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Abstract
Medical information is valuable information obtained from humans regarding the phenotype of diseases.
Omics data is informative to understand diseases at biomolecular level. We aimed to detect patient
strati�cation patterns in a data-driven manner and identify candidate drug targets by investigating
biomolecules that are linked to phenotype-level characteristics of a targeted disease. Such data
integration is challenging because the data types of them are different, and these data contain many
items that are not directly related to the disease. Hence, we developed an algorithm, subset binding, to
�nd inter-related attributes in heterogeneous data. To search for potential drug targets for intractable IPF
(idiopathic pulmonary �brosis), we collected medical information and proteome data of serum
extracellular vesicles from patients with interstitial pneumonia including IPF. Our approach detected 20
proteins linked with IPF characteristics, whose expression intensities were con�rmed to be high in �brotic
areas of human lung tissues. Furthermore, ponatinib, which inhibits these proteins, suppressed EMT
(epithelial mesenchymal transition) in vitro. This work�ow paves the way for data-driven drug target
discovery even for intractable diseases whose mechanisms of pathogenesis are not fully understood.

Introduction
One of the biggest problems in current drug discovery is the high failure rate of POC (Proof of concept) in
Phase II clinical trials. The major cause of this failure is that no signi�cant e�cacy was observed
(Arrowsmith and Miller 2013). This means that the drug effect observed in experimental animals used for
drug target discovery was not observed in humans, and it is thought that the limitations of drug target
discovery using experimental animals have come to the surface.

 

Another reason can be inadequate patient strati�cation. Even within a group of patients diagnosed with
the same disease, the characteristics are not uniform, and they can be divided into subgroups that differ
in such as prognosis, response to treatment including medication, and risks of side effects. In this case,
appropriate therapeutic approaches and drug targets may differ for each subgroup.

 

Against this background, we have come up with an idea that it would be possible to improve the failure
rate in Phase II clinical trials by searching for drug targets by using human data. Human data that is
expected to be useful for this purpose includes medical information of patients with target diseases for
drug target search. In addition, since molecular-level information is also necessary to search for drug
targets, omics data linked to medical information is expected to be invaluable.
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A canonical patient strati�cation approach would begin with a search for biomarkers that serve as criteria
for dividing the patient population into subgroups. The biomarker biomolecules are quanti�ed, and the
patient population is divided into subgroups by their patterns, so that subgroups that differ even in
phenotype level can be obtained. Therefore, if we can link disease phenotypes and biomolecules to
obtain many-to-many relationships in a data-driven manner through integrated analysis of medical
information and omics data, we can obtain both a list of biomolecules that can be used as biomarkers
and disease phenotypes of patient subgroups strati�ed by these biomolecules.

 

If the data-driven drug target discovery using human data is possible with methods like above-mentioned,
the bene�t will be particularly enormous for intractable diseases for which the mechanisms of disease
development are not fully understood at the molecular level. This is because it is possible to conduct drug
target discovery by collecting data even if the accumulated knowledge is limited. Therefore, we selected
idiopathic pulmonary �brosis (IPF) as a target disease and conducted drug target discovery by patient
strati�cation using medical information and omics data.

 

IPF is a chronic, progressive, intractable respiratory disease that is included in idiopathic interstitial
pneumonias (IIPs). IIPs are interstitial pneumonias with no identi�able cause and are designated as
intractable diseases in Japan. IIPs include IPF, nonspeci�c interstitial pneumonia (NSIP), cryptogenic
organizing pneumonia (COP), idiopathic bronchiolitis obliterans organizing pneumonia (idiopathic
BOOP), acute interstitial pneumonia (AIP), desquamative interstitial pneumonia (DIP), respiratory
bronchiolitis associated interstitial lung disease (RB-ILD), and lymphocytic interstitial pneumonia (LIP).
IPF has a very poor prognosis, with a mean survival of 3 to 5 years after diagnosis and a survival of less
than 2 months after acute exacerbation. IPF patients often fail to respond to steroids, and no
fundamental treatment has been established. There are only two drug treatment options: anti�brotic
agents pirfenidone and nintedanib. Since the pathogenic mechanism of this disease is unknown,
innovative approaches to drug target discovery that do not rely on conventional methods are required.
However, the classi�cation of IIPs is not trivial even for specialists, and multidisciplinary discussion
(MDD; in which physicians of different specialties such as respiratory medicine, radiology, and pathology
discuss and make a �nal diagnosis) is strongly recommended for reliable diagnosis. In addition, patients
diagnosed with IPF do not have uniform characteristics, and there are individual differences in the
response to the above-mentioned anti�brotic drugs and the severity of side effects. Therefore,
strati�cation of patients according to the type of IPF would be effective in optimizing treatment strategies
and �nding clues for the development of new drugs.

