xiao Y, Watson M. Guidance on Conducting a Systematic Literature Review. (2019). Journal of
Planning Education and Research, 39(1). 93–112. https://doi.org/10.1177/0739456x17723971.

5. Siddaway AP, Wood AM, Hedges LV. How to Do a Systematic Review: A Best Practice Guide for
Conducting and Reporting Narrative Reviews, Meta-Analyses, and Meta-Syntheses. (2019). Annual
Review of Psychology, 70(1). 747–70. https://doi.org/10.1146/annurev-psych-010418-102803.

�. Paul J, Lim WM, O’Cass A, Hao AW, Bresciani S. Scienti�c procedures and rationales for systematic
literature reviews (SPAR-4‐SLR). (2021). International Journal of Consumer Studies, 45(4). O1-O16.
https://doi.org/10.1111/ijcs.12695.

7. Sundaram G, Berleant D. Automating Systematic Literature Reviews with Natural Language
Processing and Text Mining: a Systematic Literature Review. (2022). ArXiv Preprint
https://doi.org/10.48550/arXiv.2211.15397.

�. Marshall IJ, Wallace BC. Toward systematic review automation: a practical guide to using machine
learning tools in research synthesis. (2019). Systematic reviews, 8. 1–10.
https://doi.org/10.1186/s13643-019-1074-9.

9. Shojania KG, Sampson M, Ansari MT, Ji J, Doucette S, Moher D. How quickly do systematic reviews
go out of date? A survival analysis. (2007). Annals of internal medicine, 147(4). 224 – 33.
https://doi.org/10.7326/0003-4819-147-4-200708210-00179.

10. Atkinson CF. ChatGPT and computational-based research: bene�ts, drawbacks, and machine
learning applications. (2023). Discover Arti�cial Intelligence, 3(1). 42.
https://doi.org/10.1007/s44163-023-00091-3.

11. Adams J, Hillier-Brown FC, Moore HJ, Lake AA, Araujo-Soares V, White M, et al. Searching and
synthesising ‘grey literature’ and ‘grey information’ in public health: critical re�ections on three case
studies. (2016). Systematic Reviews, 5(1). 164. https://doi.org/10.1186/s13643-016-0337-y.

12. Kamei F, Wiese I, Pinto G, Ribeiro M, Soares S, editors. On the use of grey literature: A survey with the
brazilian software engineering research community. Proceedings of the XXXIV Brazilian Symposium
on Software Engineering; 2020. https://doi.org/10.1145/3422392.3422442

13. Banks M. Blog posts and tweets: the next frontier for grey literature. Grey literature in library and
information studies: De Gruyter; 2009.

14. Atkinson C. Cheap, Rigorous, and Transparent: How Web-scraping with Python can Improve
Collecting Grey Literature for Systematic Literature Reviews. (2023). Grey Journal (TGJ), 19(3).

15. Paez A. Gray literature: An important resource in systematic reviews. (2017). Journal of Evidence-
Based Medicine, 10(3). 233 – 40. https://doi.org/10.1111/jebm.12266.

Page 25/29

1�. Grayson L, Gomersall A. Google – boon, bane or both? (2006). Evid Polciy, 2(4). 538 – 42.
https://doi.org/10.1332/174426406778881818.

17. Haddaway NR, Bethel A, Dicks LV, Koricheva J, Macura B, Petrokofsky G, et al. Eight problems with
literature reviews and how to �x them. (2020). Nature Ecology & Evolution, 4(12). 1582–9.
https://doi.org/10.1038/s41559-020-01295-x.

1�. Godin K, Stapleton J, Kirkpatrick SI, Hanning RM, Leatherdale ST. Applying systematic review search
methods to the grey literature: a case study examining guidelines for school-based breakfast
programs in Canada. (2015). Systematic Reviews, 4(1). 138. https://doi.org/10.1186/s13643-015-
0125-0.

19. Winters M, Weir A. Grey matters; on the importance of publication bias in systematic reviews. (2017).
51(6). 488–9. https://doi.org/10.1136/bjsports-2016-096679.

20. Echtler F, Häußler M, editors. Open source, open science, and the replication crisis in HCI. Extended
abstracts of the 2018 CHI conference on human factors in computing systems; 2018.
https://doi.org/10.1145/3170427.3188395

21. Nagpal A, Gabrani G, editors. Python for data analytics, scienti�c and technical applications. 2019
Amity international conference on arti�cial intelligence (AICAI); 2019: IEEE.
https://doi.org/10.1109/AICAI.2019.8701341

22. Kumar R. Future for scienti�c computing using Python. (2015). International Journal of Engineering
Technologies and Management Research, 2(1). 30–41.
https://doi.org/10.29121/ijetmr.v2.i1.2015.28.

23. Tilkov S, Vinoski S. Node. js: Using JavaScript to build high-performance network programs. (2010).
IEEE Internet Computing, 14(6). 80–3. https://doi.org/10.1109/MIC.2010.145.

