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Abstract
IRSp53 is a synaptic scaffold protein reported to be involved in schizophrenia, autism spectrum disorders,
and social deficits in knockout mice. Identifying critical brain regions and cells related to IRSp53 deletion
is expected to be of great help in the treatment of psychiatric problems. In this study, we performed
chemogenetic inhibition within the ventral dentate gyrus (vDG) of mice with IRSp53 deletion in Emx1-
expressing cells (Emx1-Cre;IRSp53 flox/flox). We observed the recovery of social deficits after
chemogenetic inhibition within vDG of Emx1-Cre;IRSp53 flox/flox mice. Additionally, chemogenetic
activation induced social deficits in Emx1-Cre mice. CRHR1 expression increased in the hippocampus of
Emx1-Cre;IRSp53 flox/flox mice, and CRHR1 was reduced by chemogenetic inhibition. Htd2, Ccn1, and
Atp61l were decreased in bulk RNA sequencing, and Eya1 and Ecrg4 were decreased in single-cell RNA
sequencing of the hippocampus in Emx1-Cre;IRSp53 flox/flox mice compared to control mice. This study
determined that the vDG is a critical brain region for social deficits caused by IRSp53 deletion. Social
deficits in Emx1-Cre;IRSp53 flox/flox mice were recovered through chemogenetic inhibition, providing
clues for new treatment methods for psychiatric disorders accompanied by social deficits.

Introduction
IRSp53, also known as BAIAP2, is a synaptic scaffold protein that affects actin polymerization and
synaptic transmission1–5. Mice lacking IRSp53 in Emx1-expressing dorsal telencephalic glutamatergic
neurons display social deficits, hyperactivity, and decreased prepulse inhibition 6–8. Furthermore, the re-
expression of IRSp53 in adult mice restores social deficits without changes in hyperactivity9. IRSp53 in
the cerebral cortex and hippocampus has been suggested to be important for synaptic functions and
various behaviors, including social behavior; thus, further research is needed to identify the brain regions
involved in social deficits.

Empty spiracles homeobox 1 (Emx1) is expressed in neural stem cells, progenitor cells, differentiated
neurons, and glial cells 10, 11. Emx1-expressing neural stem cells develop and differentiate into neurons
and glial cells in the subventricular zone (SVZ) and subgranular zone (SGZ), where neurogenesis occurs
from early E9.5 embryos to adulthood. Adult neurogenesis occurs in the SVZ, which differentiates into
inhibitory granule neurons in the olfactory bulb, and in the SGZ, which differentiates into excitatory
granule neurons in the dentate gyrus. Dysregulated adult neurogenesis is associated with psychiatric
disorders, including cognitive decline and mood disorders 12–16. In this study, we attempted to restore
social deficits by regulating Emx1-expressing cells in the SGZ, which contributes to adult neurogenesis.

The ventral DG (vDG) is associated with mood disorders, such as major depressive disorder, and the
action of antidepressants is associated with the restoration of neurogenesis in the vDG via 5HT1 and
TrkB receptors.14, 17–24 A study by Anacker et al. using Cre-induced chemogenetic modulation and
apoptosis in Nestin-expressing cells in the vDG showed that chemogenetic inhibition and Cre-induced
apoptosis resulted in reduced social behavior and locomotion 25. In this study, we investigated the
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recovery of social deficits through chemogenetic modulation of Emx1-expressing cells in the vDG of
IRSp53 deleted mice.

The present study was conducted to identify brain regions and cellular/molecular changes related to
social deficits and their recovery in Emx1-Cre conditional IRSp53 knockout mice (Emx1-Cre;IRSp53
flox/flox). Recovery from social deficits via chemogenetic modulation has been attempted in Emx1-
expressing cells in the vDG. In addition, protein and transcriptomic changes were explored at the tissue
and single-cell levels in the hippocampi of control and Emx1-Cre;IRSp53 flox/flox mice.

