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Abstract— Objective: Our study develops a generative 

adversarial network (GAN)-based method that generates faithful 

synthetic image data of human cardiomyocytes at varying stages 

in their maturation process, as a tool to significantly enhance the 

classification accuracy of cells and ultimately assist the throughput 

of computational analysis of cellular structure and functions. 

Methods: Human induced pluripotent stem cell derived 

cardiomyocytes (hiPSC-CMs) were cultured on micropatterned 

collagen coated hydrogels of physiological stiffnesses to facilitate 

maturation and optical measurements were performed for their 

structural and functional analyses. Control groups were cultured 

on collagen coated glass well plates. These image recordings were 

used as the real data to train the GAN model. Results: The results 

show the GAN approach is able to replicate true features from the 

real data, and inclusion of such synthetic data significantly 

improves the classification accuracy compared to usage of only 

real experimental data that is often limited in scale and diversity. 

Conclusion: The proposed model outperformed four conventional 

machine learning algorithms with respect to improved data 

generalization ability and data classification accuracy by 

incorporating synthetic data. Significance: This work 

demonstrates the importance of integrating synthetic data in 

situations where there are limited sample sizes and thus, effectively 

addresses the challenges imposed by data availability. 

 
Index Terms—Machine Learning, Classification, 

Cardiomyocyte Maturation, Generative Adversarial Network 

I. INTRODUCTION 

uman induced pluripotent stem cell-derived 

cardiomyocytes (hiPSC-CMs) have emerged as a 

promising tool for drug testing, disease modeling, and 

tissue replacement for cardiovascular medicine due to their 

unlimited and personalized, patient-specific source. HiPSC-

CMs are now generated in vitro from personalized cell sources 

with high throughput and purity at a clinically relevant scale, 

but a major hurdle halting their advancement to clinical 

research phase comes from their immature, embryonic state. 
Embryonic cardiomyocytes undergo significant developmental 

changes during postnatal stages, including subcellular 

structural development, improved calcium handling and 

changes in action potential profile [1]–[6]. The current 

protocols generate hiPSC-CMs at embryonic or early fetal 
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stages and thus, the generated cells lack many attributes of adult 

cells that are desirable for drug screening, modeling of adult-

onset diseases, or replacing cells lost to disease. Therefore, 

many studies have been invested in developing methodologies 

and tools to accelerate maturation of hiPSC-CMs via 

biophysical or chemical stimuli such as mechanical loading 

[7]–[9] or electrical stimulation [10]–[12], optical stimulation 

[13], [14], biochemical and biophysical cues [15]–[17], but the 

throughput and scalability of current experimental designs and 
analysis methods are still limiting in scope to manufacture 

mature hiPSC-CMs at scale and at speed. The standard state-of-

art approaches to evaluate the structural or functional state of 

cardiomyocytes are mostly based on video recording and 

microscopy image analysis [18]–[20], but the key unresolved 

challenge is acquiring large sets of image data and high 

throughput means to process, analyze, and classify image 

features. 

The ability to manufacture mature hiPSC-CMs at scale and 

at speed will utterly transform traditional health care to one with 

greater focus on regenerative medicine and cell therapies. It 
also has the potential to shift the pharmaceutical industry as the 

use of novel human cell-based assays supports the industry-

wide mandate to reduce, refine, and replace animal testing. 

Core innovations to achieve this will come from scalable and 

reproducible maturation of hiPSC-CMs through low-cost and 

high throughput means and development of a standardized and 

robust framework for conducting cellular measurements and 

analyses. Analysis of cellular systems have faced many 

challenges due to high degrees of complex variabilities and lack 

of sufficient experimental data, but integration of artificial 

intelligence (AI) and computational modeling has forged a 

paradigm shift towards high throughput analysis and physical 
principle based, data-driven accurate predictions. Towards this 

effort, we herein introduce a generative artificial intelligence 

method that generates synthetic hiPSC-CM image data that 

closely resembles the real hiPSC-CM image data in order to 

enlarge the dataset used for high throughput, comprehensive 

analysis on classifying maturation features with respect to 

specific experimental conditions.  