 

Biomarker discovery is the most common method for patient strati�cation. For example, proteomic
pro�les of extracellular vesicles (EVs) are reported to be promising markers for cancer detection and
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cancer-type determination (Hoshino, Kim et al. 2020). We have reported several biomarkers for patient
strati�cation or evaluation of the disease severity in refractory respiratory diseases such as chronic
obstructive pulmonary disease (COPD) (Koba, Takeda et al. 2021) and sarcoidosis (Futami, Takeda et al.
2021) that were identi�ed by proteome analysis of exosomes. Exosomes are a class of cell-derived
extracellular vesicles of endosomal origin, and are typically 30-150 nm in diameter – the smallest type of
extracellular vesicle. Enveloped by a lipid bilayer, exosomes are released into the extracellular
environment containing a complex cargo of contents derived from the original cell, including proteins,
lipids, mRNA, miRNA and DNA (L Isola and Chen 2017). Exosomes have been found to be responsible for
various intercellular communication by transferring their contents in exosomes to other cells (Valadi,
Ekström et al. 2007) (Zhang, Li et al. 2015). The expression state of these molecules has been shown to
be deeply related to the state of cells and the progress of diseases in many diseases including cancer
(Ludwig, Whiteside et al. 2019). These discoveries have attracted attention to the search for biomarkers
using EVs including exosomes and their application in drug discovery. Moreover, miRNAs in serum
exosomes in IPF have been suggested to re�ect speci�c changes in miRNA expression in lung tissue of
IPF patients (Njock, Guiot et al. 2019). Therefore, serum EVs including exosomes from patients with IPF,
which is a multifactorial disease and shows a variety of pathological conditions due to the involvement
of various cells, is likely to re�ect the diversity of pathological conditions. Among a variety of
biomolecules contained in EVs, proteins are the closest to phenotype and are important as direct
functional molecules. Until now, the characterization of proteins in EVs from alveolar epithelium or lung
tissue has been conducted in many diseases, but not in details from serum. In order to capture all the
protein pro�les in a certain mass range comprehensively in serum EVs from IPF patients, we utilized the
cutting-edge proteomics technology called DIA (data-independent acquisition).

 

Herein, we constructed a database of serum EVs proteome data on interstitial pneumonia including IPF
that is linked with their medical information and developed a novel machine learning algorithm, "subset
binding", which can be used to detect patient strati�cation rules. Furthermore, when we obtain a list of
biomolecules as biomarker candidates by using this method, we can identify candidate drug targets by
investigating the biological responses of their quantitative changes and inferring their upstream
regulators. We present a data-driven approach to drug target discovery using them and the outcomes
obtained by this approach.

Results
Data collection from electronic medical record information and structuralization with natural language
processing

The overall �ow of data collection is shown in Fig. 1 a), and Fig. 1 b) outlines the procedure from
collection of clinical data through electronic medical record entries (medical record and initial medical
questionnaire, CT imaging interpretation report, blood test data) to input data generation. For example,
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the medical records are entered at the time of medical consultation using a format (referred to as a
template) created with items set in advance, or the information is extracted manually from the entries and
initial medical history questionnaire freely written in natural language into the template, and then the
structured data were generated as input data. The CT imaging interpretation report, are paired by natural
language processing with information about the entity related to the lesion and the site where it was
observed, and the information about whether the lesion was observed (positive), not observed (negative),
or suspected (suspected) is also added. The features were then manually modi�ed and expressed as one-
hot vectors for subsequent analysis. Blood test results were collected as structured data by manually
extracting the test values for pre-selected items. The all above clinical information was collected at or
near the date of blood collection for proteome data acquisition. For the proteome data,
phosphatidylserine-positive extracellular vesicles were separated from serum, and the proteins contained
were comprehensively measured by mass spectrometry (Fig. 1c). Each missing value was imputed with a
representative value in healthy people, resulting in obtaining 6,506 (6,282 attributes from CT image
interpretation reports, 171 attributes from blood test results and 53 attributes from medical records) ×
602 cases (with overlap from 403 patients and 39 controls) of medical information and 2,445 protein ID ×
602 cases matrices.