Methods and Materials
Animals and Experimental Design

C57BL/6J background mice had ad libitum access to food and water and were housed with 4–5 animals
per cage under a 12 h light/dark cycle. We included only male mice in this study because previous studies
have shown that only male mice exhibit social deficits. All mice were bred and maintained in accordance
with the requirements of the National Center for Mental Health (NCMH) Animal Research. All procedures
and methods were approved by the NCMH Animal Research Committee (IACUC No: NCMH-2005-001-003-
01). Mice were identified by polymerase chain reaction (PCR) genotyping using the following PCR
primers: IRSp53 flox AGGAGGTGTTTCTGCTCTGG/AATAGCAGTCTGGGGTCTGG and Cre
CGTACTGACGGTGGGAGAAT/TGCATGATCTCCGGTATTGA. Emx1-Cre;IRSp53 flox/flox mice was a gift
from Eunjoon Kim, KAIST (Daejeon, South Korea)26.

Quantification and statistical analysis
Statistical analyses were performed using Prism 9 software (GraphPad Software, La Jolla, CA, USA).
Data normality was determined using the Shapiro-Wilk normality test. Normally distributed data were
analyzed using Student's t-test and analysis of variance (ANOVA), followed by post hoc tests. Data that
failed the normality test were analyzed using the Mann-Whitney U test.

Further detailed information on methods is available in Supplementary Information.

Results
Chemical inhibition of Emx1-expressing cells in the ventral dentate gyrus restores social deficits in Emx1-
Cre;IRSp53 flox/flox mice

In previous studies, we observed an increase in the intrinsic excitability of pyramidal neurons in layers V
and VI of the medial prefrontal cortex with the deletion of IRSp53 7, 8. In this study, chemogenetic
modulation was used to induce an increase in excitability in the vDG of control mice and suppress
excitability in the vDG of Emx1-Cre;IRSp53 flox/flox mice to examine whether each affected social
behavior.
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First, AAV9-hSyn-DIO-hM3Dq-mCherry chemogenetic activation was performed in the vDG of Emx1-Cre
mice as a control. Because we used an AAV vector with the human Synapsin I (hSyn) promoter, it was
expected to be expressed mainly in neurons27. A small dose of clozapine (0.5 mg/kg) induced
chemogenetic activation, and there was no difference in locomotion between the vehicle and clozapine
groups. However, mice subjected to chemogenetic activation showed decreased exploration of a stranger
mouse compared to that of an object (Fig. 1a and b).

In Emx1-Cre;IRSp53 flox/flox mice, chemogenetic inhibition was conducted using AAV-hSyn-DIO-hM4Di-
mCherry. There was decreased locomotion in the clozapine group compared to the control group, and
also social deficits were improved (Fig. 1c and d).

Further experiments investigated whether fluoxetine improves social deficits in Emx1-Cre;IRSp53 flox/flox
mice. Instead, social deficits were induced in control (IRSp53 flox/flox) mice, and social deficits did not
improve in Emx1-Cre;IRSp53 flox/flox mice (Supplementary Fig. 1a and b).

Behavioral experiments showed that chemogenetic activation of Emx1-expressing cells in the vDG of
Emx1-Cre mice reduced social behavior, and chemical inhibition of Emx1-expressing cells in the vDG of
Emx1-Cre;IRSp53 flox/flox mice helped ameliorate social deficits.

Increased CRHR1 expression in the hippocampus in Emx1-Cre;IRSp53
flox/flox mice is restored by chemogenetic inhibition
To observe the changes caused by IRSp53 deletion, we examined protein expression in the hippocampus
of the mice (Fig. 2a-h). Compared with control (IRSp53 flox/flox) mice, Emx1-Cre;IRSp53 flox/flox mice
showed increased levels of CRHR1, a corticotropin-releasing hormone receptor on the stress-related HPA
axis, and SOX2, a neural stem cell marker. Additionally, the deletion of IRSp53/BAIAP2 in Emx1-
Cre;IRSp53 flox/flox mice was confirmed.

Regarding hippocampal protein expression before and after chemogenetic inhibition of Emx1-expressing
cells in the vDG of Emx1-Cre;IRSp53 flox/flox mice (Fig. 2i–o), CRHR1 decreased after chemogenetic
inhibition, and SOX2 did not differ between the control and cKO groups.