24. Arnold K, Gosling J, Holmes D. The Java programming language: Addison Wesley Professional;
2005.

25. Klabnik S, Nichols C. The Rust programming language: No Starch Press; 2023.

2�. Hejlsberg A, Torgersen M, Wiltamuth S, Golde P. The C# programming language: Pearson Education;
2008.

27. Python Software Foundation. OS — Miscellaneous operating system interfaces Online: Python
Software Foundation; (2024) [Available from: https://docs.python.org/3/library/os.html.

2�. Python Software Foundation. Requests 2.31.0 Online: Python Software Foundation; (2024)
[Available from: https://pypi.org/project/requests/.

29. Python Software Foundation. CSV File Reading and Writing Online: Python Software Foundation;
(2024) [Available from: https://docs.python.org/3/library/csv.html.

30. Azaria A, Azoulay R, Reches S. ChatGPT is a Remarkable Tool–For Experts. (2023). ArXiv Preprint
https://doi.org/10.48550/arXiv.2306.03102.

31. Olujimi PA, Ade-Ibijola A. NLP techniques for automating responses to customer queries: a
systematic review. (2023). Discover Arti�cial Intelligence, 3(1). 20. https://doi.org/10.1007/s44163-

Page 26/29

023-00065-5.

32. Morris MR. Scientists' Perspectives on the Potential for Generative AI in their Fields. (2023). ArXiv
Preprint https://doi.org/10.48550/arXiv.2304.01420.

33. Crawford K, Paglen T. Excavating AI: the politics of images in machine learning training sets. (2021).
AI & SOCIETY, 36(4). 1105–16. https://doi.org/10.1007/s00146-021-01162-8.

34. Hacker P, Engel A, Mauer M, editors. Regulating ChatGPT and other large generative AI models.
Proceedings of the 2023 ACM Conference on Fairness, Accountability, and Transparency; 2023.
https://doi.org/10.1145/3593013.3594067

35. Tian H, Lu W, Li TO, Tang X, Cheung S-C, Klein J, et al. Is ChatGPT the Ultimate Programming
Assistant–How far is it? (2023). ArXiv Preprint https://doi.org/10.48550/arXiv.2304.11938.

3�. Haque MA, Li S. The Potential Use of ChatGPT for Debugging and Bug Fixing. (2023). EAI Endorsed
Transactions on AI and Robotics, 2(1). e4-e. https://doi.org/10.4108/airo.v2i1.3276.

37. Liu J, Xia CS, Wang Y, Zhang L. Is your code generated by chatgpt really correct? rigorous evaluation
of large language models for code generation. (2023). ArXiv Preprint
https://doi.org/10.48550/arXiv.2305.01210.

3�. Dao X-Q. Performance comparison of large language models on vnhsge english dataset: Openai
chatgpt, microsoft bing chat, and google bard. (2023). ArXiv Preprint.
https://doi.org/10.48550/arXiv.2307.02288.

39. Ray PP. ChatGPT: A comprehensive review on background, applications, key challenges, bias, ethics,
limitations and future scope. (2023). Internet of Things and Cyber-Physical Systems, 3. 121 – 54.
https://doi.org/10.1016/j.iotcps.2023.04.003.

40. Dhara A. A personalised discovery service using Google custom search engine. (2016). Annals of
Library and information Studies, 63. 298–305. Available from:
https://nopr.niscpr.res.in/bitstream/123456789/39764/1/ALIS%2063%284%29%20298-305.pdf.

41. Medaglia R, Gil-Garcia JR, Pardo TA. Arti�cial Intelligence in Government: Taking Stock and Moving
Forward. (2021). Social Science Computer Review, 41(1). 123–40.
https://doi.org/10.1177/08944393211034087.

42. Atkinson CF. Cheap, Quick, and Rigorous: Arti�cial Intelligence and the Systematic Literature Review.
(2023). Social Science Computer Review. https://doi.org/10.1177/08944393231196281.

43. Susnjak T. Prisma-d�lm: An extension of prisma for systematic literature reviews using domain-
speci�c �netuned large language models. (2023). ArXiv Preprint 1–20.
https://doi.org/10.48550/arXiv.2306.14905.

Figures

Page 27/29

Figure 1

Screenshot snippet of Titles from the new tool.

Figure 2

Screenshot snippet of the Links from the new tool.

Page 28/29

Figure 3

Screenshot snippet of the Blurbs accompanying each result from the new tool.

Figure 4

Screenshot snippet from the updated search.

Page 29/29

Figure 5

Stages for setting up tool.

Supplementary Files

This is a list of supplementary �les associated with this preprint. Click to download.

PROMPT1.doc

SEARCH2.csv

SearchResultsAU.csv

https://assets.researchsquare.com/files/rs-4007725/v1/0e255f11c237d793de9137a7.doc
https://assets.researchsquare.com/files/rs-4007725/v1/104359dec27a59a43d05e38d.csv
https://assets.researchsquare.com/files/rs-4007725/v1/bc04d6b868a705a07c953a89.csv