 

Basic patient characteristics and clinical items

The number of patients for whom clinical data (medical information and blood samples) was collected in
this study and their basic characters are shown in Table I. The collected medical information is listed in
Sup Table I, and 2,388 protein groups identi�ed in the proteome analysis (2,445 proteins detected and
2,388 proteins were mapped to the known protein IDs) are shown in Sup Table II.
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Concept of subset binding and analysis work�ow

The composition of this cohort dataset used for the analysis of this study is shown in Fig. 2a), and the
analysis work�ow is shown in Fig. 2b). Subset binding (SB), a newly developed algorithm in this study,
was used to detect patient strati�cation rules using structured medical information and proteome data.
Subset binding outputs patient strati�cation rules (e.g., patients with high expression of biomolecules A,
B, and C tend to show reticular shadows and traction bronchiectasis) by detecting association between
phenotypic information such as medical information and biomolecular data such as omics data. SB uses
fuzzy association rule mining as the underlying technology. It accepts two input matrices (e.g., proteome
data and structured medical information; the number of rows must be the same, but the number of
columns may be different), membership values for “Low” class and “High” class are calculated for each
attribute using the membership function for each matrix, and association rules are generated so that the
frequent itemsets from both data are linked (Fig. 2b; see Supplementary methods for the details of the
algorithm). By using this algorithm, data with a mixture of continuous and discrete values, as is common
in medical information, can be handled without any special preprocessing or prior knowledge. There are 6
possible combinations of SB analysis as shown in Fig. 2c, and we selected proteins that were included in
the IPF characteristic-related association rules in the output of i) medical records (mixture of binary and
numerical values) – protein (numerical values) association, ii) CT interpretation reports (binary) – protein
association, and/or iii) blood test (mixture of binary and numerical values) – protein association at least
once. The IPF characteristics used to select association rules include a known biomarker KL-6 (sialylated
carbohydrate antigen) in blood test, respiratory di�culties during exertion in medical records.
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Clustering of proteome data is not suitable for patient strati�cation

To investigate whether the global similarities of cases in the proteomic data of serum EVs re�ect the
diagnosis, we visualized their quantitative patterns by heatmap with hierarchical clustering (Fig. 3a), t-
SNE (Fig. 3b) and UMAP (Fig. 3c). The heatmap shows that the global similarities among cases didn’t
match with their diagnosis, which implied that the canonical approach such as clustering is not suitable
for patient strati�cation. It is indicated that the proteome data contained many proteins that were not
directly linked with phenotypes such as diagnosis. Fig. 3b and 3c also supported this tendency, in which
several subtypes in IIPs (UIP, probable UIP, indeterminate UIP, alternative, and others) didn’t show co-
localization while HC (healthy control) showed weak tendency to co-localize.

Since the canonical machine learning techniques that assume the global similarities among cases are
high if the diagnosis and/or phenotypic characteristics are similar, we searched proteins that linked with
IPF-characteristics by SB as shown in Fig. 2b, which resulted in �nding 20 proteins.

 

The top 20 proteins that co-occurred with characteristic �ndings of IPF by SB and their relationship to IPF

The 20 IPF-related proteins found by SB are shown in Table II. The protein-protein interrelationships
among the 20 molecules were searched using TargetMine (Chen, Tripathi et al. 2011) (Chen, Tripathi et al.
2016) (Chen, Tripathi et al. 2019). LYN (Tyrosine-protein kinase Lyn), PTPN6 (Tyrosine-protein
phosphatase non-receptor type 6), MIF (Macrophage migration inhibitory factor) and RAN (GTP-binding
nuclear protein Ran) were found to be the hub molecules in the protein-protein interactions among these
20 molecules (Fig. 4a). In addition, the presence or absence of a relationship between 20 molecules was
explored using TargetMine and IPA Ingenuity Pathway Analysis, QIAGEN , and the results are shown in
Fig. 4b) and Sup. Table 3. As a result, molecules with no previously reported association were MRPS17
(28S ribosomal protein S17, mitochondrial) and PEF1 (Pe�in), whereas molecules those were found to be
associated with IPF through many other molecules were LYN (Tyrosine-protein kinase Lyn), PTPN6
(Tyrosine-protein phosphatase non-receptor type 6), MIF (Macrophage migration inhibitory factor) and
RAN (GTP-binding nuclear protein Ran).
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Network analysis and search for upstream control factors

In addition, we searched for molecular networks composed of seven core molecules and found pathways
such as Carbohydrate Metabolism, Small Molecule Biochemistry, Cellular Assembly and Organization,
where all these seven molecules are mapped. The regulatory relationships among the molecules on this
network, including the seven core molecules, are depicted in Fig. 4c).