In addition, changes in hippocampal protein expression before and after chemogenetic activation of
Emx1-expressing cells in the vDG of Emx1-Cre mice (Supplementary Fig. 2) showed a decrease in
doublecortin (DCX), a neural progenitor marker, without changes in CRHR1.

Taken together, we observed increased CRHR1 and SOX2 protein expression in the hippocampus of
Emx1-Cre;IRSp53 flox/flox mice compared to that in control mice, decreased CRHR1 expression after
chemogenetic inhibition of Emx1-Cre;IRSp53 flox/flox mice, and decreased DCX expression due to
chemogenetic activation of Emx1-Cre mice.
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Increased Htd2, Ccn1 and Atp6ap1l expression and altered biological pathways in Emx1-Cre;IRSp53
flox/flox mice are revealed in hippocampal transcriptome analysis

Bulk RNA sequencing was performed for hippocampal transcriptome analysis of the control and Emx1-
Cre;IRSp53 flox/flox mice (Fig. 3). RNA expression in control (flox1-3) and Emx1-Cre;IRSp53 flox/flox
(cko1-3) mice was relatively well-differentiated (Fig. 3a). In gene ontology (GO) terms, the regulation of
multicellular organismal processes and vitamin binding had the greatest influence on biological
processes and molecular function, respectively.

Among the differentially expressed genes (DEG) between groups (Fig. 3d, e), Htd2, Ccn1, and Atp6ap1l
showed significant differences, and the results of Emx1-Cre;IRSp53 flox/flox mice showed fold-changes
of ​​3.07, 2.14, and 2.66, respectively, compared to control mice.

Through bulk RNA sequencing of the hippocampus, changes in GO terms, such as the regulation of
multicellular organism processes and vitamin binding, were revealed in Emx1-Cre;IRSp53 flox/flox mice,
and differences in Htd2, Ccn1, and Atp6ap1l were identified.

Eya1 in astrocytes and Ecrg4 in microglial cells and perivascular macrophages in the hippocampus of
Emx1-Cre;IRSp53 flox/flox mice are showed in single cell transcriptomic analysis

Fresh hippocampal tissue was isolated and dissociated to investigate the effects of IRSp53 deletion in
Emx1-expressing cells, and single-cell RNA sequencing was performed (Fig. 4). Cell distribution was as
follows: oligodendrocytes (33.4%), microglia (32.5%), vascular endothelial cells (13.5%), and choroidal
epithelial cells (7.9% (Fig. 4a-c).

The most obvious difference between the groups was a decrease in Eya1 expression in astrocytes and an
increase in Ecrg4 expression in perivascular macrophages, vascular smooth muscle cells, microglia, and
vascular endothelial cells in Emx1-Cre;IRSp53 flox/flox mice compared to control mice.

Discussion
In this study, social deficits were recovered through chemogenetic inhibition of Emx1-expressing cells in
the vDG of Emx1-Cre;IRSp53 flox/flox mice, and protein and transcriptome experiments were conducted
to investigate the mechanism of social deficits and their recovery. Behavioral experiments confirmed that
chemogenetic activation of Emx1-expressing vDG cells in Emx1-Cre mice reduced social behavior, and
chemical inhibition of Emx1-expressing vDG cells in Emx1-Cre;IRSp53 flox/flox mice improved social
deficits. At the protein level, increased protein expression of CRHR1 and SOX2 was observed in the
hippocampus of Emx1-Cre;IRSp53 flox/flox mice compared to control mice, and a decrease in CRHR1
was observed after chemogenetic inhibition of Emx1-Cre;IRSp53 flox/flox mice. Through bulk RNA
sequencing of the hippocampus, changes in the regulation of multicellular organism processes and
vitamin binding were revealed in Emx1-Cre;IRSp53 flox/flox mice, and differences in Htd2, Ccn1, and
Atp6ap1l were identified. Single-cell RNA sequencing of the hippocampus showed that Eya1 expression
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was decreased in astrocytes, and Ecrg4 expression was increased in the microglia of Emx1-Cre;IRSp53
flox/flox mice.