Machine learning models are renowned for their exceptional 

performance when handling intricate and high-dimensional 

data with diverse attributes. These models possess the ability to 
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uncover the inherent features present in large datasets even in 

the absence of an understanding of the underlying mechanism 

governing the system. This ability proves particularly valuable 

for analyzing complex systems that lack mathematical 

descriptions of their dynamics, such as the maturation process 
of fetal to adult cardiomyocytes. The broad application of 

machine learning models encompasses various cell 

classification tasks – for instance, the classification of cancer 

cells [21]–[27].  Convolutional neural network (CNN) is an 

algorithm type that is useful for such cell classification 

applications due to its ability to extract intrinsic features and 

patterns from images and therefore, eliminates the need for 

laborious and manual image analysis. However, a large and 

diverse training dataset is typically required for machine 

learning models to ensure accurate and reliable classification 

and be able to grasp the full complexity of the cellular system 

dynamics. Data limitation in size and scope can create biases in 
machine learning models and lead to overfitted outcomes. 

Training on a small or biased dataset can render a model with 

limited ability to make autonomous predictions with a new and 

varied data set.  

Generative AI offers a viable solution for limited 

experimental datasets by creating synthetic data that reproduces 

the characteristics of real data.  It was not until 2014 that the 

introduction of generative adversarial networks (GANs) 

enabled producing high-quality data of human facial features 

that are convincingly authentic [28].  The GAN algorithm 

employs two neural networks - a generator and a discriminator 
- to generate synthetic data that closely resembles the original 

data. The generator creates artificial data while the 

discriminator attempts to differentiate between the synthetic 

data and the real data. The two networks engage in an 

adversarial training process: the generator is trained to produce 

synthetic data that progressively approximates the original data, 

and the discriminator learns to distinguish fine features between 

the two. This adversarial training process is capable of 

enhancing the model's resilience to adversarial attacks and 

perturbations in a different dataset. In recent years, GAN 

models have shown applications in cancer cell classifications 

[29]–[32] and neural cell classifications[33]. However, to the 
best of our knowledge, GAN has not yet been utilized in the 

context of cardiac cellular systems. 

Here, we present the development of a GAN-based approach 

for generating high-fidelity synthetic data that replicate hiPSC-

CMs cultured in different microenvironments. This includes 

synthetic hiPSC-CM images and videos that accurately capture 

the dynamic behavior of cardiomyocytes. To train the GAN 

model, a micropatterned hydrogel platform was designed to 

culture hiPSC-CMs and provide biophysical stimuli to facilitate 

their maturation, and the control group was cultured in 

traditional glass well plates. Cells were cultured for 14 days, 
and optical recordings were collected every other day to analyze 

their structural and functional behavior over time. Recordings 

and images collected from day 2, 6, 14 without further image 

processing or augmentation were used for the GAN application 

here.  

We combined the synthetic cell images produced by the 

GAN model with the experimental dataset to train a CNN 

model that can classify hiPSC-CMs at various maturation 

stages. Cross-validation is a widely used method to evaluate the 

versatility of machine learning models. However, when dealing 

with limited datasets, such as in the case of hiPSC-CMs 

systems, performing cross-validation alone on a limited dataset 

that lacks population and diversity does not provide sufficient 

evidence for generalization on the entire data domain. To 
address this limitation, we prepared an unseen domain dataset 

(Fig. 1) that consists of data from a different cell batch but 

under the same culture conditions and thus, shares similar 

characteristics with the training data but not fully represented 

by it. 

II. METHODS 

A. Generative Adversarial Network (GAN) Model development 

to generate synthetic image data 

 
Figure 1. Overview of the GAN model to improve classification of 
hiPSC-CM maturation level. Morphology images and contractility 
recordings (seen domain) are collected to train the GAN model to 
generate high quality artificial data composed of cell images and 
contractile recordings. Relevant synthetic images trained from the 
seen domain then are mixed with the real data to train the cell 

classifier to improve its classification accuracy in both the seen and 
the unseen domains. Fake videos are obtained by training the GAN 
model with time series images of individual  hiPSC-CMs. 