Moreover, the upstream regulatory relationships of the expression of the seven core molecules were
explored using IPA causal network analysis. As shown in Fig. 4d), these molecules are regulated by
molecules such as ESR1 (Estrogen receptor 1), CCND1 (Cyclin D1), CCR2 (C-C chemokine receptor type 2),
NOS2 (Nitric oxide synthase 2), and MMP14 (Matrix metalloproteinase-14), which are in turn regulated by
the SRC (Proto-oncogene tyrosine-protein kinase Src) family, ERK1/2 (Extracellular signal-regulated
kinase 1/2) and ABL1 (ABL proto-oncogene 1) and �nally ponatinib was identi�ed as an upstream
regulator.

 

LYN and PTPN6 knock out mice were reported to have abnormal phenotypes in the lung
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The MGI database (http://www.informatics.jax.org/) and the JAXKO mouse phenotype database
(https://www.jax.org/jax-mice-and-services) were used to search for KO mice and phenotypes of core and
hub molecules, which are summarized in Table III. LYN and PTPN6 were found to have phenotypes such
as in�ammation in the lung. However, for other molecules, there are no available data or only effects on
other organs have been reported.

Immunohistochemical staining reveals many of the proteins are strongly upregulated expression in
�brotic areas, especially in epithelial cells and in�ammatory cells

Of the 20 molecules presented by SB, 7 core proteins and 4 hub proteins were investigated for expression
in patient lungs and for increased expression in �brotic areas. The �brotic and normal areas of the lungs
of two IPF patients, who had concomitant cancer and were eligible for surgery, in the different cohort
from that for proteome analysis were used for immunostaining using antibodies against each of the
proteins. As a representative result, a clear enhancement of Lyn expression was observed in the tissues
with obvious �brosis con�rmed by masson’s trichrome staining, shown in Fig. 5a). The results of
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immunohistochemical staining are summarized in Table IV, which shows that almost all the proteins
except ITIH are upregulated in �brotic areas, especially in epithelial cells and in�ammatory cells.

Ponatinib suppressed EMT

Epithelial mesenchymal transition (EMT) has been suggested to be important in the mechanism of
pulmonary �brosis in IPF. In this study, we succeeded in establishing a test system in which EMT is
induced by TGF-b using human normal airway epithelial cells BEAS-2B, and the EMT inhibitory effect of
ponatinib was con�rmed (Fig. 6).

Discussion
When taking a data-driven approach using machine learning, both the quality and quantity of the data
have a signi�cant impact on the analysis results. There are many challenges to ensure both of them
when utilizing disease phenotype data and biomolecular data.

 

In order to obtain informative knowledge from disease phenotype data by using machine learning, it is
necessary to use data in a format that can be processed by machines. In order to promote the secondary
use of medical information, it is important to construct a system that e�ciently stores medical
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information as structured data while reducing the burden on clinicians, or a system that e�ciently
converts unstructured data into structured data. In this study, we attempted to standardize the input
content of physicians and to facilitate the creation of structured data by creating a �xed format (a.k.a.
template) of items that physicians consider important in advance. The physicians recorded most of the
descriptions of medical interviews, examinations, and treatment results by selecting terms instead of free
descriptions in order to minimize the differences in the input of electronic medical records such as
�uctuations in terminology, which are often due to differences in the physicians in charge. The medical
information collected before the introduction of the template was converted into structured data by
manual curation while matching the format to the template. In addition, in this study, the interpretation
reports of chest CT images and consultation records were used to directly incorporate the judgment of
medical specialists into the analysis and to maintain high interpretability of the analysis results. We
developed an automatic extraction system using natural language processing (NLP) to tag and attribute
important words and phrases in the interpretation reports, which cannot be collected using the template.
This attempt resulted in the creation of several resources such as annotation guideline in the �eld of
medical language processing, including the respiratory �eld, where ontologies had not yet been developed
(https://sociocom.naist.jp/real-mednlp/wp-content/uploads/sites/3/2021/12/Real-
MedNLP_Annotation_Guidelines.pdf). On the other hand, in respiratory diseases, diagnoses are often
made using images. In recent years, there has been a lot of research on AI diagnosis methods using
image-processing techniques including 3D processing, and we are currently working on knowledge
extraction from chest CT images instead of interpretation reports.