In this study, we demonstrated the rescue of social deficits by chemogenetic inhibition of the vDG in
Emx1-Cre;IRSp53 flox/flox mice, and we suggest that chemogenetic inhibition of Emx1-expressing neural
stem cells, neurons, and glial cells is related to the recovery of sociability. A difference from previous
studies showing social deficits through chemogenetic inhibition in Nestin-Cre WT mice is that nestin
expression was restricted to early-stage neural stem and progenitor cells 28. Since Emx1 expression is
present in the neural stem cells of newly born post-mitotic neurons, Cre-selective chemogenetic
modulation may have affected Emx1-expressing cells with a wider cell growth cycle 10, 11, 14, 25, 29.
Because we used an AAV vector from the hSyn promoter, the effects of neuron-specific chemical
modulation may differ 27, 30–32. In particular, according to previous IRSp53 studies 6, 7, it can be inferred
that the social deficits due to the increased excitability of newborn neurons in the vDG of IRSp53
knockout mice are corrected by chemogenetic inhibition. In addition, we found that increased neuronal
excitability caused by chemogenetic activation induced social deficits in Emx1-Cre mice.

Stress-vulnerable individuals exhibit stronger activation of the HPA axis, including CRHR1, and fail to
adapt to stress caused by relatively weak external environmental changes. Genome-wide association
studies have shown that genes associated with stress vulnerability are also associated with HPA axis
activation 33–37. Furthermore, stress vulnerability is studied in clinical areas such as PTSD and mood
disorders 38–40. Psychiatric risk genes appear not only in one diagnostic category of mental disorders,
such as schizophrenia, mood disorders, and autism spectrum disorders but also in vulnerable factors
across multiple diagnostic categories. Genes known to be susceptible to stress include serotonin
transporter, brain-derived neurotrophic factor, bromodomain 1, Cacna1a, Catechol-O-methyltransferase,
Disrupted-in-schizophrenia-1, Estrogen receptor alpha, Fkbp5, Glutamate decarboxylase1, and
Neuregulin1 41–46. In this study, we observed that the deletion of IRSp53 can lead to stress vulnerability
phenomena associated with HPA axis activation, including increased CRHR1 and social deficits. We
attempted to restore CRHR1 and social deficits through chemogenetic modulation of vDG.

CRHR activation is expected to be affected by environmental changes such as stress, but genetic factors
also affect vulnerability 47, 48. CRHR activation in the hippocampus, especially in the dentate gyrus,
improves synaptic function and structure when it acts for a short period; however, deteriorating effects,
such as decreased numbers of synapses, appear when it acts for a long time 49. In particular, CRHR1
activation has been reported to increase the excitability of hippocampal CA1 glutamatergic neurons 50.
The increased excitability of hippocampal neurons has been actively studied for its role in stress in
epileptic disorders 51–55. Furthermore, the deletion of CRHR1 in telencephalon glutamatergic neurons
results in decreased cognitive function, including memory impairment 56, 57. CRHR1 overexpression is
associated with vulnerability to stress and increased alcohol consumption during stressful situations 58,

59. The mutant mice in this study were expected to have genetic susceptibilities due to IRSp53 deletion in
telencephalic glutamatergic neurons without prominent stress triggers. We attempted to normalize
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changes in CRHR1 and social behavior using chemogenetic modulation in the vDG. Therefore, this study
suggests that social abnormalities can be restored by correcting the increased excitability of the vDG
caused by genetic or environmental problems.