The GAN model employed in this study was comprised of a 

generator and a discriminator as shown in Fig. 1. The generator 

applied upsampling techniques to a random noise vector input, 

and generated synthetic images that closely resembled the 

original, real image. In contrast, the discriminator functioned as 

a binomial classifier, downscaling input cell images to discern 

between real and fake samples. The core of the GAN model lay 

in its adversarial training approach, wherein the generator and 

discriminator alternated undergoing iterative updates and 

compete with each other. The discriminator was trained to 

minimize a binary classification loss function, while the 

generator was trained to maximize the probability of the 
discriminator misclassifying the generated samples. The 

objective function is described in the following equation: 

min
!!

max
""

𝐿#; 𝜙 = 	+,log𝐷$ (𝑥) + log ,1 − 𝐷$7𝐺#(𝑧):;; 

 

In order to facilitate balanced competition between the 

generator and discriminator, and otherwise promote impartial 

learning during adversarial training, the networks were 

designed with a symmetric structure. The generator consisted 

of four layers of transposed 2D CNNs, while the discriminator 

consisted of four layers of 2D CNNs. Both networks 
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incorporated batch normalization and rectified linear unit 

(ReLU)/Leaky ReLU activations between each layer. The 

generator concluded with a Tanh activation function, while the 

discriminator utilized a Sigmoid function. Details of the 

generator and discriminator structure can be found in Table I.  
The adversarial training optimized both neural networks, 

enhancing the model's robustness for generalization and 

defense of subtle perturbations in the data. 

The GAN model was trained with the objective of producing 

high-quality artificial hiPSC-CMs data, which included both 

synthetic images and videos. These generated cell images were 

combined with authentic data to form the training dataset for 

the cell classifier model. Inclusion of synthetic cell images 

served the purpose of improving the scale and diversity of the 

dataset, which in turn enhanced the accuracy of computational 

analysis for classifying hiPSC-CM images into various stages 

of maturation. 

B. Cell Classification Framework

 

Figure 2. Schematic to show the relationship of the training data and 
the testing data for the cell classifier.  

The cell classifier architecture was constructed with a layered 
structure that consists of five layers – including three CNN 

layers and two fully connected (FC) layers (Fig. 2). To 

investigate the impact of integrating synthetic data into the 

training dataset, three distinct datasets were curated for the 

training of the classifier. These datasets included a relatively 

small authentic dataset, a larger authentic dataset, and a dataset 

that combined both authentic and synthetic images. The cell 

classifier underwent testing with both seen and unseen data to 

evaluate the GAN model's ability to generate synthetic images 

that contain detailed features of the cardiac cells that were not 

sufficiently represented in the experimental dataset due to 
limited sampling. Since the GAN model was only trained with 

the seen domain data, this evaluation was intended to 

demonstrate the GAN model's ability to generate artificial 

images that contained features beyond what was present in the 

original dataset. 

To validate the effectiveness of the proposed model, the 

classification outcomes were compared against four 

conventional machine learning algorithms: Support Vector 

Machine (SVM), Random Forest, K Nearest Neighbors (KNN), 

and Naive Bayes. In order to assess the generalization ability 

they each achieved from incorporation of synthetic data, each 

conventional machine learning model was trained using both 
real and synthetic datasets. Subsequently, those models’ ability 

to generate synthetic images with novel features were evaluated 

using both seen and unseen domain testing data. 

C. Fabrication of Micropatterned Hydrogel Scaffolds to 

Facilitate Maturation of hiPSC-CMs 

 

 

 

 

Figure 3. (A) Various micropatterns generated via lithography. (B) 
Immunostaining of collagen IV coated patterns (scale bars: 100 um) 
(C) HiPSC-CMs cultured on collagen IV micropatterned GelMA 
hydrogel scaffold that demonstrate mature morphology (scale bar: 100 
um) (D) Motion vector analysis of contractility 

To generate maturation-enhanced hiPSC-CMs, they were 

cultured on a micropatterned, collagen IV coated photosensitive 

hydrogel with controlled mechanical properties. A 10% (w/v) 

gelatin methacrylate (GelMA) was combined with 0.5% 

Irgacure 2959 photoinitiator to generate photo-crosslinked 
hydrogels. Sterility was ensured via sterile 0.2 μm porous rapid 

filtration. These hydrogels were casted in a custom Teflon mold 

and sealed with glass to polymerize under 365nm 8mW/cm2 

UV light and subject to varying crosslinking times to generate 

a stiffness gradient of 10 kPa, 30 kPa, and 60 kPa. 

Polydimethylsiloxane (PDMS) stamps with micropatterns 

including 20 um x 140 um 40 um x 280um, 75 um x 525 um, 

and 45 um x 225 um size rectangular patterns were fabricated 

using traditional photolithography and soft lithography (Fig. 

3A). Plasma-activated PDMS stamps were coated with collagen 

IV protein and stamped onto the 10% GelMA hydrogel 

scaffolds (Fig. 3B).For the positive control groups, hiPSC-CMs 
were cultured on collagen IV coated MatTek glass well plates.  