 

Data collection is a challenge not only for disease phenotype data including medical information but also
for biomolecular data. Biomolecular data are not usually collected in routine clinical practice, except for
blood test values, and there are many hurdles such as the cost of large-scale data collection, errors such
as batch effects and noisiness that are often raised in omics analysis. In addition, selection of omics type
(e.g. genome data, transcriptome data) to be linked to medical information is not trivial. In this study, we
focused on proteins in serum EVs including exosomes, which are useful not only for their low
invasiveness but also for their suitability as biomolecules that re�ect the pathology of respiratory
diseases. Exosomes are secreted by all types of cells in the body, including immune cells and tumor cells,
and contain proteins, nucleic acids, and metabolites, and have been shown to function as new
messengers that move between cells and organs from donor cells to recipient cells (Zhang, Li et al.
2015). Since the proteins and nucleic acids contained in exosomes are transferred to target cells, they
have the potential to elucidate the pathogenesis of many diseases, including malignant diseases
(Ludwig, Whiteside et al. 2019), immune diseases (Tan, Wu et al. 2016), and infectious diseases (Schorey
and Harding 2016), as well as physiological conditions (L Isola and Chen 2017), and to be used for
therapeutic applications (De Toro, Herschlik et al. 2015). For example, in cancer, exosomes have been
shown to play an important role in various steps such as 1. metastasis, 2. immune modulation, 3. effects
on peritumor �broblasts and macrophages, 4. anticancer drug resistance, and 5. angiogenesis (Mashouri,
Youse� et al. 2019). We con�rmed that the expressions of the proteins that linked to the major characters
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of typical IPF at phenotype level in this study were high in lung tissue, especially in �brotic areas (Fig.5).
This result strongly supports the relevance of these EV proteins to the pathogenesis, as well as that of our
strategy of data-driven drug target discovery.

Although search for biomarkers by proteome analysis of serum has been attempted for many diseases, it
has not been possible to identify minute amounts of proteins derived from tissues or lesion sites because
many blood-derived proteins, which are present in large quantities in serum, are detected. In this study, we
used EVs including exosomes to identify proteins that re�ect changes in the lesion site encompassed in
the EVs, and we believe that we have narrowed down the proteins that are strongly related to the
pathological condition.

 

Even when structured medical information and omics data associated with it are collected, conventional
machine learning methods do not always demonstrate their power depending on the objective of the
analysis. Medical information often contains both of discrete values (e.g., items representing the
presence or absence of smoking in binary form, items representing the progression of disease in terms of
stages, and items representing the �ndings observed in CT images in terms of one-hot vectors) and
continuous values (e.g., blood test values, respiratory function measurements). The existing methods are
not appropriate for extracting many-to-many relationships by linking such data, a mixture of discrete and
continuous values, with omics data. Therefore, a novel algorithm that can be applied to such data was
required. Although clustering is commonly used for patient strati�cation, the characteristics commonly
observed in patient subgroups de�ned by global similarity are not necessarily medically useful, because
the majority of factors in medical information and omics data are considered to be not directly related to
diseases. In addition, prior knowledge of the appropriate number of clusters (subgroups) is rarely
available. Similarly, the strengths of multi-view learning, which assumes a common structure across
multiple data sets, are not exploited. Furthermore, since the objective is to present biomarker candidates
and drug target candidates through patient strati�cation, the algorithm must have high interpretability of
output. The algorithm developed in this study, subset binding, is not limited to patient strati�cation. It
extracts many-to-many items that are correlated between paired data without relying on existing
knowledge. An example of applications other than patient strati�cation is available in the Supplementary
method. Conventional approaches to identify biomarkers for patient strati�cation have always been
based on signi�cant differences in the rate of change relative to healthy controls, and have focused on
simple statistical testing for each molecule, while our approach group several molecules to explain the
combination of phenotypic characters. Our method has the advantage that it can be used even when
there is limited information about the factors that are important for patient strati�cation, because there is
no need to specify in advance groups (e.g. healthy control vs typical IPF patients) to be compared and no
need to specify which metadata items (e.g. attributes in medical information) to focus on when
extracting molecules of interest.
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In order to validate the relevance of the IPF-related proteins we detected, we investigated the associations
between these proteins and IPF using the QIAGEN database. It is noteworthy that we could detect proteins
with known associations with IPF, as well as proteins with no previously reported associations with IPF
were included (Sup Table III). The fact that our method detected ground truth supports the validity of our
method. Furthermore, our strategy provides more opportunities to gain new insights since it uses real-
world clinical information rather than a knowledge-based search. It is also expected that the IPF-related
proteins in serum EVs we detected can be used to classify IPF and other IIPs without invasive techniques
such as surgical lung biopsy (SLB).