Among the results of bulk RNA sequencing analyses, Htd2 (Hydroxyacyl-Thioester Dehydratase Type 2) is
known to exist in adipocytes as a key enzyme in mitochondrial fatty acid synthesis (mtFAS) 60–63.
Previous reports have suggested that abnormalities in mtFAS can impact CNS function and are
associated with neurodegeneration 64. The extracellular matrix protein Ccn1 (a cystine-rich inducer of
angiogenesis 61) is involved in repair, fibroblast senescence, and DNA damage response pathways 65.
Ccn1 mutant mice showed exacerbated fibrosis, which was reversed by topical application of CCN1. In
addition, increased CCN1 secretion in glioblastoma cells results in macrophage infiltration into the tumor
tissue 66. Studies of psychedelics and stimulants that induced Ccn1 expression in the rodent neocortex
suggest that Ccn1 is associated with the age of onset of schizophrenia 67. Atp6apl1 (ATPase proton
transporting accessory protein 1 like) was found to be decreased in the PTSD patient group compared to
the control group, and ATP6AP1l, a paralog of the vesicular ATPase whose function has not yet been
identified, was considered one of the stress-related factors in a previous study 68–70. A comprehensive
interpretation of the results of the bulk RNA sequencing study showed that, although no direct
association with CRHR1 was found, factors that could have a wide range of effects on brain function
were identified, particularly those clinically associated with schizophrenia, neurodegeneration, and stress-
related disorders, such as PTSD.

According to single-cell RNA sequencing results, Eya1 plays an important role in cranial placode
neurogenesis by acting as a cofactor for the homeobox transcription factor Six1 71, 72. Deletion of Eya1
(eye defects) causes BOR syndrome (branchio-oto-renal syndrome) and branchio-oto syndrome 73. Cases
of autism spectrum disorder with BOR syndrome have been reported 74, and Eya1 is widely expressed
throughout the brain, as well as in neurogenesis-related regions of the central nervous system related to
vision and hearing 75. Ecrg4 (esophageal cancer-associated gene 4), also known as C2orf40, is a tumor
suppressor gene identified in esophageal, breast, and colorectal carcinomas and gliomas 76, 77. It is also
highly expressed in leukocytes, and ECRG4 knockout mice showed abnormal wound healing 76. Ecrg4 is
expressed in the choroid plexus to produce augurin and functions in fetal brain development,
cerebrospinal fluid homeostasis, and neural progenitor cell response to CNS injury 78. A single-nucleotide
variant in rs34487851 upstream of Ecrg4 has been reported in Alzheimer's disease 79, 80. Studies using
oligodendrocyte progenitor cells have shown that this gene is associated with neural aging 81.

Further studies are needed to determine the mechanism by which the deletion of IRSp53 and CRHR1
increases, the interaction between genetic susceptibility and different levels of environmental stress, and
the key steps in treating social deficits during neural stem cell development, even in adults. One limitation
of this study is that chemogenetic modulation was restricted to Emx1-expressing cells in the vDG. We
focused on the expression of restricted proteins such as CRHR1. It is difficult to explain and connect
directly the results from protein expression, such as CRHR1 and transcriptomics. Additionally, owing to
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the fragility of adult neurons, many neuronal losses are considered to occur during hippocampal
dissociation for single-cell RNA sequencing. Thus, more meticulous protocols and sufficient experience
are needed for successful hippocampal dissociation 82–85.

Chemogenetic inhibition of vDG significantly affected the recovery of social deficits in Emx1-Cre;IRSp53
flox/flox mice, and the restoration of CRHR1 reduction in the hippocampus was observed as a
mechanism. Further studies are needed to determine whether regulating excitability in Emx1-expressing
cells of the vDG helps mice with genetic susceptibility to stress or prominent environmental stress to
recover from social abnormalities. If this approach helps adult mice with stress vulnerability and social
deficits recover, it may provide clues for the treatment of psychiatric disorders in the future.
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Figure 1

Behavioral experiments showed that chemical inhibition of Emx1-expressing cells in the ventral dentate
gyrus restored social deficits in Emx1-Cre;IRSp53 flox/flox mice.