D. Optical Measurements of Cardiomyocyte Structure and 

Function 

Commercially available human iPSC-derived cardiomyocytes 
(iCell2 cardiomyocytes, 01434) were obtained from Cellular 

Dynamics International Inc. (CDI, Madison, WI, USA). 

Cryopreserved iCell2 cardiomyocytes were rapidly thawed, 

then diluted in iCell2 plating medium and seeded onto standard 

6-well and 96-well plates (Thermo Fisher Scientific) coated 

with 0.1% gelatin (Sigma Aldrich) for the control groups and 

on 10% GelMA hydrogel scaffolds coated with collagen type 

IV proteins for the maturation enhancement group (Fig/ 3C).  

After 4 hours post seeding, the plating medium was changed to 

a maintenance medium and then changed every 48 hours 

thereafter. Cell cultures were maintained in the incubator at 

37°C and 5% CO2. The hiPSC-CMs were cultured for two 
weeks and characterized every other day using a Nikon TE2000 

inverted microscope to record the cellular morphology and 

beating dynamics at 10 frames per second. To assess contractile 

motion of hiPSC-CMs, movement was quantified using a 
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custom MATLAB script, which measured pixel displacements 

of contracting cells over contraction and relaxation. For each 

video frame, the mean magnitude of displacement was 

measured to yield an average contractile movement. 

Normalized contractile motion was calculated for each video as 
the mean of all peak contraction values observed in a 20 second 

period (Fig. 3D).  

E. Generation of seen domain and unseen domain data 

Videos of day 2, day 6 and day 14 hiPSC-derived 

cardiomyocytes were collected to represent the different stages 
of the cardiomyocyte maturation process. Images were 

extracted and randomly cropped from these videos to obtain 

300 x 300 pixel of RGB cell images. The collected real images 

were separated into two groups: cells cultured in one 

maturation-promoting scaffold included in the seen domain, 

and cells cultured in another scaffold included in the unseen 

domain. Both groups of cells were cultured under the same 

conditions, and the same separation process also was done for 

the control group. The seen domain dataset was utilized for the 

training of the GAN and cell classifier, as well as for testing the 

accuracy of the cell classifier. The unseen domain data was 

employed for testing the generalization ability of the cell 
classifier. 

F. Implementation and Training of GAN model 

All of our GAN and cell classification models were 

implemented through Pytorch on a standard workstation 

(Intel(R) Core(R) CPU i9-9980 XE CPU 3.00 GHz, 18 CPU 
cores, 8GB NVIDIA GeForce TRX 2080Ti). The Adam 

optimizer was employed to minimize the loss of the GAN 

model and a standard error back-propagation algorithm was 

used, with 𝛽1=0.5 and 𝛽2=0.999. A batch size of 64 was used, 

and the learning rate was set to 0.0002. The  cell classifier 

underwent training for 2000 epochs. The weights were 

controlled with weight norm regularization to avoid overfitting. 

To generate synthetic images, a dataset of 691 seen domain 

images was utilized. This dataset consisted of 229 images from 

day 2, 227 images from day 6, and 235 images from day 14. 

These images underwent transformations such as random 
cropping, random flipping, and resizing, resulting in images 

with a resolution of 128 x 128 pixels and RGB channels. The 

generator component of the GAN model took a noise vector of 

size (64,1) as input and generated an image of size (3,128,128) 

as output. The discriminator, on the other hand, took an image 

of size (3,128,128) as input and output a probability indicating 

whether the input image was genuine or artificial. The GAN 

model was trained for a total of 2000 epochs with the objective 

of generating 320 images for each class of cardiomyocytes. 

To generate synthetic videos that replicate the beating 

dynamics of cardiomyocytes, a dataset comprising 124 groups 
of single cell time-series images was collected. Each group 

consisted of five consecutive frames, with each frame being an 

RGB image of size 256 x 256 captured at a frame rate of 5 

frames per second (FPS). These collected images underwent 

several transformations, including random cropping, random 

flipping, grayscale conversion, and resizing, resulting in each 

group containing five consecutive single-channel cell images of 

size 64 x 64. The generator component of the GAN model took 

a noise vector of size (64,1) as input and generated an output 

vector of size (5,64,64). On the other hand, the discriminator 

took a vector of size (5,64,64) as input and output a probability 

indicating whether the input vector represented a genuine 

beating cell or an artificial beating cell. The GAN model was 

trained for 2000 epochs using this setup. The generated vector 
of size (5,64,64) was further transformed into a short synthetic 

video that replicated the beating of a single cardiomyocyte. 