 

It is striking that the proteins found in this study are not only linked to a common pathway, but also that
ponatinib was identi�ed as a drug that regulates this pathway. In order to verify the relevance of the
proteins found in this study and ponatinib to IPF, we validated their impact on epithelial mesenchymal
transition (EMT), which is involved in the mechanism of lung �brosis in IPF. We established a TGF-b-
induced EMT system using normal human bronchial epithelium-derived BEAS-2B cells in addition to A549
cells, which are commonly used for EMT. It was demonstrated that ponatinib possessed an inhibitory
effect on EMT (Fig. 6). Nintedanib, one of the anti-�brotic drugs prescribed for IPF patients, has been
reported to inhibit EMT as one of its mechanisms of action. Therefore, ponatinib, which regulates IPF-
related molecules, is also expected to suppress �brosis through EMT inhibition in IPF patients, similar to
nintedanib. In fact, nintedanib is a tyrosine-kinase inhibitor targeting VEGFR (vascular endothelial growth
factor), PDGFR (platelet-derived growth factor) and FGFR (�broblast growth factor), and ponatinib is also
a multi-targeted tyrosine-kinase inhibitor. It has been reported that ponatinib inhibited the apoptosis of
human type I alveolar epithelial cells, the proliferation of human lung �broblasts in vitro and prevented
�brosis in a bleomycin-induced pulmonary �brosis in rats by inhibiting TGF-b1/Smad3 pathway (Qu,
Zhang et al. 2015). They also reported that ponatinib reversed the EMT in A549 cells, which is consistent
with our result. Fibrosis occurs in many organs, such as the liver and skin, and there are many patients
affected by this. In addition, it has recently been shown that �brosis is associated with the development
of cancer, and in fact, about 20% of IPF patients develop lung cancer, whose risk is equivalent to �ve
times as high as healthy population (Tzouvelekis, Spagnolo et al. 2018). Therefore, the search for drug
targets based on unraveling the true nature of �brosis in IPF, including ponatinib, is expected to lead to
the elucidation of therapeutic methods for �brotic diseases in other organs and of the mechanisms of
cancer development.

 

The main objective of this study is to develop a proof of concept for the feasibility of data-driven drug
target discovery using medical information and omics data. Therefore, we focused on the detection of
proteins associated with typical IPF features and their network analysis to present and validate drug
target candidates. However, we emphasize that proteins associated with disease phenotypes that are
different from the characteristics of typical IPFs are also detected in the output of SB. In other words,
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proteins associated with atypical IPFs and disease phenotypes of IIPs other than IPFs are also detected
simultaneously, making it possible to stratify patients at the biomolecular level and search for drug
targets in the resulting subgroups, rather than using conventional classi�cation by disease type. This will
lead to new drug discovery with a different mechanism of action from the two drugs already on the
market. Furthermore, since the work�ow of this research can be applied to diseases other than respiratory
diseases, we expect that this research will accelerate the data-driven approach to drug target discovery,
where the introduction of AI has not made much progress so far.

Methods
Ethics statement

Written informed consent was acquired from all patients before this study. The protocol of this study was
approved by the Ethics Committee of NIBIO and Osaka University Hospital.

 

Protocol for collecting serum

Patients who were diagnosed or suspected with interstitial pneumonia including IPF at Osaka University
Hospital were entered to this study. They were provided su�cient explanation based on the "Informed
Consent Explanation Document", and then gave written consent to participate in this study. Ten mL of
blood was collected and allowed to stand at room temperature for 1 hour, then centrifuged at 3000 rpm
for 10 minutes, and the supernatant was separated as serum. The separated serum was immediately
frozen and stored in a freezer at -80°C. Serum was also collected in the same manner for those who were
diagnosed as having no organic respiratory disease as healthy control.

 

Protocol for proteome analysis

EV isolation and comprehensive protein measurements were performed according to the method
described in (Muraoka, Hirano et al. 2022).  Brie�y, phosphatidylserine-positive extracellular vesicles were
puri�ed from 200 μl of serum using MagCapture isolation kit (Fuji�lm Wako). Proteins in EVs were
reduced with tris(2-carboxyethyl) phosphine, alkylated with iodoacetamide, trypsin digested and desalted.
Pretreated samples were subjected to LC-MS/MS analysis using the Data independent acquisition (DIA)
method. Data analysis was performed using DIA analysis software Spectranout, and run-wise imputation
was performed for missing values. 1 commercial serum sample was added to every 15 samples as a
quality control to assure quality from sample preparation to data analysis. DIA analysis of digested HeLa
cells was also performed as a quality control for mass spectrometry.
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Protocol for collecting medical information

Medical information securely stored in the data center of Osaka University Hospital was anonymized by
patient ID and then stored in encrypted HD with the cooperation of the Medical Information Department
of the Osaka University Hospital and provided to the National Institute of Biomedical Innovation (NIBIO).
Medical examination records were obtained as structured data from the doctor using a template created
with a list of 102 items of necessary information in advance, or by manually curating the template from
free text data at the NIBIO. The CT imaging interpretation reports were tagged with key words using
manual or natural language processing techniques, and were classi�ed into site/lesion pairs and three
categories: positive, negative, and suspect. Blood test values were structured by selecting and curating
173 key items. For the initial medical questionnaire and basic information, the key items were curated
and added to the template items of the medical record. In structuring the data, we con�rmed the meaning
of missing values and used mainly the reference values for healthy subjects to impute missing values.