(a) Normal locomotor activities after (clozapine, clz) chemogenetic activation of Emx1-Cre wild-type mice
compared to before (vehicle, veh) chemogenetic activation in the open-field test. n = 7 mice, ns, not
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significant, one-way ANOVA

(b) Decreased sociability after Emx1-Cre wild-type mice compared to before chemogenetic activation in
the three-chambered social interaction test. n = 7, **p < 0.01, ns, not significant, two-way ANOVA with
Tukey’s test

(c) Decreased locomotor activities after chemogenetic activation of Emx1-Cre;IRSp53 flox/flox mice
compared to before chemogenetic activation in the three-chambered social interaction test. n = 9 mice,
ns, not significant, one-way ANOVA

(d) Decreased sociability after Emx1-Cre;IRSp53 flox/flox mice compared to before chemogenetic
activation in the open-field test. n = 9, **p < 0.01, ns, not significant, two-way ANOVA with Tukey’s test

(e) Cre-selective DIO-hM4Di-mCherry expression was observed in the right ventral dentate gyrus: scale bar,
200 mm.
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Figure 2

Protein expression of the hippocampus showed increased CRHR1 in Emx1-Cre;IRSp53 flox/flox mice is
restored by chemogenetic inhibition.

(a-g) CRHR1 (a) and SOX2 (d) were increased in Emx1-Cre;IRSp53 flox/flox mice, but BAIAP2 was not
expressed in Emx1-Cre;IRSp53 flox/flox (Emx1-Cre; IRSp53 flox/flox) mice compared to control (IRSp53
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flox/flox) mice (g). n=4 hippocampi in each group. *p < 0.05, ns, not significant, Student’s t-test.

(e) An image of immunoblotting results between control and Emx1-Cre;IRSp53 flox/flox mice.

(i-n) CRHR1 (A) were decreased after (clozapine, clz) chemogenetic inhibition in vDG of Emx1-Cre;IRSp53
flox/flox mice compared to before (vehicle, veh) chemogenetic inhibition, but SOX2 showed no difference
before and after chemogenetic inhibition in vDG of Emx1-Cre;IRSp53 flox/flox. n=3 hippocampi in each
group. *p < 0.05, ns, not significant, Student’s t-test.

(o) An image of immunoblotting results before and after chemogenetic inhibition in vDG of Emx1-
Cre;IRSp53 flox/flox mice.
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Figure 3

Transcriptomic analyses of the hippocampus showed increased Htd2, Ccn1 and Atp6ap1l expression and
changed biological and molecular pathways in Emx1-Cre;IRSp53 flox/flox mice.

(a) A heat map of the two-way hierarchical clustering to differentiate hippocampal transcriptomic
expression between Emx1-Cre;IRSp53 flox/flox (cko) and control (IRSp53 flox/flox, flox) mice.



Page 20/22

(b-c) Gene ontology (GO) term analyses showed the most prominent changes in regulating the
multicellular organismal process in the biological process and vitamin binding in molecular function.

(d) A volcano plot showed decreased transcriptomic expression of Htd2, Ccn1, and Atp6ap1l in Emx1-
Cre;IRSp53 flox/flox mice compared to control mice.

(e) Detailed list of differentially expressed genes of bulk RNA sequencing of the hippocampus between
Emx1-Cre;IRSp53 flox/flox and control mice.
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Figure 4

Single cell transcriptomic results show changes in molecules of non-neuronal cells such as Eya1 in
astrocytes and Ecrg4 in microglial cells and perivascular macrophages in Emx1-Cre;IRSp53 flox/flox
mice.
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(a-b) Identified cell types by Seurat analysis from single nucleus RNA sequencing in mouse hippocampi
and cell type distribution between Emx1-Cre;IRSp53 flox/flox (cko) and control (IRSp53 flox/flox, flox)
mice. Graph theory-based cell type clustering of b is presented.

(c) Heatmap showing the gene expression patterns for the top 20 genes in each cluster.

(d-e) FeaturePlot showing differentially expressed genes between Emx1-Cre;IRSp53 flox/flox and control
mice at the cell level for each cluster. The expression level of eyes absent (Eya1) decreased more than
twice in astrocytes of Emx1-Cre;IRSp53 flox/flox mice as much as that of control mice (d). The
expression level of Ecrg4 decreased more than twice in microglia, perivascular macrophage, vascular
smooth cell, and vascular endothelial cell of Emx1-Cre;IRSp53 flox/flox mice compared to control mice
(e).

(f) Detailed list of differentially expressed genes of single-cell RNA sequencing of the hippocampus
between Emx1-Cre;IRSp53 flox/flox and control mice.
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