G. Implementation and Training of the Cell Classifier 

The cell classifier architecture was structured with three 

convolutional neural network (CNN) layers followed by two 
fully connected (FC) layers. Each CNN layer had a kernel size 

of 3 and produced output channels of 32, 16, and 4, 

respectively. Following each CNN layer was a 2D maximum 

pooling layer with a size of (4,4). The two FC layers had sizes 

of 64 and 3 respectively, and the classifier concluded with a 

SoftMax activation layer. The input to the classifier was cardiac 

cell images, either real or artificial, with dimensions of 

(3,96,96) that randomly were transformed from the image 

training dataset with each image of size (3,128,128). The output 

of the classifier is a vector of length 3, which indicated the 

probabilities of each class for the input image. 

To examine the impact of synthetic images generated by the 
GAN model, three distinct training datasets were prepared. The 

first dataset was the original training dataset used for training 

the GAN model, consisting of 691 real cell images from days 

2, 6, and 14. The second dataset combined the images from the 

first dataset with an additional 960 real images (320 per cell 

class), resulting in a total of 1651 real cell images. The third 

dataset combined the 691 real images with 960 synthetic images 

(320 per cell class), resulting in a total of 1651 mixed real and 

fake cell images.  The relationship among these three training 

datasets is depicted in Fig. 2. During training of the cell 

classifier, the Adam optimizer with 𝛽1=0.9 and 𝛽2=0.999 was 
utilized with a batch size of 64. The learning rate was set to 

0.0005. The cell classifier underwent training for 1000 epochs. 

III. RESULTS 

A. Generation of synthetic images of hiPSC-CMs 

Fig. 4 presents a visual comparison among the generated 

images of hiPSC-CMs on day 2, day 6, and day 14, and the 

corresponding real images of hiPSC-CMs. The results 

demonstrate that our GAN model is capable of reproducing 

distinct characteristics observed in human cardiac cells at 

different stages of culture on a maturation promoting scaffold. 

Specifically, the synthetic images generated by our GAN model 

successfully capture the varying patterns exhibited by human 

cardiac cells at different culture timepoints. For instance, the 

day 2 synthetic images exhibit a sparse distribution of cells, 

small cell surface areas, and distinct boundaries between cells. 

On the other hand, both the real and synthetic images at day 14 
exhibit a dense distribution of cells, elongated cellular shapes, 

and larger cell surface areas. These observations demonstrate 

the ability of our GAN model to generate synthetic images that 

accurately replicate the diverse characteristics of human 

cardiomyocytes during their maturation process. 
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Figure 4. Comparison of real control group  hiPSC-CM images and 
the generated hiPSC-CM images. (A-C) Real images of control group 
hiPSC-CMs cultured for 2 days (A), 6 days (B), 14 days (C). Synthetic 
images of hiPSC-CMs that correspond to a 2-day culture (D), 6-day 
culture (E) and 14-day culture (F). 

B. Generation of synthetic videos of hiPSC-CMs 

 
Figure 5. Authentic and synthetic videos of a beating maturity-

enhanced single hiPSC-CM. (A) The real time series image of a single 
beating hiPSC-CM, shown in 256 x 256 pixel resolution. (B) The 
synthetic time series image of a single beating virtual hiPSC-CM, 
shown in 64 x 64 pixel resolution. Each image is taken at an interval 
of 0.5 s from time series (i) to (iii) in both A and B. 

Fig. 5 presents a motion video example of a synthetic human 

cardiomyocyte with a resolution of 64x64 in greyscale. This 

synthetic video is compared to a real video that depicts the 

contractile motion of a single aligned hiPSC-CM shown in Fig. 

5B. The displayed figure showcases the progression of a single 

artificially generated cardiomyocyte from a relaxed state 

(Figure 5Bi) to a contraction state (Figure 5Bii), and 

subsequently returning to the relaxed state (Figure 5Biii). 

Notably, these synthetic frames closely mimic the beating 

dynamics observed in the real hiPSC-CM video shown in Fig. 

5A.  This visual comparison highlights the capability of our 

model to generate synthetic cardiomyocyte videos that 

faithfully reflects the spatiotemporal dynamics exhibited by real 

cardiomyocytes. 