 

Protocol for reading �ndings NLP

Tagging Protocol

In order to assign tags to a range of expressions that appear in clinical texts such as consultation records
and reading �ndings, which correspond to medical concepts such as names of diseases, disorders, and
sites, a tag classi�cation was performed as newly developed annotation guidelines

 (URL:https://sociocom.naist.jp/real-mednlp/wp-content/uploads/sites/3/2021/12/Real-
MedNLP_Annotation_Guidelines.pdf.)

 

Explanation of Knowledge Extraction Model

According to the tag classi�cation described above, annotation guidelines were developed based on
actual cases, and tagging and extraction of important words and phrases were performed in medical
examination records and reading �ndings. The validity of the tagging was checked by experts with
medical knowledge, and correct data was generated. Using the obtained corpus, we set up a medical
expression recognition and relationship estimation system and constructed an extraction system using
the Japanese BERT model.

 

Visualization of the proteome data

The proteome data was log-transformed (base:10) prior to visualization. The heatmap was created with
seaborn python module (Waskom 2021) with the parameter settings as below: method='average',
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metric='cosine', z_score=1, standard_scale=None. For t-SNE and UMAP, the proteome data was further
converted into z-score. The t-SNE was conducted with scikit-learn python module (Pedregosa, Varoquaux
et al. 2011) with the parameter settings as below: n_components=2, perplexity=5, metric=’cosine’. The
UMAP was conducted with umap python module (McInnes, Healy et al. 2018) with the parameter settings
as below: n_components=2, n_neighbors=5, metric=’cosine’.

 

Subset binding

Advocating the idea of “subset-binding (SB),” which focuses on �nding inter-related attributes in
heterogeneous data according to their co-occurrence, this study developed a novel algorithm by extending
fuzzy association rule mining techniques. Brie�y, SB utilizes FARM (Fuzzy Association Rule Mining)
approach to search for frequent itemsets (items that tend to occur) in two data (e.g. proteome data and
medical information) and �nd association rules (patterns of co-occurrence between itemsets) so that the
antecedent comes from one data and the consequent comes from the other data. The detailed algorithm
is described in Supplementary methods. The proteome data which is linked with the medical information
was analyzed with SB with the parameter setting as below: min support = 0.15, 0.02, 0.02, 0.02 for the
proteome, the CT interpretation report, the medical records, and the blood test, respectively. min number
of items = 4, 3, 3, 3 for the proteome, the CT interpretation report, the medical records, and the blood test,
respectively. min lift = 2, 2, 2 for the association rules between proteome - CT interpretation report, the
proteome – the medical records, and the proteome - blood test, respectively.

 

The analysis of protein-protein interaction using TargetMine

PPI networks for the top 20 proteins were constructed and network hubs were assigned using TargetMine
(a data warehouse for drug discovery, https://targetmine.mizuguchilab.org) (Chen, Tripathi et al. 2011)
(Chen, Tripathi et al. 2016) (Chen, Tripathi et al. 2019).

 

The network analysis and upstream regulators characterization using IPA

To identify biologically relevant molecular networks and pathways for the core and hub proteins,
Ingenuity Pathways Analysis (IPA; QIAGEN, Redwood 185 City, CA), was used. We performed disease and
pathway analyses and network generation using Ingenuity Knowledge Base, which relies on available
publications describing the biological mechanisms, interactions and functions of proteins. The causal
network analysis (CNA) (Krämer, Green et al. 2014) was performed using also IPA, for identifying novel
master-regulators by creating pathways of literature-based relationships.

 

https://targetmine.mizuguchilab.org/
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Immuno-histochemical staining

Fibrotic and normal areas of the lungs of 2 IPF patients who had concurrent lung cancer and were eligible
for surgery at Osaka University Hospital were separated and �xed in formalin phosphate buffer solution.