C. Principal Component Analysis of the generated cell images 

Principal Component Analysis (PCA) is a widely adopted 

methodology used to analyze massive datasets that encompass 

a substantial number of dimensions or features per observation. 

This method eases data interpretability while retains critical 

information, thereby enables effective visualization of 

multidimensional data. This is accomplished by applying linear 

and orthogonal transformation of data into a new coordinate 
system where variation in the data can be described with fewer 

dimensions compared to the original data. In numerous studies, 

the first and second principal components have been frequently 

applied to construct a two-dimensional representation of the 

data and thus, enabled effective visual identification of clusters 

that consist of closely related data points[34]. 

 
Figure 6. Principal component analysis of the real and  fake data 

To quantitatively assess the ability of our proposed GAN 

model to generate synthetic cell images that exhibit similar 

features to the authentic ones, we conducted principal 
component analysis (PCA) to examine the distribution of the 

underlying main components in both real and synthetic image 

data. The results are illustrated in Fig. 6 and Fig. 7. Fig. 6A 

represents the first two principal components obtained from the 

experimental dataset of 691 samples that were also used to train 

the GAN model. The analysis reveals that while the images 

from day 14 exhibit a distinct distribution of features, there is 

an overlap between the day 2 and day 6 data, indicating that 

these two classes share similar yet discernible features. Fig. 6B 

showcases the PCA results of each real and synthetic data, 

including the real data samples shown in Fig. 6A and the 

synthetic dataset of 960 samples generated by the GAN model. 
The findings demonstrate that for each class of cell images, the 

synthetic data samples display overlapping distributions with 

the real data, which demonstrate the ability of our GAN model 

to generate synthetic images that capture real features. Fig. 6C 

displays the PCA results of the seen real data, fake data, and the 

unseen real data. While most of the unseen data features are 

covered by the seen real data, some of the unseen data exhibit 

outlier features, which can pose challenges for classification 

models that solely rely on real data with limited sampling. 

However, this scenario is often encountered in in vitro cardiac 

systems. 
A comprehensive analysis of the principal component 

analysis (PCA) results for various classes and types of data is 

presented in Fig. 7. The comparison provides detailed insights 

on the distribution of features. In Fig. 7B, C, and D, the features 

of the unseen data are more densely distributed in synthetic 

images compared to the authentic images. This observation 

suggests that the GAN model successfully captures the most 

significant and prominent features from the original data. 

Additionally, Fig. 7B and 7C reveal that the synthetic data 

exhibits an expanded feature distribution in the first principal 

components compared to the authentic data. This expansion 

allows the synthetic data to cover a wider range of features, 
including those that may not be prominent in the original data 

due to limitations in sample size and diversity. 
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These findings demonstrate the ability of our proposed GAN 

model to successfully generate synthetic cell images that 

exhibit similar features to the real ones and thus, improves the 

data analysis cost and accuracy by aiding in sampling  

Figure 7. Principal component analysis (PCA) of the real data, fake 
data, and the unseen data of different cell classes. (A) The first three 
PCA of (i) day 2 (ii) day 6 and (iii) day 14 hiPSC-CMs. (B)-(D) Hex 
plot with marginal distributions to show the first two principal 
components of (B) day 2, (C) day 6, (D) day 14 of the (i) small real 

data set, (ii) synthetic data, (iii) unseen data. 

power. The GAN model demonstrates its ability to extract 

important features from the real data, while also introducing 

novel features that may not be fully reflected in but based on 

the original data. This ability to generate synthetic data with 

greater diversity and broader feature coverage greatly enhances 

the effectiveness and practicality of our GAN model. This PCA 

results underscore the challenges and biases of working with 

limited real data when constructing a classifier with strong 

generalization potential, especially as the unseen data may 
contain outlier features. Thus, integrating synthetic data 

becomes crucial in situations where the availability of 

experimental data is limiting. 

D. Visualization of the Cell Classifier Feature Maps 

To validate the function of our proposed cell classifier, we 
present the feature maps generated by the trained classifier, 

which provide a visual representation of the learned CNN 

features within the classifier.  

 
Figure 8. Feature maps of the cell classifier. (A)(B): (i) The input data 
and the (ii-v) four channel CNN filter feature maps of day 2 control 
cell images. (C) (D): (i) The input data and the (ii-v) four channel CNN 
filter feature maps of day 6 control cell images. (E)(F): (i) The input 
data and the (ii-v) four channel CNN filter feature maps of day 14 

control cell images.  