Formalin-�xed lung tissue was cut along the longitudinal axis of the tissue section to prepare FFPE
(formalin �xed para�n embedded) blocks, which were thinned to 4 m in thickness using a sliding
microtome to prepare unstained specimens. Unstained specimens were subjected to HE (hematoxylin-
eosin) and MT (Masson’s trichrome) staining to con�rm in�ammation and �brosis. In addition, unstained
specimens were stained by the Immunohistochemistry (IHC) method using speci�c antibodies for the
proteins found in the analysis. The OptiView DAB Universal Kit was used as the detection reagent, and
staining using antibody dilutions as a negative control for each antibody was performed simultaneously
to evaluate IHC staining for each antibody.

 

EMT

EMT was evaluated by suppressing the expression of the epithelial marker E-cadherin and enhancing the
expression of the mesenchymal markers Fibronectin and Snail. 2.5×10⁴ or 3.5×10⁴ cells/mL of BEAS-2B
cells purchased from ATCC ( The cells were seeded in 96 well plates coated with �bronectin/collagen
I/BSA in BEGM™ Bu, lletKit™ ; Bronchial epithelial cell basal medium, Lonza Corporation, and after 24
hours, the test drug was added. 48 hours after TGF-β addition, cell lysis and RT were performed using the
SuperPrep® II Cell Lysis & RT Kit for qPCR (Toyobo Co., Ltd.), and the expression of the above EMT
marker gene group was measured. THUNDERBIRD Probe qPCR Mix (Toyobo Co., Ltd.) was used for qPCR,
and TaqMan Probe (Thermo Fisher Scienti�c Co., Ltd.) was used for each marker probe.
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Figure 1

a) Flowchart of medical information and serum sample collection b) Conceptual diagram of medical
information data generation, c) Exosome isolation and proteome analysis
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Figure 2

a) Structured data dimension. The medical information matrix is constituted with 6,282 attributes from
CT interpretation reports, 171 attributes from blood test results and 53 attributes from medical records.
The proteome matrix is constituted with 2,445 proteins (2,388 proteins were mapped to known protein IDs
as shown in Sup Table II). Both matrices have 602 rows, which were equivalent to the number of cases
(602 cases from 401 IP patients and 38 healthy controls). b) conceptual diagram of subset binding. Input
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data: two paired matrices (quantitative and/or categorical). First, quantitative attributes in input are
converted into fuzzy categorical attributes (“Low” and “High”) with membership functions. Since
membership values for “Low” and “High” categories are obtained for each attribute, this process produces
matrices with double number the of columns when all attributes are quantitative. Next, these matrices are
used to detect frequent itemsets independently. Thereafter, association rules are generated so that FIS
derived from one matrix will be antecedent, and those from the other matrix will be consequent. User-
speci�ed threshold (e.g., lift) is used for pruning and paired (antecedent from data1 and consequent from
data2) association rules are obtained as output. c) conceptual diagram of analysis work�ow. Since
subset binding accepts two paired matrices, the possible combinations of the data analysis were: i)
proteome-medical records, ii) proteome-CT interpretation reports, iii) proteome-blood test, iv)medical
records-CT interpretation reports, v) CT interpretation reports-blood test and vi)blood test-medical records.
The IPF-related proteins were selected from these outputs.
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Figure 3

Visualization of the proteome data a) heat map with hierarchical clustering. The log-transformed protein
amounts were scaled for each column. The x-axis represents proteins detected by DIA (n=2,445), and the
y-axis represents the cases (n=602). The diagnosis of the cases were represented as six different colors
as shown at the top of the �gure. b) t-SNE. The log-transformed and scaled protein amounts were plotted
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(metric: cosine, perplexity: 5), c) UMAP. The log-transformed and scaled protein amounts were plotted
(metric: cosine, perplexity: 5)

Figure 4

Proposed molecules information collected using TargetMine and IPA
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a) PPI and hub molecules of proteins found TargetMine

b) Relationship with IPF TargetMine

c) Network extraction consisting of core molecules IPA

d) Upstream analysis of core molecule and relationship network of ponatinib
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Figure 5

Con�rmation of expression of key proteins in �brotic lesions (immunostaining, independent cohort)

Figure 6

Ponatinib treatment attenuated TGF-β-induced expression of EMT genes/markers
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Cells were treated with Ponatinib or SB431542, thereafter rTGF-β added to the cells and cultured for 48 h.
Further, cells were subjected to RT-qPCR for the speci�ed transcripts in a)E-cadherin, b)Fibronectin,
c)Snail ; relative expression levels were presented as means ± SEM; signi�cance *p<0.05, **p<0.01 vs
TGF-βalone.
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