Fig. 8 represents both the input images (i) and the resulting 

four-channel output from the last CNN layer, and each filter 

mask result is displayed in (ii-v). Specifically, Fig. 8A and 8B 

correspond to day 2 cell images, Fig. 8C and 8D represent day 

6 cell images, and Fig. 8E and 8F depict day 14 cell images 

from the control group. In the feature map figures, regions that 

appear brighter indicate a higher activation or presence of the 

learned feature. While the feature map represents an 

intermediate outcome of the entire classifier, it offers insights 

into the internal mechanisms of the CNN within the classifier. 
For instance, the results from the first filter mask in Fig. 8A(ii) 

exhibit a strong correlation with the most prominent regions in 

the cell images, many of which correspond to dead cells. 

Conversely, the results from the second filter mask in Fig. 

8F(ii) demonstrate a strong correlation with the alignment of 

each cell. These two features play critical roles in distinguishing 

different classes of hiPSC-CMs solely based on their graphical 

characteristics. These findings elucidate how our proposed 

CNN classifier can capture the intricate features of hiPSC-CMs 

and facilitate accurate classification of cells into various culture 

stages. 
IV. DISCUSSION 

A. Ablation Test 

To validate the accuracy of our CNN cell classifier, we 

conducted a comparison with models that share similar 

structures. These include a 5-layer fully connected model, a 

reduced-size CNN with fewer layers, and a significantly larger 

CNN model that follows the same structure as our 

discriminator, which is commonly employed in other studies 

[30]. The results are presented in Table I. All models were 

trained using a mixed dataset of real and synthetic samples and 
were tested on both seen and unseen domain samples. 
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Table I. Ablation Test on models that share similar structures 

 
It is worth mentioning that our proposed model demonstrates 

nearly the highest accuracy across all testing scenarios, except 

for the discriminator-structure model, which exhibits higher 

accuracy in the seen domain tests. However, the difference is 

insignificant since both methods achieve extremely high 
accuracy in seen domain tests. Nevertheless, our proposed 

model significantly outperforms the others in the unseen 

domain tests. Consequently, we didn't select the discriminator 

structure for the cell classification task here. 

The disparity between our proposed model’s performance 

and the others’ performance in the unseen domain tests can be 

attributed to two reasons. Firstly, our proposed model does not 

consider the entire image as input. Instead, it selects a random 

crop of size 96 x 96 from the original image during each training 

epoch. This approach ensures that our model learns the features 

of neighboring pixels from fragmented images, thereby 

enhancing its performance when encountering new data. This is 
particularly crucial in the case of intact hiPSC-CM images in 

which cells are closely packed, lack orderly alignment, and vary 

in cell features from one image to another. This is in contrast to 

other cell classification tasks that involve distinguishing single 

cell types, where each cell is positioned at the center of the 

image to maintain fixed feature positions. This also accounts 

for our selection of random crops during each training epoch of 

the GAN model. Consequently, utilizing a discriminator 

structure that takes the entire image as input would compromise 

the model's ability to handle perturbations in novel data. 

Second, the presence of substantial number of parameters in the 
discriminator can increase the risk of overfitting the CNN 

model when trained on a small dataset. 

B. Classification of hiPSC-CMs with different methods and 

data sets 

 
Figure 9. Classification results of our CNN classifier and other state-
of-art machine learning algorithms. (A) The classification results of (i) 

total accuracy of seen domain test and unseen domain tests (ii) 

accuracy of seen domain results (iii) unseen domain results for each 
classification method.  

To evaluate the performance of our proposed model, we 

conducted a comparative analysis against other state-of-the-art 

methods, including Random Forest, KNN, SVM and Naive 

Bayes. Each method was trained using a small dataset of seen 

domain real samples as well as a mixed dataset comprising 

both real and synthetic samples. In order to assess the 

generalization ability of each method, both seen real data and 

unseen real data were used for testing. The experiments were 
conducted with different combinations of training and testing 

data, and each combination was repeated for 10 cycles. The 

classification results obtained from the GAN model were 

compared with those of the other methods, and the results are 

displayed in Fig. 9 and summarized in Table II. 
 
Table II. Summary of classification results of different combinations 
of the training and testing data 

 
The results demonstrate that our CNN classifier achieves the 

highest classification accuracy in both tests that used real data 

and mixed data respectively for training. Furthermore, it is 

observed that the accuracy of the seen domain data tests 

consistently surpasses that of the unseen domain tests, except 
for the random forest method trained with both real and 

synthetic data. This observation reinforces the challenge of 

building a generalized model when working with limited 

training datasets. Importantly, nearly all of the methods exhibit 

improved accuracy when synthetic data generated by the GAN 

model is incorporated to the training. This finding underscores 

the GAN model's ability to generate high-quality synthetic data 

and the rationale behind augmenting the dataset with synthetic 

samples with respect to sample size and diversity. Overall, these 

results validate the superior performance of our proposed CNN 

classifier and emphasize the potential benefits of leveraging 
synthetic data to enhance classification accuracy, particularly 

when working with limited training datasets. 

 
Figure 10. Summary of prediction results of our GAN based classifier 
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Figure 11. Summary of prediction results of other classifiers 

To assess the classification accuracy of each cell class, we 

generated heatmaps that visualize the performance under 

different combinations of training and testing data. The results 

are presented in Fig. 10 and Fig. 11. In Fig. 10, we present the 

classification results of our proposed CNN classifier trained on 

three different datasets: a small training dataset that consists of 

real samples (Fig. 10A), a larger dataset that consists of real 

samples (Fig. 10B), and a mixed dataset containing both real 

and synthetic samples (Fig. 10C). Comparing Fig. 10A and Fig. 

10B, it is evident that utilizing a larger real dataset leads to 

improved classification accuracy in both seen domain and 

unseen domain tests. This improvement can be attributed to 

increased number of samples, allowing for a more 

comprehensive coverage of the distinctive characteristics 

exhibited by the different cell classes. Comparison between 

Fig. 10B and Fig. 10C also reveals improved performance of 

the unseen data test. This finding verifies that incorporation of 

synthetic data generated by the GAN model results in a more 

robust dataset, which can better handle potential perturbations 

in different domain data and extend the classifier's potential to 
generalize beyond the original seen domain. However, when 

comparing Fig. 10B to Fig. 10C, we observe that there is no 

significant improvement in the accuracy of seen data tests. This 

finding suggests that the seen data tests already achieve a high 

level of accuracy, leaving little room for further improvement. 

The heatmaps depicted in Fig. 10 and Fig. 11 demonstrate 

that the highest accuracy is achieved in distinguishing hiPSC-

CMs images cultured for 14 days, while the classification of day 

2 and day 6 cell images often led to misclassification between 

these two classes. This observation aligns with our earlier PCA 

results illustrated in Fig. 9, where the day 2 and day 6 data 
exhibited overlapping distributions of the main principal 

components, whereas the day 14 data displayed a distinct 

distribution pattern. 

Overall, these observations demonstrate that increasing the 

size of the real dataset and augmenting it with synthetic data 

from the GAN model contribute to improved classification 

accuracy, particularly in scenarios involving unseen domain 

data. By leveraging a combination of real and synthetic data, 

our proposed CNN classifier exhibits enhanced robustness and 

adaptability, making it capable of accurately classifying cells 

with respect to culture stage or maturation level even in 

challenging situations. 

V. CONCLUSION 

 

Here, we present the development of a Generative 

Adversarial Network (GAN) model to generate high quality 

synthetic data that replicates intact and maturity-enhanced 

hiPSC-CMs. Synthetic cardiac cell images were generated 

using the GAN model and combined with an authentic 

experimental dataset to train a Convolutional Neural Network 

(CNN) model. The performance of the model was evaluated 

using an unseen domain dataset, and the results demonstrate 

that incorporating synthetic data significantly improves 

accuracy of classifying cells into distinct temporal stages in the 
maturation process. Principal Component Analysis (PCA) 

confirmed the GAN model's ability to extract important features 

and introduce novel characteristics that may have been hidden 

in the original data. The proposed model outperformed four 

conventional machine learning algorithms such as random 

forest, KNN, SVM and Naive Bayes, and the improvement of 

the model’s generalization ability by incorporating synthetic 

data is verified in each of these state-of-art models. The analysis 

emphasizes the difficulties in developing a classifier that can 

classify samples with limited training data. It also demonstrates 

the importance of integrating synthetic data in situations where 

there are limited samples and thus, effectively addresses the 
challenges imposed by data availability. 
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